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Abstract: The well-being of residents is a top priority for megacities, which is why urban design
and sustainable development are crucial topics. Quality of Life (QoL) is used as an effective key
performance index (KPI) to measure the efficiency of a city plan’s quantity and quality factors.
For city dwellers, QoL for pedestrians is also significant. The walkability concept evaluates and
analyzes the QoL in a walking scene. However, the traditional questionnaire survey approach is
costly, time-consuming, and limited in its evaluation area. To overcome these limitations, the paper
proposes using artificial intelligence (AI) technology to evaluate walkability data collected through
a questionnaire survey using virtual reality (VR) tools. The proposed method involves knowledge
extraction using deep convolutional neural networks (DCNNs) for information extraction and deep
learning (DL) models to infer QoL scores. Knowledge distillation (KD) is also applied to reduce
the model size and improve real-time performance. The experiment results demonstrate that the
proposed approach is practical and can be considered an alternative method for acquiring QoL.

Keywords: quality of life; walking scene; walkability; semantic segmentation; object detection; deep
convolutional neural networks; knowledge distillation

1. Introduction

Urban design is crucial for sustainable development in megacities. Fast-growing
megacities without good urban planning can cause a lot of significant problems to residents
such as traffic congestion and transportation accidents [1–5]. For this reason, policymakers
need to realize the importance of sustainable development in urban design and plan both
resident-friendly and environment-friendly cities.

Policymakers can use Quality of Life (QoL), one of the key performance indexes (KPI),
to evaluate their urban design performance [6]. The concept of QoL [7] is to assess well-
being, happiness of citizens, and individual needs including social interactions as a part
of the society based on sustainable development [8–10]. According to numerous studies,
people use the Quality-of-Life framework as a policy performance measurement for urban
public transportation of megacities, especially in emerging countries, for example, Bangkok.
The failed urban planning in Bangkok leads to severe transportation congestion that is
caused by the car-oriented policies [1,2,11]. Thus, many researchers use Bangkok as a case
of study for QoL, such as Alonso [12], who predicts land-use public transportation policy
based on the satisfaction of dwellers, and Hayashi et al. [13] and Banister [14] proposed
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that people should apply a QoL approach by implementing less car-oriented policies and
encouraging the use of public transportation more.

The QoL of pedestrians is also a significant factor in the well-being of people living in
the cities. Many studies propose the walkability concept to analyze and evaluate the QoL
in a walking scene. Vichiensan and Nakamura [15] compare walking needs in Bangkok and
Nagoya. The study highlights the importance of considering cultural and environmental
factors when designing urban spaces that promote walking and active transportation.
Nakamura [16] studies the correlation between walkability and QoL outcomes in car-
oriented Asian cities. Vichiensan et al. [17] conclude that walking is essential to provide
equitable access and mobility in a city. Sou et al. [18] developed a framework for evaluating
street space by considering human emotions and values, aiming to improve communication
between designers and stakeholders. Nakamura [19,20] highlights the importance of
individual functions in pedestrian spaces and the effectiveness of design elements and
proposes using virtual reality (VR) evaluation to improve the design process and create
more effective pedestrian spaces.

Traditional tools used to evaluate Quality of Life (QoL) typically involve questionnaire-
based surveys, which can be time-consuming and costly. However, the results obtained
from these surveys are often limited to specific areas and timeframes, thus restricting
their generalizability. Furthermore, integrating traditional QoL evaluation methods into
other IT systems can present challenges and complexities. Some studies promoted new
approaches to QoL by applying artificial intelligence (AI) to solve these limitations. Kan-
tavat et al. [21] implemented deep convolutional neural networks (DCNNs), semantic
segmentation, and object detection for extracting factors in transportation mobility from
an image. Thitisiriwech et al. [22] proposed the Bangkok Urbanscapes dataset, the first
labeled urban scene dataset in Bangkok, and models that have an excellent performance on
semantic segmentation processing. Thitisiriwech et al. [23] proposed an AI approach using
DCNNs and a linear regression model to extract information from images and infer the QoL
score. Iamtrakul et al. [24] investigated how the built environment affects the QoL related
to transportation using a combination of GIS and DL in the Sukhumvit district, Bangkok.

This study proposes a QoL evaluation method using the machine learning approach.
There are two steps in the QoL assessment process. First, we conduct the information
extraction using image processing, consisting of semantic segmentation and object recog-
nition. Second, we feed the extracted information into the trained model to perform the
QoL inference. In addition, we also propose a knowledge distillation (KD) framework to
shorten the QoL inference time. The experiment results show that our proposed system is
effective and can be considered in QoL evaluation for the walking scene.

The proposed novel method for evaluating Quality of Life (QoL) offers several distinct
advantages compared to traditional approaches. One key advantage is the significant
reduction in time and cost requirements. Unlike the conventional method, which is limited
to specific survey areas and timeframes, our approach can be externally applied to evaluate
QoL in different regions and at different points in time. Moreover, the proposed method is
easily integrable into other IT systems that necessitate QoL evaluation or simulations.

Unlike previous research primarily concentrating on driving scenarios mentioned in
the introduction, our study focuses on assessing QoL in the walking mode. This emphasis
allows us to tailor our methodology to understand pedestrians’ experiences better by
considering that pedestrians observe and interact with their environment. We leverage
virtual reality (VR) tools in the QoL questionnaire process to create a more immersive and
realistic assessment. This enables us to capture the panoramic surroundings and the active
engagement of pedestrians.

2. Literature Review

Many studies of QoL for the walking scene suggest the factors affecting walkabil-
ity. Vichiensan and Nakamura [15] compared walking needs in Bangkok and Nagoya,
finding that comfort and pleasurability are higher-level needs in both cities. Safety was
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considered a higher-level need in Bangkok due to poorer street conditions. The study
suggested that street improvements were needed to encourage walking in Bangkok and
recover lost street activities in Nagoya. The study’s inclusion of informal activities in the
walkability evaluation provided practical street design insights for growing Asian cities.
Nakamura [16] explored the relationship between walkability and QoL outcomes, partic-
ularly in car-oriented Asian cities. The study defined indicators of walkability QoL and
surveyed 500 inhabitants of Nagoya city (Japan) using a questionnaire to assess their neigh-
borhoods. Results showed that neighborhood street quality, particularly pleasurability,
significantly affected QoL outcomes through their interrelationship. The study suggested
that street quality was vital in land-use transport planning to improve QoL outcomes.
Vichiensan et al. [17] summarized that walking was an important and sustainable mode
of transportation that can provide equitable access and mobility in a city. However, to be
enjoyable, convenient, and affordable, the walkway and nearby street must be attractive,
vibrant, secure, uninterrupted, and well-protected from road traffic.

Some studies apply modern technology, such as AI and VR, for QoL and walkability.
Sou et al. [18] proposed an AI and human co-operative evaluation (AIHCE) framework that
facilitated communication design between designers and stakeholders based on human
emotions and values for evaluating street space. The study suggested that the proposed
framework can contribute to fostering people’s awareness of streets as public goods, re-
flecting the essential functions of public spaces and the residents’ values and regional
characteristics, improving the city’s sustainability. Nakamura [19,20] addressed the issue
of pedestrian spaces needing more focus on individual functions and the effectiveness
of design elements. The researcher proposed using VR evaluation to analyze the impact
of sidewalk boundary space design on pedestrian space. The survey results showed a
close relationship between boundary space design and pedestrian needs. The study also
investigated the relationship between street environments, walking perceptions, and be-
haviors and found that VR evaluation reflects the sensitivity of walking willingness to the
satisfaction of hierarchical walking needs.

Some studies conduct deep learning neural networks (DNNs) to improve the limi-
tation of traditional QoL evaluation methods. Thitisiriwech et al. [23] suggested that the
traditional QoL evaluation is costly and time-consuming. Hence, researchers proposed an
AI approach using deep convolutional neural networks (DCNNs) and linear regression
to predict QoL scores from driving-scene images, using DeepLab-v3+ and YOLO-v3 for
knowledge extraction. The results also revealed insights into what makes Bangkokers feel
happy or uncomfortable, such as wider roads and walkway spaces correlating with more
delight and security and heavy traffic congestion reducing drivers’ happiness. Iamtrakul
et al. [24] used GIS and DL to analyze the effects of the built environment on Quality of
Life in Transportation (QoLT) in Sukhumvit district, Bangkok. They found that individuals
perceive QoLT differently depending on the physical characteristics of their environment.
The study highlights the importance of understanding QoLT for urban planning and
transportation development to achieve sustainable futures.

3. Related Theory

Deep learning (DL) is one of the machine learning techniques that is widely used, as it
has been applied in numerous research studies. DL is a subfield of neural networks (NNs)
and consists of an input layer, several hidden layers, and an output layer.

Deep supervised learning is a technique that uses labeled data to train the neural
network model. The model then predicts output and compares the output with the target
label to generate a loss value that will be used to update the weights for the model. There
are various of approaches for this technique such as convolutional neural networks (CNNs),
deep neural networks (DNNs), and recurrent neural networks (RNN).

This research uses these three neural networks. Image recognition is one of the
convolutional neural network approaches that is described in Section 3.1, a DNN approach
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is described in Section 3.2, and an RNN approach is described in Section 3.3. In addition,
this research uses a bidirectional structure to implement the RNN as described in Section 3.4.

To improve the performance, this research employs knowledge distillation (KD) to
reduce complexity and the consumed time of the model, as described in Section 3.5.

3.1. Image Recognition

This approach consists of two processes, object detection and semantic segmentation.
The YOLOv4 model is selected for object detection process and the DDRNet-23-slim model
is selected for semantic segmentation process. Details of each process are shown below.

• Object detection (YOLOv4)

A general object detection model consists of two parts; a backbone part which is
pre-trained on ImageNet and a head part which is used to predict classes and bounding
boxes of objects. Modern object detection adds more layers between the backbone and
head, which is called the neck. The neck is usually used to collect feature maps from
different stages.

YOLOv4 [25] is selected in this process. The model consists of a CSPDarknet53 back-
bone, an additional spatial pyramid pooling module along with a PANet path-aggregation
neck, and YOLOv3 (anchor-based) head. However, there are some methods modified for
efficient training and detection—CmBN, SAM, and PAN.

The accuracy of the model is 43.5% AP (65.7% AP50) for the MS COCO dataset at a
real-time speed of ~65 FPS on Tesla V100.

• Semantic segmentation (DDRNet-23-slim)

Semantic segmentation is to classify a class for each pixel in the image. The result is a
percentage, so the whole result is 100. Dilated convolutions are the standard for semantic
segmentation because the convolutions with large dilations can handle very large images
and high resolutions. Most state-of-the-art models are established from the ImageNet
pre-trained backbone with the dilated convolutions. Figure 1 is an example of a dilated
kernel in each rate.
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The DDRNet-23-Slim model [26] is selected in this process. The model has dual-
resolution branches and multiple bilateral fusions for backbones.

Each branch has a bottleneck block at the latest layer and the low-resolution branch
also has a deep aggregation pyramid pooling module before the pointwise concatenation
layer that creates the result for the segmentation head to predict class labels.

This model is a smaller version of DDRNet-23 that is a trade-off between accuracy and
processing speed (76.3 to 74.7 MIoU and 94 to 230 FPS).
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3.2. Deep Neural Network

A deep neural network (DNN) consists of an input layer, hidden layers, and an output
layer. At the hidden layer, there are stacks of several layers. Therefore, DNN is more
complex than traditional neural networks and requires longer durations of time to train
the model.

This research uses a Convolutional 1 Dimension (CONV1D) and fully connected
neural network. The characteristics of the network are shown in Figures 2 and 3.
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CONV1D is one of the convolutional neural networks whose kernel slides along only
one dimension to generate a feature map. This CNN type is proper for time-series data
where each feature needs to be processed at the same time through time steps.

A fully connected neural network is the neural network whose current node is con-
nected to every node from the prior layer. At the process step, the node uses mathematic
function to calculate the input to be output for the next layer. The function is called the
“activation function” that is selected depending on an expected output type. Examples of
traditional functions include Rectified Linear Unit (ReLU), Sigmoid, Hyperbolic tangent
(tanh), and SoftMax.

3.3. Recurrent Neural Network

A recurrent neural network (RNN) is one of the traditional neural networks. This
network is usually trained on sequential data, such as text and video. The output from the
previous step will be used as the input for the next step.

This research uses two RNN models, Long Short-Term Memory units (LSTM) and
Gated Recurrent Unit (GRU), as part of the model. These two models can deal with the
vanishing gradient problem encountered by traditional RNNs [27].

LSTM and GRU both have the same main component, gates as shown in Equation (1).
There are four types of gates: (1) update gate, (2) relevance gate, (3) forget gate,
and (4) output gate. Each of these gates has different functions as follows:
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• Update gate (Γu)—To weigh the importance of previous information to cell state.
• Relevance gate (Γr)—To decide if the cell should ignore previous information or not.
• Forget gate (Γf )—To identify if cell state should be reset.
• Output gate (Γo)—To determine how much information the cell should carry.

Γ = σ(Wxt + Uat−1 + b) (1)

LSTM contains all four types of gates but GRU contains only two types of gates,
the update gate and relevance gate. Figure 4a,b show the architecture of LSTM and
GRU, respectively.
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3.4. Bidirectional Network

A bidirectional network is a network architecture that incorporates information from
both the forward and backward layers of the model, where the outputs of these layers
are typically concatenated at each time step. This structure is commonly employed with
RNNs. This research uses bidirectional LSTM and bidirectional GRU networks to enhance
the prediction performance. The bidirectional nature of these models proves beneficial in
specific tasks, such as language translation, where the two-way processing aids in capturing
contextual information effectively.

3.5. Knowledge Distillation

Knowledge distillation (KD) [28] is to distill or move knowledge from a complex
pre-trained model into a smaller model without significant reduction in performance. An
overview of KD is shown in Figure 5.
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Firstly, to obtain soft labels, the previous pre-trained model (teacher model) is used to
make predictions, then the results are divided by temperature (T). Secondly, soft predictions
are calculated by predictions from a trained smaller model (student model) and the results
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are divided by temperature (T). When comparing soft labels and soft predictions, this
creates a loss result which is called distillation loss. Student loss, another loss result, is
from comparing predictions of trained student models to the ground truth. To obtain the
total loss of the proposed system in this paper, we multiply these two results of loss with
weights and then sum them. The weight of distillation loss is one minus alpha. The weight
of student loss is alpha. A pseudo code of this process is shown in Figure 6.
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In summary, our proposed method consists of two steps: QoL inference and perfor-
mance improvement. The QoL inference step involves the application of image recognition,
DNN, RNN, and bidirectional network approaches to generate QoL inference. In the per-
formance improvement step, knowledge distillation (KD) is applied to reduce complexity
and increase the model’s performance, resulting in reduced processing speed. However,
it is essential to note that there is a trade-off in this process, as the accuracy may be
slightly decreased.

4. Proposed Methods

This section provides details of the processes in our proposed QoL evaluation methods.
Section 4.1 describes the overview of our framework, consisting of two steps, QoL inference
and KD processes. Section 4.2 describes the dataset used in this research and shows the label
used to compare with the prediction results. Section 4.3 describes the feature extraction from
images using image recognition models. Section 4.4 describes the architecture used to train
the QoL score model and shows the hyperparameters used to configure the architecture.
Section 4.5 shows how to process the input and output data before the training step.
Section 4.6 describes the training strategy and how to group the dataset. Section 4.7 shows
the measuring equation used to evaluate the results. Section 4.8 shows the configuration,
hyperparameters, and small architecture used as the student model and final architecture
that is used as the teacher model for the KD process.

4.1. Our Framework

Our framework is composed of two processes; the first one is the QoL inference
process, and the second one is the KD process.
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The QoL inference process is described in Sections 4.3–4.7; the YOLOv4 model and the
DDR-Net-23-Slim model extract the image information from the video. Then, we train a DL
model using the extracted information as an input label and the data from the questionnaire
survey as an output label. Figure 7 shows the overview of the QoL inference process.
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The KD process is described in Section 4.8. We provide the configuration for this step,
including the model architecture used as the student model. Figure 8 shows the overview
of the KD process.
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4.2. The QoL Dataset

As an input, we use recorded videos of the walking scene from four cities, Canberra,
Bangkok, Brisbane, and Sakae. Each city consists of three one-minute scenes. Therefore,
the total number of scenes in the input is 12 scenes. The camera used in data collection is
RICOH Theta S, recorded at 24 fps for Bangkok, Brisbane, and Canberra and recorded at
30 fps for Sakae.

Table 1 presents the evaluation of walkability indicators, including factors such as
Building, Facility, Roof, Bench, Stall, Walking or Sitting People, Footpath Width, Pedestrian,
Brightness, Bicycle Parking, Roadside Tree, Electric Pole, Parking, Zebra Crossing, and
Traffic Volume. These factors, rated on a scale of 1–10, were derived from the considerations
of street design and walking needs, as outlined in the reference paper [19].
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Table 1. The 15 factors of evaluated score for each respondent in the questionnaire.

Building

Building

Facility

Roof

Activity

Bench

Stall

Walking or Sitting People

Footpath

Footpath Width

Pedestrian

Brightness

Installation

Bicycle Parking

Roadside Tree

Electric Pole

Roadway

Parking

Zebra Crossing

Traffic Volume

The questionnaire survey involved displaying virtual scenes from each location to the
interviewees using a VR Google tool. The survey occurred at Nakamura Lab, Department
of Civil Engineering, Meijo University. There are several benefits to using virtual reality
technology for conducting the questionnaire survey. Firstly, it allows interviewees to
immerse themselves in the surrounding environment of each scene, enabling them to
perceive the scene better and understand the QoL in those settings compared to simply
watching video clips on a computer monitor. Secondly, interviewees can control their
viewing direction, enabling them to focus on specific elements such as the walking path,
sky, trees, or buildings according to their preferences. Finally, because the scenes were
collected from different countries, it would be impractical to take interviewees to the
actual locations physically. Utilizing VR tools offers a cost-effective solution for surveying
such circumstances.

4.3. Feature Extraction Using Image Recognition

This subsection details a feature extraction approach to extract features from
prior-recorded videos. This approach consists of two processes, object detection and
semantic segmentation.

Each video is captured into pictures frame by frame and then passed to an object
detection model, YOLOv4, and a semantic segmentation model, DDRNet-23-Slim. The
results of the YOLOv4 model are shown in Figure 9, which visualizes the object detected
with bounding boxes, and DDRNet-23-Slim in Figure 10, which visualizes highlight colors
at each pixel.

The YOLOv4 model and the DDR-Net-23-Slim model extract the image information
from the video. The extracting results from YOLOv4 consist of 17 classes (as shown in
Table 2), while the extracting results from DDR-Net-23-Slim consist of 19 classes (as shown
in Table 3).
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Table 2. The result classes from YOLOv4 model.

1. Person 10. Traffic light

2. Bicycle 11. Fire hydrant

3. Car 12. Stop sign

4. Motorbike 13. Parking meter

5. Aeroplane 14. Bench

6. Bus 15. Backpack

7. Train 16. Umbrella

8. Truck 17. Handbag

9. Boat

Table 3. The result classes from DDRNet-23-Slim model.

Colors
Class 1. Road 2. Sidewalk 3. Building 4. Wall 5. Fence 6. Pole 7. Traffic light

Colors
Class 8. Traffic sign 9. Vegetation 10. Terrain 11. Sky 12. Person 13. Rider

Colors
Class 14. Car 15. Truck 16. Bus 17. Train 18. Motorcycle 19. Bicycle

4.4. The QoL Prediction Model Architecture

We use the TensorFlow framework to implement DNN for QoL prediction models.
Figure 11 shows the QoL prediction model architecture overview, consisting of 4 boxes. The
top box illustrates the architecture’s first layer, in which two selectable options are CONV1D
or fully connected with the tanh activation function and SoftMax. The second box presents
the recurrent network layer, in which four selectable options are LSTM, bidirectional LSTM
(bi LSTM), GRU, and bidirectional GRU (bi GRU). Then, the dropout layer is adopted, as
shown in the third box. Finally, the stack of five consequences, fully connected with bias
and dropout layers, is implemented.

For the top box’s first option, CONV1D, the kernel slides along 1 dimension only to
generate a feature map; this part uses 13 filter kernels with the size of 64 × 64. Another
option is fully connected with the tanh activation function and SoftMax; the tanh activation
function is represented as Equation (2), and a SoftMax layer is represented as Equation (3).

Tanh =
(ex − e−x)

(ex + e−x)
(2)

So f tMax =
ezi

∑K
j=1 ezj

(3)

where

zi = input at current position;
ezi = standard exponential function for an input at current position;
K = number of total input vector;
ezj = standard exponential function for an input at position j.

Four optional RNNs can be selected for the second box. The last box has a dashed box
with five numbers; the highest number must include all the lower numbers. For instance,
box number 3 comprises boxes 1 to 3, which have a fully connected layer, dropout, and
another fully connected layer.

Based on our hyperparameter tuning, we have determined that the first two lay-
ers in this structure should consist of 128 units each. Additionally, we have applied
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a dropout layer to mitigate model overfitting and enhance generalization performance.
Figures 12 and 13 are examples of QoL prediction model architecture with hyperparam-
eters in each layer and trainable parameters of the models, including the dropout layer
(20% or 0.2 dropouts for all models).
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4.5. Data Preprocessing

We utilized the dataset of one-minute scenes, dividing each scene into 30 frames. In
total, there are 360 frames, with 4 cities and 3 scenes per city. To reduce the input size for
the QoL prediction model, we calculated the average of features extracted from consecutive
video frames. These averaged features were then grouped into 30 samples per scene,
serving as input features for the QoL prediction model. The model’s output labels were
derived from survey results obtained from 50 respondents. The input features for the QoL
prediction model are illustrated in Figure 14, consisting of three vectors. The first vector
represents the output of the YOLOv4 model, containing 17 features as shown in Table 2. The
second vector represents the output of the DDRNet-23-Slim model, comprising 19 features
as shown in Table 3. These features were normalized to match the range of values from the
output of YOLOv4. Additionally, we appended unique pseudo-demographic numbers to
identify the interviewees’ answers. Figure 15 provides an overview of the QoL prediction
model, demonstrating its overall architecture and flow.
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4.6. Experiment Sets and Dataset Splitting

We set up two experiment groups to evaluate our framework and models: the within-
the-city and across-the-cities groups. For the within-the-city group, we arrange the training
and testing data from the same city, while for the across-the-cities group, we arrange the
data by shuffling along the different cities, as shown in Tables 4 and 5, respectively.

Table 4. Training and testing data for the within-the-city experiment group.

Experiment Set Training Data Testing Data

1 Canberra Scene2, Canberra Scene3 Canberra Scene1

2 Canberra Scene1, Canberra Scene3 Canberra Scene2

3 Canberra Scene1, Canberra Scene2 Canberra Scene3

4 Bangkok Scene2, Bangkok Scene3 Bangkok Scene1

5 Bangkok Scene1, Bangkok Scene3 Bangkok Scene2

6 Bangkok Scene1, Bangkok Scene2 Bangkok Scene3

7 Brisbane Scene2, Brisbane Scene3 Brisbane Scene1

8 Brisbane Scene1, Brisbane Scene3 Brisbane Scene2

9 Brisbane Scene1, Brisbane Scene2 Brisbane Scene3

10 Sakae Scene2, Sakae Scene3 Sakae Scene1

11 Sakae Scene1, Sakae Scene3 Sakae Scene2

12 Sakae Scene1, Sakae Scene2 Sakae Scene3

Table 5. Training and testing data for the across-the-cities experiment group.

Experiment Set Training Data Testing Data

1 Bangkok Scene all, Brisbane
Scene all, Sakae Scene all Canberra Scene all

2 Canberra Scene all, Brisbane
Scene all, Sakae Scene all Bangkok Scene all

3 Canberra Scene all, Bangkok
Scene all, Sakae Scene all Brisbane Scene all

4 Canberra Scene all, Bangkok
Scene all, Brisbane Scene all Sakae Scene all
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4.7. Model Evaluation

Mean Square Error (MSE) is a statistical method for measuring the error between pre-
diction output and ground truth information. The MSE equation is shown in Equation (4),
where n denotes the number of labels.

MSE =
1
n

n

∑
i=1

(
Yi − Ŷi

)2 (4)

4.8. The Knowledge Distillation Architecture

The KD consists of the teacher model, a model with high complexity and accuracy, and
the student model, a small structure; the teacher model helps the student model train easily.
Moreover, the model trained by this technique will have lower accuracy than the teacher
model but higher accuracy than the training itself. Also, the size of the model is smaller
than the teacher model. Therefore, KD is applied to reduce the model size and improve
the real-time performance of the teacher model. The structure is shown in Figure 16, and
the configuration is shown in Figure 17. The student model structure used for training is
shown in Figure 18, and the configuration is shown in Figure 19. In our implementation,
we have set the temperature parameter to 10 and the alpha parameter to 0.1, the original
values recommended in the reference source [29]. Additionally, we have used MSE as the
loss function for both the student and distillation models.
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5. Experiment Results

To verify the effectiveness of our proposed method for QoL inference and knowledge
distillation (KD) processes, we conducted experiments using Google Collaboratory. Google
Collaboratory is a cloud computing service offering a Python environment and access
to high-performance CPU and GPU resources. Specifically, our experiments utilized an
Intel(R) Xeon(R) CPU @ 2.20 GHz as the CPU and a Tesla T4 GPU [30].

The results of our experiments are presented in this section, which consists of two
subsections. Section 5.1 showcases the outcomes of the QoL prediction model, while
Section 5.2 focuses on the results obtained from applying the KD process to the models.

5.1. The Result of the QoL Prediction Model

We set the experiments at 10,000 epochs for training with a 0.001 learning rate.
Figures 20 and 21 show the training loss of the within-the-city experiment group and
across-the-cities experiment group, respectively. The figures show MSE changes plotted as
a graph every 50 epochs, with a total of 200 plotted points.
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The test results with the lowest MSE from the within-the-city experiment group and
the across-the-cities experiment group setups are shown in Tables 6 and 7, respectively.
The results in Table 6 indicate that the fully connected tanh activation function combined
with bidirectional LSTM is the best model, winning 8 out of 12 within-the-city experiment



Electronics 2023, 12, 2907 18 of 25

sets. The results in Table 7 also indicate that the fully connected tanh activation function
combined with bidirectional LSTM is the best model, winning in the across-the-cities
experiment sets.

Table 6. The test results of the within-the-city experiment group.

Training Dataset Testing Dataset Model Name MSE

Canberra Scene2, Canberra Scene3 Canberra Scene1 Tanh bi LSTM 1 7.41 × 10−3

Canberra Scene1, Canberra Scene3 Canberra Scene2 Tanh bi LSTM 1 8.35 × 10−3

Canberra Scene1, Canberra Scene2 Canberra Scene3 Tanh bi LSTM 1 7.92 × 10−3

Bangkok Scene2, Bangkok Scene3 Bangkok Scene1 CONV1D bi LSTM 1 8.11 × 10−3

Bangkok Scene1, Bangkok Scene3 Bangkok Scene2 Tanh bi LSTM 1 7.55 × 10−3

Bangkok Scene1, Bangkok Scene2 Bangkok Scene3 CONV1D bi LSTM 1 8.62 × 10−3

Brisbane Scene2, Brisbane Scene3 Brisbane Scene1 Tanh bi LSTM 1 7.19 × 10−3

Brisbane Scene1, Brisbane Scene3 Brisbane Scene2 Tanh bi GRU 1 9.27 × 10−3

Brisbane Scene1, Brisbane Scene2 Brisbane Scene3 Tanh bi LSTM 1 7.55 × 10−3

Sakae Scene2, Sakae Scene3 Sakae Scene1 Tanh bi GRU 1 6.80 × 10−3

Sakae Scene1, Sakae Scene3 Sakae Scene2 Tanh bi LSTM 1 1.14 × 10−2

Sakae Scene1, Sakae Scene2 Sakae Scene3 Tanh bi LSTM 1 8.90 × 10−3

Table 7. The test results of the across-the-cities experiment group.

Training Dataset Testing Dataset Model Name MSE

Bangkok Scene all,
Brisbane Scene all,

Sakae Scene all
Canberra Scene all Tanh bi LSTM 1 9.73 × 10−3

Canberra Scene all,
Brisbane Scene all,

Sakae Scene all
Bangkok Scene all Tanh bi LSTM 1 1.20 × 10−2

Canberra Scene all,
Bangkok Scene all,

Sakae Scene all
Brisbane Scene all Tanh bi LSTM 1 1.16 × 10−2

Canberra Scene all,
Bangkok Scene all,
Brisbane Scene all

Sakae Scene all Tanh bi LSTM 1 1.17 × 10−2

5.2. The Results of the Knowledge Distillation

We apply the KD process to the fully connected tanh activation function combined
with bidirectional LSTM as it is the model with the lowest MSE in both the within-the-city
and the across-the-cities experiment groups. The distillation results of the within-the-city
group are shown in Tables 8 and 9, while the distillation results of the across-the-cities
group are shown in Tables 10 and 11.
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Table 8. The MSE results of the within-the-city group.

Training Dataset Testing Dataset Student Model
MSE

Teacher Model
MSE

Distilled Model
MSE

Canberra Scene2,
Canberra Scene3 Canberra Scene1 2.92 7.16 × 10−3 6.16 × 10−2

Canberra Scene1,
Canberra Scene3 Canberra Scene2 3.50 9.08 × 10−3 5.24 × 10−2

Canberra Scene1,
Canberra Scene2 Canberra Scene3 3.62 8.26 × 10−3 2.77 × 10−2

Bangkok Scene2,
Bangkok Scene3 Bangkok Scene1 3.40 6.09 × 10−3 3.30 × 10−2

Bangkok Scene1,
Bangkok Scene3 Bangkok Scene2 3.49 8.46 × 10−3 6.86 × 10−2

Bangkok Scene1,
Bangkok Scene2 Bangkok Scene3 4.04 6.93 × 10−3 8.91 × 10−2

Brisbane Scene2,
Brisbane Scene3 Brisbane Scene1 3.93 7.74 × 10−3 5.07 × 10−2

Brisbane Scene1,
Brisbane Scene3 Brisbane Scene2 3.666 7.26 × 10−3 5.99 × 10−2

Brisbane Scene1,
Brisbane Scene2 Brisbane Scene3 3.567 6.53 × 10−3 5.34 × 10−2

Sakae Scene2,
Sakae Scene3 Sakae Scene1 2.968 8.73 × 10−3 4.80 × 10−2

Sakae Scene1,
Sakae Scene3 Sakae Scene2 3.632 9.45 × 10−3 5.08 × 10−2

Sakae Scene1,
Sakae Scene2 Sakae Scene3 3.641 5.14 × 10−3 2.93 × 10−2

Average MSE 3.530 7.57 × 10−3 5.20 × 10−2

Table 9. The computational time results of the within-the-city group.

Training Dataset Testing Dataset Teacher Model
Computational Time (ms)

Distilled Model
Computational Time (ms)

Canberra Scene2,
Canberra Scene3 Canberra Scene1 7.518 1.271

Canberra Scene1,
Canberra Scene3 Canberra Scene2 7.076 0.861

Canberra Scene1,
Canberra Scene2 Canberra Scene3 6.804 0.893

Bangkok Scene2,
Bangkok Scene3 Bangkok Scene1 6.830 0.908

Bangkok Scene1,
Bangkok Scene3 Bangkok Scene2 7.100 0.868

Bangkok Scene1,
Bangkok Scene2 Bangkok Scene3 7.023 0.836

Brisbane Scene2,
Brisbane Scene3 Brisbane Scene1 7.051 1.306

Brisbane Scene1,
Brisbane Scene3 Brisbane Scene2 6.867 0.893

Brisbane Scene1,
Brisbane Scene2 Brisbane Scene3 6.991 0.948

Sakae Scene2,
Sakae Scene3 Sakae Scene1 10.182 1.295

Sakae Scene1,
Sakae Scene3 Sakae Scene2 7.208 0.882

Sakae Scene1,
Sakae Scene2 Sakae Scene3 8.152 1.203

Average
Computation Time 7.400 1.014
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Table 10. The MSE results of the across-the-cities group.

Training Dataset Testing Dataset Student
Model MSE

Teacher Model
MSE

Distilled
Model MSE

Bangkok Scene all,
Brisbane Scene all,

Sakae Scene all
Canberra Scene all 3.81 9.65 × 10−3 1.23

Canberra Scene all,
Brisbane Scene all,

Sakae Scene all
Bangkok Scene all 3.55 1.13 × 10−2 1.28

Canberra Scene all,
Bangkok Scene all,

Sakae Scene all
Brisbane Scene all 3.51 1.14 × 10−2 1.14

Canberra Scene all,
Bangkok Scene all,
Brisbane Scene all

Sakae Scene all 3.87 1.04 × 10−2 1.26

Average MSE 3.69 1.07 × 10−2 1.23

Table 11. The computational time results of the across-the-cities group.

Training Dataset Testing Dataset
Teacher Model

Computational Time
(ms)

Distilled Model
Computational Time

(ms)

Bangkok Scene all,
Brisbane Scene all,

Sakae Scene all
Canberra Scene all 2.330 0.299

Canberra Scene all,
Brisbane Scene all,

Sakae Scene all
Bangkok Scene all 2.308 0.291

Canberra Scene all,
Bangkok Scene all,

Sakae Scene all
Brisbane Scene all 2.392 0.292

Canberra Scene all,
Bangkok Scene all,
Brisbane Scene all

Sakae Scene all 2.302 0.322

Average
Computation Time 2.333 0.301

Table 8 shows the results of MSE for each experiment set in the within-the-city group.
The results reveal that the distilled models have a lower MSE than the student model but a
higher MSE than the teacher model. The conclusion shows that the KD MSE results are as
expected for the within-the-city group.

The prediction results obtained from the teacher and distilled models are presented
in Figure 22. We have selected examples for each factor from the evaluated QoL score
factors. The training set consists of Canberra Scene1 and Canberra Scene2, while the
testing set consists of Canberra Scene3. The visualization of the results indicates that both
models’ expected and predicted results are consistent. Additionally, it is observed that
the computation time and model size are smaller for the distilled model compared to the
teacher model in the within-the-city experiment groups.
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Table 9 shows the results of the computation time for each experiment set in the within-
the-city group. The comparison of the results shows that the distilled model computes
the output while consuming a lower computational time than the teacher model. The
conclusion indicates that the KD computational time results are as expected for the within-
the-city group.

Table 10 shows the results of MSE for each experiment set in the across-the-cities
groups. The results show that the distilled models have a lower MSE than the student
model but a higher MSE than the teacher model. The conclusion is that the KD MSE results
are as expected for the across-the-cities group.

Figure 23 illustrates the prediction outcomes of both the teacher and distilled models.
To evaluate the QoL score factor for the across-the-cities experiment group, we chose
Bangkok, Brisbane, and Sakae Scene all as the training set, while the Canberra Scene all
served as the testing set. The visualization reveals that the teacher model’s expected and
predicted results closely align with the diagonal line. However, the results from the distilled
model are scattered more than the within-the-city experiment group. Moreover, the distilled
model demonstrates reduced computation time and size compared to the teacher model.
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axis) and predicted results (X-axis) selected from a testing set of Canberra Scene all, across-the-cities
experiment groups.

Table 11 indicates the results of the computation time for each experiment set in the
across-the-cities groups. The results show that the distilled model outperforms the teacher
model due to lower computational time. The KD computational time results are as expected
for the across-the-cities group.

6. Discussion
6.1. The Result of the QoL Prediction Model

The fully connected tanh activation function combined with bidirectional LSTM is the
best model, providing the lowest MSE in almost all experiment sets. The lowest MSEs are
7.19 × 10−3 with Brisbane Scenes1 and 2 as the training dataset and Scene3 as the testing
dataset for the within-the-city experiment group as shown in Table 6, and 9.73×10−3 with
Bangkok Scene all, Brisbane Scene all, and Sakae Scene all as the training dataset and
Canberra Scene all as the testing dataset for the across-the-cities experiment group as
shown in Table 7.

6.2. The Results of the Knowledge Distillation

The knowledge distillation (KD) is applied to the best model architecture from the
previous part (fully connected tanh activation function combined with bidirectional LSTM)
to reduce complexity and the time consumed for QoL prediction by transferring knowledge
to the student model. The comparison results show that the distilled model is less time-
consuming than the complex model but outputs the QoL with a higher MSE. Additionally,
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the distilled model boasts a smaller size, approximately half that of the teacher model, as
depicted in Figures 17 and 19.

The MSE from the within-the-city experiment group (as shown in Table 8) shows
that the distilled model has an average MSE of 5.20 × 10−2. The MSE from the across-the-
cities group (as shown in Table 10) shows that the distilled model has an average MSE
of 1.23. Furthermore, the results of the computational time (as shown in Tables 9 and 11,
respectively) show that the distilled model can output the QoL value at a lower average
computation time, reducing from 7.40 to 1.01 for the within-the-city experiment group and
from 2.33 to 0.30 for the across-the-cities group.

7. Conclusions

Megacities prioritize the well-being of their residents, making urban design and
sustainable development crucial. Quality of Life (QoL) is an effective key performance
index (KPI) used to measure a city plan’s efficiency. Walkability is significant for city
dwellers, and the traditional questionnaire survey approach to evaluate it is costly, time-
consuming, and limited in its evaluation area. To address these limitations, we propose
using artificial intelligence (AI) technology to evaluate walkability data collected through a
questionnaire survey using virtual reality (VR) tools.

The proposed method involves using deep convolutional neural networks (DCNNs)
for knowledge extraction and deep learning (DL) models to infer QoL scores. In our case,
the experiment results indicate that a smaller model outperforms a larger model due to a
low number of layers for both experiments that train the data within and across the city.
KD can aid the model by using a large and complicated model to train a smaller model,
resulting in higher accuracy and a lower time consumption. In summary, the experiment
results show that the proposed approach is practical and can be an alternative method for
acquiring QoL scores.
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The following abbreviations are used in this manuscript:

QoL Quality of Life
QoLT Quality of Life Transportation
KPI Key Performance Index
AI Artificial Intelligence
DCNNs Deep Convolutional Neural Networks
DL Deep Learning
NN Neural Network
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RNN Recurrent Neural Network
CNN Convolutional Neural Network
DNN Deep Neural Network
KD Knowledge Distillation
YOLO You Only Look Once
DDRNet Deep Dual-resolution Networks
CSPNet Cross Stage Partial Network
SPP Spatial Pyramid Pooling
PANet Path Aggregation Network
CmBN Cross mini-Batch Normalization
SAT Self-adversarial training
SAM Spatial Attention Module
mIoU mean Intersection over Union
FPS Frames Per Second
CONV1D Convolutional 1 Dimension
ReLU Rectified Linear Unit
Tanh Hyperbolic Tangent
LSTM Long Short-Term Memory units
GRU Gated Recurrent Unit
MSE Mean Square Error
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