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Abstract: Thermal tissue ablation may damage surrounding healthy tissue and cause pain. In
this study, tissue ablation with the sequential application of electrical energy-inducing irreversible
electroporation (IRE) and electrolysis (EL) (IRE + EL = IREEL) was investigated. An IREEL device
was designed to control five output pulse parameters: voltage level (VL), pulse width (PW), pulse
interval (PI), pulse number (PN), and pulse tail time (PTT). IREEL experiments were conducted on
vegetable tissue. The results indicated that by increasing the VL and PTT, the ablation area increased,
whereas the impedance was reduced significantly. Almost no ablation area was observed when only
EL or IRE at 500 V and 1000 V, respectively, were applied. The ablation area observed with IRE alone
at 1500 V was defined as 100%. In the case of IREEL at 500 V and 1000 V, ablation was induced
even with the use of micro-second level PTT, and ablation areas of 91% and 186% were achieved,
respectively. For IREEL at a voltage of 1500 V, the ablation area expanded to 209% and the maximum
temperature was 48.7 ◦C, whereas the temperature did not exceed 30 ◦C under other conditions.
A change in pH was also observed in an agar-gel phantom experiment which was conducted to
examine and confirm whether IREEL induced electrolysis. IREEL was able induce ablation at low
voltages owing to the synergistic effect of applying IRE and EL sequentially. Moreover, the ablation
areas at high voltages could be increased compared to the areas observed when IRE and EL were
applied independently.

Keywords: thermal tissue ablation; electrical energy-inducing irreversible electroporation; electrolysis;
ablation area; synergistic effect

1. Introduction

Currently, different tissue ablation techniques, including radiofrequency ablation
(RFA) based on radiofrequency waves [1], high-intensity focused ultrasound [2], laser
interstitial thermal therapy using heat emitted from a laser [3], and carbon dioxide (CO2)-
based cryoablation [4], have been developed. These approaches are based on the heating or
cooling of tissues. Among these, RFA is a minimally invasive technique delivering electrical
energy to target tissues by applying electrical currents using a needle electrode or catheter.
Additionally, RFA allows induced ablation zone prediction; thus, this technique is typically
used in clinical therapy and for ablating abnormal tissues or tumors [1,5]. However, as
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thermal ablation can cause necrosis of all tissues and cells in an area where thermal energy
is generated, normal or benign tissues are also affected, resulting in complications such as
injury to blood vessels, scarring, pulmonary vein stenosis and restenosis, infection, and
bleeding due to puncture [6,7]. Therefore, tissue ablation using a non-thermal strategy
known as electroporation is being actively investigated [8–10]. In electroporation, a high
voltage is applied to a target tissue for a short duration, during which the pores of the
cell membrane briefly open, resulting in a transient increase in permeability. Electropora-
tion can be manifested in two forms—reversible and irreversible (IRE)—based on cellular
changes. Thus, the technique is suitable for a wide range of applications in medicine and
electro-manipulation, including the insertion of proteins and molecules, gene transfer and
drug delivery, and apoptotic cell death [11–14]. Similar to RFA, electroporation relies on
electromagnetic phenomena, enabling ablation prediction through modeling and simu-
lation to provide minimally invasive treatments [15–17]. IRE is primarily used for tissue
ablation because it induces apoptosis in target tissues, although physical bleeding during
the electrode insertion process and vasoconstriction after applying electric high-voltage
may accompany the treatment [18], and it enables selective target destruction with minimal
or no damage to the surrounding normal tissues. However, because this method involves
applying high voltages of approximately several kilovolts, strict treatment protocols are
necessary to avoid ventricular or atrial fibrillation and muscle contraction. Another lim-
itation of IRE is pain induction [19–22]. According to recent reports, the effective tissue
ablation area using IRE can be less than 3 cm at maximum. Thus, high-voltage applications
or the use of multiple electrode configurations should be considered to increase the ablation
zone [23–26].

Recently, studies have attempted to address the limitations of IRE based on vari-
ous approaches such as applying a pulse width in the range of nano-seconds, utilizing
a high-frequency bipolar pulse [27,28], applying combinations of high- and low-voltage IRE
pulses [29,30], applying various high-voltages and changes in tissue temperature [31,32],
and using only low DC voltages [33,34]. Additional strategies involve combining ra-
diofrequency ablation (RFA) and irreversible electroporation (IRE) [35,36] and combining
electroporation and electrolysis (EL) using a single exponential decay wave with only an
initial high voltage [37–39]. However, few studies have focused on reducing the voltage
applied during IRE. Therefore, this study investigated a new energy transfer pulse-shaped
waveform capable of increasing the ablation area while lowering the IRE voltage. A square
pulse for conventional IRE and an exponential decay waveform for EL were sequentially ap-
plied to tissues to examine the synergistic effects of the two mechanisms (IRE + EL = IREEL)
in tissue ablation. To realize the goal of this study, we designed and developed an irre-
versible electrolytic electroporator (IREEL) to quantify the changes in the ablation area,
impedance, temperature, and pH according to the pulse parameters.

2. Materials and Methods
2.1. Development of the IREEL

To implement the IRE and EL operations, we developed an IREEL electroporator to
generate pulse-shaped and exponential decay waveforms as outputs. The developed device
had power, output, and control units, as shown in Figure 1.
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The power unit received a 220 V alternative current (AC) as an external input voltage.
For the high-voltage setup, a 24 V direct current (DC) was generated, while 5 V and 12 V
DCs were generated to control the overall system. A flyback topology from the switched-
mode power supply was used for the high-voltage setup to generate high voltages ranging
from 100 to 1500 V in intervals of 100 V. The generated electrical energy was stored in
electrolysis capacitor 1 (EL1), electrolysis capacitor 2 (EL2), and main capacitor banks of
100, 50, and 285 µF, respectively. The energy stored in all the capacitor banks was used
to generate the square pulse output of the IRE, whereas that stored in the EL1 and EL2
capacitor banks was used simultaneously or individually to generate the single exponential
decay waveform of the EL, depending on the selected time constant. The setup allowed for
four different time constants to be set as required.

The output unit included two insulated gate bipolar transistors (IGBTs) (IXBX25N205)
(IXYS Corp., Milpitas, CA, USA). The operating sequence of the output and pulse parame-
ters controlled in the experimental setup is depicted in Figure 2. For the IRE pulse outputs,
both IGBT 1 and 2 were turned on simultaneously. Subsequently, according to the set pulse
width (PW) (i.e., the time of the high level of the output pulse), pulse number (PN) (i.e., the
number of output pulses), and pulse interval (PI) (i.e., the time between the rising edge of a
pulse and the rising edge of the next pulse), IGBT 2 was turned on or off. For generating
the EL waveforms, IGBT 1 was turned off only to use the energy stored in the EL1 and EL2
capacitor banks. In contrast, IGBT 2 was turned on only for a set duration of time, which
is herein referred to as the pulse tail time (PTT), i.e., the time when the exponential decay
waveform was delivered to tissue. Thus, the experimental setup allowed for the selective
output of the following different waveforms: IREEL (the consecutive output of IRE and
EL), IRE alone, or EL alone.
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Figure 2. The IREEL waveforms, the five controllable pulse parameters, and the gate control sequence
of the IGBT semiconductor switch.

The control unit comprised a microcontroller (ATXMEGA128A1) (Microchip Technol-
ogy Inc., Chandler, AZ, USA) which controlled the total operation of the device and the
five pulse parameters. The user interface was configured with a character liquid crystal
display, four buttons, and an encoder. For safety, galvanic isolation was provided between
the low- and high-voltage parts of the circuit. The control and monitoring signals were
transmitted using a digital isolator (ISO7761) (Texas Instruments, Dallas, TX, USA).
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2.2. TTC Test on a Potato as a Tissue Phantom

Potatoes are typically used as tissue phantoms for pilot experiments, particularly
for electroporation, owing to their relative ease of use, preliminary test convenience, ab-
sence of ethical issues, low cost, and minimal time requirements [40,41]. To minimize
the variability due to the inhomogeneity of potato tissues, potatoes of similar size, tem-
perature, and impedance conditions were selected for the experiment. The largest outer
diameter of the potatoes was limited to 8–10 cm. The potatoes, stored at 0–10 ◦C, were
exposed to ambient temperature for 12 h before starting the experiment and were cut into
slices of 10 mm thicknesses. Of the selected potatoes, only those with impedances within
6 ± 0.8 kΩ were used in the experiment. A low-frequency impedance analyzer (HP4192A)
(Keysight Technologies, Santa Rosa, CA, USA) was used to measure the impedance at
10 Hz. For impedance measurements and pulse energy applications, a stainless-steel needle
electrode with a 2 mm diameter was inserted into the potatoes to a depth of 10 mm. A
triphenyl-tetrazolium chloride (TTC; Sigma-Aldrich, St. Louis, MO, USA) test was utilized
as a cell viability assay after energy application. TTC is a redox indicator typically used in
biochemistry to detect cellular respiration [40]. When dehydrogenase, produced as a result
of mitochondrial respiration in cells, and TTC are combined, TTC turns red. Otherwise, if
the cell activity is minimal or in the case of cell death, TTC remains colorless. Thus, cell
viability and activity can be easily determined. For the TTC staining, a reagent of 0.5% w/v
was prepared by adding 5 g of TTC to 1000 mL of distilled water.

The developed IREEL electroporator was used under pulse parameter conditions of
PW = 10 µs, PI = 1000 µs, PN = 8, and variable PTTs of 0, 400, 800, 1600, and 3200 µs, and
variable voltages of 500, 1000, and 1500 V were applied. For PTT = 0 µs, the output energy
generated square pulses only, which were similar to those of the conventional IRE output.
In contrast, for PN = 0, the output energy generated exponential decay waveforms only.
The experiments were conducted under 18 different conditions and with five replicates for
each experimental condition; thus, a total of 90 potato slices were used.

2.3. Quantification of the Biological Changes

The temperature, impedance, and ablation area changes were quantified to examine
and analyze the changes based on the output waveforms. The temperatures were recorded
using a thermal infrared camera (One Pro LT) (Teledyne FLIR LLC, Wilsonville, OR, USA),
while the impedances were measured before the experiment and immediately after energy
application, without removing the needle electrode, as shown in Figure 3. To calculate the
ablation areas, MATLAB (MathWorks, Natick, MA, USA) was used.
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After applying energy to the potato slices, the electrode was removed completely, and
the potato slices were placed on a Petri dish containing the TTC staining solution. After
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6 h of staining, changes were observed as the potatoes presented red and white areas. Red,
green, and blue (RGB) information from the color images was used for grayscale conversion.
The RGB images were converted to two-level indexed stages to perform the binarization.
After filtering into Gaussian-weighted images, the ablation areas were calculated in pixel
units [42].

Furthermore, 0.5% Bacto-agarose, 0.2% NaCl, and 1% water pH liquid indicator (pH
Test Drops, Parkton, NC, USA) were mixed in distilled water and then boiled for 5 min in a
microwave oven. Afterward, the solution was solidified for 30 min at room temperature
to prepare an agar-gel phantom to observe the EL’s effect. Changes in the pH levels of
the phantoms resulting from the PTT changes were examined under the aforementioned
needle electrode conditions.

2.4. Statistical Analysis

The results, performed 5 times for each experimental condition, were calculated as
means ± standard deviations. In addition, significance was analyzed using a two-tailed
paired Student’s t-test for each condition (* p < 0.05, ** p < 0.01, and *** p < 0.001). Statistical
analysis was performed using Microsoft Office 365 Excel software (Microsoft Co., Ltd.,
Redmond, WA, USA).

3. Results
3.1. Output Waveforms of the IREEL

Figure 4 presents the IREEL electroporator and the output voltage and output current
waveforms at a resistive load of 120 Ω. The output was obtained using a digital phosphor
oscilloscope (TDA3044B) (Tektronix Inc., Beaverton, OR, USA) with a differential probe
(P5201A) (Tektronix Inc., Beaverton, OR, USA) to measure the voltage and a TCP305A
(Tektronix Inc., Beaverton, OR, USA) probe to measure the current. The main control
parameter, the maximum output voltage level (VL), was set at 1500 V, and a minimum PW
of 10 µs was used. The voltage and current outputs for a wide range of values of the PI, PN,
and PTT were obtained. The design of the IREEL electroporator was verified to generate
the IRE and EL energy output waveforms individually and sequentially. The decreases in
the PTT with the time constant (τ = RC) were determined by the selective connection of the
appropriate EL capacitor banks to the resistive load.
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Figure 4. IREEL device and graphs of the output waveforms. (a) Photograph of the built IREEL
device. (b) IRE voltage and current outputs at the minimum PW and maximum VL. (c) IRE output
waveform at 100 µs PW. (d) IREEL output waveform with an EL capacitor bank of 100 µF and a PTT
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of 3 ms. (e) IREEL output waveform with an EL capacitor bank of 100 µF and a PTT of 4 ms. (f) IREEL
output waveform with an EL capacitor bank of 50 µF and a PTT of 4 ms.

3.2. Changes in the Ablation Areas with PTT

The IREEL experiments were performed using potato slices. Figure 5 presents the
potato slices stained red using TTC. Apoptosis was induced in the white areas of the potato
slices. The apoptotic area was observed to increase with the VL and PTT. The ablation
areas, impedances, and temperature changes were recorded. The results are presented in
Figure 6a–c, respectively. A small ablation area around the electrode was observed for only
the IRE application at 500 and 1000 V. Moreover, the ablation area increased accordingly
when the voltage was increased. For IREEL, where the EL was applied immediately after
IRE, the ablation area increased with the PTT, even at a low voltage (Figure 6a). Among the
IREEL measurement conditions, the ablation areas for 1600 and 3200 µs PTTs with both
IRE and EL applied at 500 V were similar to those for 1500 V with only the IRE application.
For IRE and EL applied at 1500 V and 3200 µs PTT, respectively, the ablation area was
more than double that obtained with only IRE at 1500 V. Table 1 lists the percentages
of the ablation areas relative to the ablation areas produced at 1500 V IRE under each
measurement condition. The decreases in impedance demonstrated a positive correlation
with the ablation area as the VL and PTT increased, except for the cases of 500 and 1000 V
with only the IRE application (Figure 6b). Regarding the temperature, only the highest
temperatures observed before and after the experiment under the condition of VL = 1500 V
were analyzed (Figure 6c). For IREEL at 1500 V and 3200 µs PTT, the temperature increased
from 24.0 ◦C before the experiment to approximately 48.7 ◦C after the experiment. Except
for this specific case, the temperature increments were approximately 5 ◦C or less under all
measurement conditions of the experiment.
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impedance. (c) Changes in the temperature before and after energy application. Significance was
analyzed using a two-tailed paired Student’s t-test (* p < 0.05, ** p < 0.01, and *** p < 0.001).

Table 1. Comparison between the relative percentages of the ablation areas with the ablation areas
(means ± standard deviations, units are mm2) at 1500 V of IRE set at 100% under the measurement
conditions of IRE, IREEL, and EL.

Voltage (V)
IRE Only IREEL (PN + PTT) EL Only

PN: 8 8 + 400 µs 8 + 800 µs 8 + 1600 µs 8 + 3200 µs 3200 µs

500 8%
(13.41 ± 0.11)

36%
(59.47 ± 5.80)

59%
(96.27 ± 8.98)

90%
(146.71 ± 14.04)

91%
(148.28 ± 20.08) -

1000 14%
(22.84 ± 3.34)

54%
(89.19 ± 8.37)

110%
(180.24 ± 21.07)

144%
(235.05 ± 27.49)

186%
(303.12 ± 43.84) -

1500 100%
(162.43 ± 27.62)

104%
(169.14 ± 31.74)

146%
(237.45 ± 30.11)

159%
(258.83 ± 36.66)

209%
(339.84 ± 45.91)

115%
(186.64 ± 34.01)

3.3. Changes in pH with the PTT

Figure 7 presents images of the redox reactions in the agar-gel phantoms with a
dissolved pH indicator. The results shown correspond to 500 V and PTTs of 400, 800, 1600,
and 3200 µs. Before the experiment, a uniform color indicating a pH value of seven was
observed. After the experiment, the colors indicated pH values of five and eight at the
positive and negative electrodes, indicating oxidation and reduction, respectively. When
only IRE was applied to the phantom in the same Petri dish, the redox reaction was not
observed (the inset box with a dotted line boundary shown in Figure 7).
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PTTs of 3200 µs.

4. Discussion

In this study, we investigated the ablation of a tissue phantom with the simultaneous
application of a square pulse energy output from IRE and an exponential decay energy
waveform from EL. An IREEL electroporator was designed, and the setup was used to
quantify the ablation area, impedance, and temperature changes for sliced potato samples.
Additionally, changes in pH were observed using an agar-gel phantom.

Notably, the developed IREEL electroporator consisted of power, output, and control
units, and the experimental setup had a total of five controllable pulse parameters. The
following is a summary of the measurement conditions that allowed for wide-ranged
control: VLs ranging from 100 to 1500 V in increments of 100 V, PWs ranging from 10
to 500 µs in increments of 10 µs, PIs ranging from 10 µs to 5 ms in increments of 10 µs,
PNs ranging from 1 to 999, and PTTs ranging from 1 to 1000 ms in increments of 1 ms. In
addition, the decay time constant of the exponential wave could be controlled.

The experimental results for the sliced potato phantoms indicated that the ablation
area increased when eight square pulses of IRE and a micro-second level EL energy were
applied consecutively compared to when IRE was applied alone with the same number of
square pulses. When a milli-second level of EL energy was used, the ablation area increased
by more than two times. When the temperature change was observed using a thermal
infrared camera for the longest PTT of 3200 µs, the temperature change ∆T was 24.7 ◦C after
the experiment, reaching a maximum temperature of 48.7 ◦C. A study on thermal injuries to
tissue due to IRE ablation reported that thermal damage was induced when a temperature
of 54 ◦C or higher persisted for 10 s [43]. In this study, the temperature rise was lower than
that recorded in the previous study, and the temperature returned to the base temperature
of the potato before the experiment within 3 s. For PTT values lower than 3200 µs, the
maximum temperature change was within approximately 5 ◦C. No temperature increments
of more than 30 ◦C from the base temperature were observed. Additionally, as the ablation
area increased with the PTT, the developed IREEL electroporator essentially induced non-
thermal ablation, which further increased the efficiency. These results suggested that if the
developed system were to be applied to other types of tissues, increases in the ablation
areas could be achieved while controlling thermal damage to the tissues. Studies on the
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clinical application of IRE techniques have reported that the possibility of ventricular or
atrial fibrillation and muscle contraction must be monitored carefully when high voltages
are used during treatment owing to the possibility of additional undesirable consequences
such as pain [19–22]. Thus, studies have been conducted to address these problems,
including increasing the frequency with a nano-second level PW (H-FIRE) [19,20,24,28],
applying a bipolar rectangular pulse [19,44], and optimizing the IRE electrode configuration,
considering its shape and material [25,26]. However, these methods resulted in smaller
ablation areas than conventional IRE owing to bipolar cancellation. Our results indicated
that almost no ablation was induced when only IRE and EL were applied individually
at low voltages. However, for IREEL, with a combination of IRE and EL under the same
voltage condition, the ablation area was slightly smaller or increased to approximately
1.8 times when the PTT was 800 or ≥1600 µs, respectively, compared to the ablation area
for IRE applied at a voltage of 1500 V. These results indicated that with the IREEL approach
when energy is applied with electrolysis at low-voltage IRE, ablation can be induced owing
to the synergistic effect of the two mechanisms. However, cell death by IREEL may be
induced owing to the IRE-induced pore opening of the cell membrane, promoting the
formation of a cytotoxic environment [38,45] from the subsequent change in pH due to
the EL. The changes in pH by IREEL were observed using the agar-gel phantom. The
impedance was observed to decrease under all experimental conditions except for IRE
at 500 and 1000 V without EL. Additionally, the decrease in impedance was positively
correlated with the change in the ablation area. A minimal or no ablation area was observed
when the impedance was not changed. These results were consistent with previous findings
related to electroporation [9–12,21,24,46,47].

The electroporation technique is being tried as an alternative to cancer treatment in
clinical practice because it is possible to selectively ablate malignant tissue with a minimally
invasive, non-thermal treatment while predicting the ablation area through simulation.
However, the variability in the treatment effect was high, the system was complex, and
the risk of using high voltage was also inherent. Recently, with the development of high-
voltage power semiconductor technologies and parts while simplifying the configuration
of the systems, these treatments have become safe for the human body, and it is possible to
generate various electric pulses, and thus, studies are carrying out new pulse shapes [44].
In this paper, a study was conducted on whether the voltage required for ablation could be
lowered when an exponential decay waveform was consecutively applied after applying
an IRE using only several square pulses, which have been traditionally used. As a result of
the experiment, it was confirmed that nearly the same ablation area was generated even
when the voltage was lowered three times when IREEL was used compared to the results
of applying IRE only and electrolysis only (Table 1). These results will be applicable to
various parts of the body where IRE cannot be applied due to muscle contraction and
cardiac fibrillation. As the voltage of the IREEL was increased, the ablation area was
approximately doubled, and so it can be considered to be used for precise surgical planning.
In addition, studies on cancer treatments for animals have recently begun to increase.
Since most animals are smaller than humans, it is not possible to apply IRE, but the
developed system and the electric parameters of IREEL can be applied to the development
of treatment techniques.

5. Conclusions

In conclusion, this study verified that ablation could be performed even at low voltages,
and the ablation area could be significantly increased at high voltages using IREEL, which
combines IRE and EL. Thus, IREEL can be applied in cancer treatments, muscle twitches,
and small animal in vivo experiments related to electroporation. However, in vivo or
ex vivo studies with various types of animal tissues other than the potato tissue used
in this study must be conducted for such expanded applications. Furthermore, the EL
waveform considered in this study was sequentially applied after applying the IRE pulse.
Therefore, additional in-depth comparative studies at the cellular level targeting Huh-7,
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glioblastoma, HepG2, and SNU-449 HCC cells, and also at the tissue level targeting the
livers and prostates of rabbits, rats, and pigs, which were extensively performed in early
studies in the fields of reversible (RE) and irreversible electroporation (IRE), are required,
with wide variations in the electric pulse parameters.
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9. Batista Napotnik, T.B.; Polajžer, T.; Miklavčič, D. Cell death due to electroporation—A review. Bioelectrochemistry 2021, 141, 107871.

[CrossRef]
10. Thomson, K.R.; Kavnoudias, H.; Neal, R.E. Introduction to irreversible electroporation—Principles and techniques. Tech. Vasc.

Interv. Radiol. 2015, 18, 128–134. [CrossRef]
11. Liu, L.; Zhang, J.; Teng, T.; Yang, Y.; Zhang, W.; Wu, W.; Li, G.; Zheng, X. Electroporation of SUMO-His-Cre protein triggers a

specific recombinase-mediated cassette exchange in HEK 293T cells. Protein Expr. Purif. 2022, 198, 106128. [CrossRef] [PubMed]
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