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Abstract: Video target segmentation is a fundamental problem in computer vision that aims to
segment targets from a background by learning their appearance information and movement in-
formation. In this study, a video target segmentation network based on the Siamese structure was
proposed. This network has two inputs: the current video frame, used as the main input, and the
adjacent frame, used as the auxiliary input. The processing modules for the inputs use the same
structure, optimization strategy, and encoder weights. The input is encoded to obtain features with
different resolutions, from which good target appearance features can be obtained. After processing
using the encoding layer, the motion features of the target are learned using a multi-scale feature
fusion decoder based on an attention mechanism. The final predicted segmentation results were
calculated from a layer of decoded features. The video object segmentation framework proposed
in this study achieved optimal results on CDNet2014 and FBMS-3D, with scores of 78.36 and 86.71,
respectively. It outperformed the second-ranked method by 4.3 on the CDNet2014 dataset and by 0.77
on the FBMS-3D dataset. Suboptimal results were achieved on the video primary target segmentation
datasets SegTrackV2 and DAVIS2016, with scores of 60.57 and 81.08, respectively.

Keywords: video object segmentation; object detection; deep learning; Siamese neural network;
attention mechanism

1. Introduction

Video object segmentation (VOS) is one of the most researched applications [1]. VOS
aims to segment the foreground and background of each video image frame. It is widely
used in several video-based applications [2]. The main challenges include attribute changes,
occlusions, conflict between objects, background blurring, etc. [3]

In its early stages, owing to the successful research on image segmentation algorithms,
video segmentation witnessed rapid development [1]. Several methods have been proposed
to address the issue of object-level modeling, which can be broadly categorized into three
types: background subtraction [4], motion segmentation [5], and trajectory segmentation [6].
The emergence of deep learning techniques has significantly enhanced the performance of
video segmentation methods. Existing deep learning-based VOS methods can be grouped
into four main types: unsupervised, semi-supervised, interactive, and language-guided
supervised [3].

The fundamental architecture of VOS methods comprises two submodules, an encoder
and a decoder, which perform the tasks of feature extraction and resolution restoration,
respectively. Here, we use two adjacent frames as network inputs and propose a Siamese
attention-based encoder–decoder network structure to extract and fuse movement and
appearance features. In most cases, a multi-modal network performs worse than the
best uni-modal network, owing to overfitting and a suboptimal optimization strategy [7].
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Our multistream network can be viewed as a special multi-modal network with two
similar inputs, outperforming the uni-modal network using a multiscale attention-based
feature fusion module. The two encoders generate appearance features from the two
inputs, and the decoder learns the movement features and fuses them. Without bells and
whistles, our networks achieved superior performance over the state-of-the-art methods.
The contributions of this study are as follows:

(1) We proposed an effective Siamese attention-based model that extracts and fuses
appearance and movement features to generate foreground mask in an end-to-end
manner without postprocessing steps.

(2) We demonstrated that using two adjacent frames can predict the foreground mask
with higher accuracy than using optical flow as auxiliary inputs.

(3) We performed extensive and comprehensive experiments on the FBMS-3D dataset,
and the experimental results confirm that the Siamese neural network and multiscale
attention module function well. Moreover, the proposed methods can run in real time.

(4) The experimental results of the FBMS-3D, CDNet2014, SegTrackV2, DAVIS2016, and
DAVIS2017 datasets show that our model outperforms the state-of-the-art model on
the VOS dataset, and our model is comparable with the state-of-the-art model on the
VOS dataset.

The remainder of this paper is organized as follows. In Section 2, related studies
on video object segmentation are briefly introduced. We elaborate on the details of this
method in Section 3. Section 4 provides a brief overview of the experimental datasets, eval-
uation metrics, and implementation details. We analyzed and compared the experimental
results, and validated the effectiveness of each component of the method through ablation
experiments. Finally, Section 5 summarizes this paper.

2. Related Work
2.1. Language-Guided Video Object Segmentation

Language-guided video object segmentation (LVOS) is a technique that performs VOS
based on natural language expression [8]. Gavrilyuk et al. [9] segmented actors and their
actions based on sentences. This was the first proposal for an LVOS [10]. Effectively inte-
grating the feature information obtained from both sentences and videos is a key challenge
in LVOS. RefVOS [11] was used to convert language features into linear projections and
performed element-wise multiplication using visual features extracted by DeepLabV3. The
authors of [12] proposed URVOS as a cross-modal attention module and constructed
the first large-scale reference video object segmentation dataset, Refer-YouTube-VOS.
Ye et al. [13] proposed three novel modules: cross-modal self-attention, gated multilevel
fusion, and cross-frame self-attention. Ding et al. [14] proposed language-bridged duplex
transfer to utilize language as an intermediary bridge to solve spatial misalignments or
false distractors. Li et al. [15] proposed a meta-transfer module for transferring target
information from the language domain to the image domain. Owing to the complexity
of multi-modal tasks, an increasing number of researchers have adopted transformer-
based approaches [10,16,17] for video object segmentation, which significantly reduce
task complexity.

2.2. Optical Flow-Based Methods

Optical flow assumes that the target object and background have different motion
patterns. Because of its pixel-level motion estimation, it is widely used in VOS [3]. Tok-
makov et al. [18] first proposed the use of optical flow features to determine whether an
object is in motion, thereby enabling the segmentation of moving objects. Chen et al. [19]
proposed SegFlow, which enables the bidirectional propagation of object segmentation
and optical flow information within a unified framework. Jain et al. [20] extracted appear-
ance information from RGB images and motion information from optical flow images,
and achieved object segmentation by fusing this information using a fusion network. Al-
though optical flow images can provide pixel-level information, their quality is difficult
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to guarantee [3]. Researchers aim to explore information within optical flow maps as
much as possible. Bao et al. [21] proposed a novel spatio-temporal Markov Random Field.
Xiao et al. [22] further enhanced the representation of target frames by aligning and inte-
grating neighboring frames. Zhou et al. [23] designed a motion-attentive transition that
converts appearance information into a motion-attentive representation, resulting in a
closer interaction between the two; however, for static objects, it is difficult to obtain their
motion information through optical flow images.

2.3. Attention Mechanism

The attention mechanism is designed to simulate a human’s natural ability to focus on
salient regions in complex scenes [24]. It is widely used in computer vision tasks and has
achieved significant success. Attention mechanisms can be categorized into the following
types: channel attention, spatial attention, temporal attention, branch attention, channel
and spatial attention, and spatial and temporal attention [25]. Channel attention facilitates
the adaptive adjustment of the weights assigned to different channels, where each channel
represents a different object or feature [26]. Spatial attention refers to the adaptive selection
of spatial regions or areas. This enables the model to focus on specific spatial locations
or regions of interest in the input data [27]. Temporal attention refers to the dynamic
selection mechanism of focusing on specific time steps or frames in a sequence. This
enables the model to emphasize size-relevant temporal information and capture temporal
dependencies over time [28]. Branch attention refers to the dynamic selection mechanism
for selecting specific branches or pathways in a neural network. This enables the model to
allocate resources adaptively to different branches based on their relevance or importance
for the task at hand [29].

3. Proposed Model

In this study, we aim to segment the main object in a video, which requires both the
appearance and the movement information of the objects in the video, and generate a
foreground mask for a given sequence of video frames. Semantic features can be learned
from an image classification dataset, such as ImageNet [30], using image classification
networks, and moving features can be learned from the foreground dataset using two-
stream networks. The weights of the current and adjacent frames are shared to construct
the Siamese network. As shown in Figure 1, our model is built upon multiple-level middle-
fusion rather than the late-fusion encoder–decoder architecture to share and reduce weight.
The encoder learns and generates features to predict the foreground mask while reducing
resolution. The attention-based decoder fuses the features at multiple levels and generates
a foreground mask while resuming the resolution for pixel-wise prediction. For the encoder,
we applied widely used classification networks (i.e., MobileNet, VGG, and ResNet) [31–33]
to generate the appearance features. The decoder compares the features from different
stages of the encoders and different input sources to generate movement features, and fuses
the multi-scale appearance and movement features using the attention layer to generate
the final foreground mask.

3.1. Siamese Encoder

A Siamese neural network (SNN) is a network that shares the weight of two sub-
networks that process different input data. Our network is a variation of the encoder–
decoder network. The Siamese encoder is composed of one main encoder for the current
frame and another auxiliary encoder for the adjacent frame. The encoders all apply widely
used image classification structures, such as ResNet50. In addition, we removed the last
pooling layer and all fully connected layers of the image classification network to obtain
a skeleton network for image classification. Through migration learning, the skeleton
network is able to reuse the weights and feature encoding capabilities learned on the
ImageNet dataset. There are some video target segmentation networks pre-trained on
the significant target segmentation dataset, but due to some differences between video
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target segmentation and significant target segmentation, the model in this paper is only
pre-trained on the image classification dataset. Image classification structures generate
different resolution of features, Fm = {Fm

1 , Fm
2 , Fm

3 , Fm
4 , Fm

5 } and Fa =
{

Fa
1 , Fa

2 , Fa
3 , Fa

4 , Fa
5
}

, for
the main input Im and auxiliary input Ia; these features contain appearance information
that is learned from classification tasks. For our video object segmentation, this appearance
information can help to filter out background objects such as trees, mountains, and sky.
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3.2. Multi-Scale Attention-Based Decoder

Figure 2 shows the details of the decoding layer. The decoder compares and fuses the
features from the main and auxiliary encoder, and generate features Fd = {Fd

1 , Fd
2 , Fd

3 , Fd
4 , Fd

5 }
in multi-scale. Let Fm

i ∈ Fm and Fa
i ∈ Fa be the features from the main and auxiliary

encoders, and i ∈ {1, 2, 3, 4, 5}. As show in Equation (1), Fc
i is the merged features of the

decoding layers in Figure 1. Concat is a function to concatenate two features, Unsample is
a function to upsample feature maps to a target size through bilinear interpolation, and
Conv is a function that uses convolutional layers to transform features. Due to Concat, the
number of channels of decoding features will increase continuously. In order to reduce
memory consumption and the number of parameters and alleviate overfitting problems,
additional convolutions are added to reduce the number of channels of features. As shown
in Equation (2), when the attention mechanism is not applied, the number of channels of
the decoded features is reduced by a layer of convolution operation to match the number
of channels of the encoded input features.

Fc
i =

{
Concat

(
Fm

i , Fa
i , Unsample

(
Fd

i+1

))
, i < 5

Concat
(

Fm
i ,Fa

i
)
, i < 5

(1)

Fd
i = Conv(Fc

i ), i ∈ {1, 2, 3, 4, 5} (2)

In this paper, we propose an attention module that is embedded as a network layer
in the original Siamese network and trained end-to-end. The corresponding attention
modules are available for features of different resolutions. The input features are selectively
concatenated by the selector to obtain different intermediate features Fatt−main

i and Fatt−aux
i ,

where Fatt−main
i is the attentional feature associated with the main input and Fatt−aux

i is the
attentional feature associated with the auxiliary input. Finally, the final decoding feature
Fd

i is obtained after attention decoding.
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For the main input-related feature Fatt−main
i , as shown in Equation (3), the selector can

choose whether to use only the main feature or all the features.

Fatt−main
i =


Fm

i , use main feature and i = 5

concat
(

Fm
i ,unsample

(
Fd

i+1

))
,

use main feature
and i < 5

Fc
i , use all features

(3)

For the auxiliary input-related feature Fatt−aux
i , as shown in Equation (4), the selector

has two options.

Fatt−aux
i =

{
Fc

i , use all features
Fa

i , use only auxiliary feature
(4)

As shown in Equation (5), based on the attentional features Fatt−main
i and Fatt−aux

i , the
attention mechanism is applied to decode.

Fd
i = ϕ

(
Fatt−main

i , Fatt−aux
i

)
(5)

As shown in Equation (6), the final predicted video target segmentation result can be
calculated from a certain layer of decoding features Fd

i , where i ∈ {1, 2, 3, 4, 5} are constants.
When i is small, the corresponding decoded features have a higher resolution and contain
more direct underlying features, and thus, are suitable for predicting local and fine targets.
When i is larger, on the contrary, the network is more suitable for predicting global and
huge targets.

M = f1(Im, Ia) = f2

(
f d
i

)
(6)

3.3. Loss Function

We use softmax as the final activation function. The point-wise cross entropy loss
Lp(x, y) has the following format:

Lp(x, y) = − log

(
exp(p[j∗])

∑j exp(p[j])

)
= −p[j∗] + log

(
∑j exp(p[j])

)
(7)

where j∗ represents the ground truth class index for point-wise prediction of the result.
p, j∗ means the ground truth is the background, and j∗ = 1 means the ground truth is
the object.

The average loss for the predicted mask loss is

L =
1

H ×W ∑W,H
x,y Lp(x, y) (8)
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where H and W are the height and width for the predicted mask; we ignore the mini-batch
size here for simplicity.

4. Experiments
4.1. Datasets

As shown in Table 1, the segmentation datasets are labeled pixel-wise. For SegTrackV2,
we split and sorted the dataset according to the video name order. We used the first nine
videos to train and the remaining videos to validate (monkeydog, parachute, solider, and
worm), but excluded penguin. Note that we removed “penguin” because it is not fully
labeled. For CDNet2014, we use the first two videos to validate and the rest to train in each
category. Finally, there were 2× 11 = 22 videos to validate, and each category of video
had at least two videos for training and two for testing. For example, we used the videos
“blizzard” and “skating” to validate, and we used videos “snowFall” and “wetSnow” in
the video category “badWeather” to train. For the other datasets, we followed the official
dataset splitting strategy.

Table 1. Dataset overview. #GT: the total number of ground truth frames in the dataset. #Train and
#Val: the number of videos for training and validation. Duration: the number of frames in videos.
#Object: the total number of foreground object categories in the datasets. Input Shape: the frames’
height and width in the datasets. Usage: FS means foreground segmentation, VOS means video
object segmentation. Camera: “m” means moving and “f” means fixed.

Name Year #GT #Train #Val Duration #Object Input Shape Usage Camera

SegTrackV2 [34] 2013 947 9 5 (21, 279) 24 (240 × 320, 360 × 640) VOS m + f
CDNet2014 2014 160,000 31 22 (900, 7000) >4 (240 × 320, 486 × 720) FS f
FBMS-3D 2014 720 29 30 (19, 800) >12 (228 × 350, 540 × 960) FS m

DAVIS2016 2016 3455 30 20 (25, 127) 50 (480 × 854, 480 × 1301) VOS m
DAVIS2017 2017 10,459 60 30 (25, 127) 376 (480 × 854, 480 × 1301) VOS m

SegTrackV2: The SegTrackV2 dataset [34] is a dataset containing both fixed and moving
camera videos. It contains 14 video sequences with 24 objects, with 947 frames labeled. It
contains the challenges of “motion blur”, “appearance change”, “complex deformation”,
“slow motion”, “occlusion”, and “multiple adjacent/interacting objects”.

CDNet2014: The ChangeDetection.net (CDNet) dataset [35] is a fixed camera dataset
expanded from CDNet2012 [36]. CDNet2014 contains 53 videos and nearly 160,000 pixel-
wise annotated frames. These videos belong to 11 categories of different video object
segmentation challenges. For example, videos from the thermal and turbulence categories
are not captured using RGB cameras; in particular, videos in the thermal category are
captured using infrared cameras. Videos from the cameraJitter and PTZ categories have
small camera changes (jitter or zoom in/out). Though the CDNet2014 dataset has nearly
160,000 annotated frames, many frames have background objects only; foreground objects
are rare and mainly feature humans in this dataset.

FBMS and FBMS-3D: The Freiburg–Berkeley motion segmentation dataset (FBMS) [37]
is an extended moving camera dataset from the BMS dataset [38], containing 59 video
sequences, with 29 for training and 30 for validation. Only some of the video frames are
annotated (from 3 to 41 frames) compare to the video sequences (from 19 to 800 frames);
we used FBMS-3D in our experiment (original FBMS with partially new segmentations to
fix some errors [39,40]).

DAVIS2016 and DAVIS2017: The Densely Annotated Video Segmentation (DAVIS)
dataset [41,42] was designed for main video object segmentation. DAVIS2016 contains
either one single main object or two spatially connected objects with mask annotation
for each video sequence at the pixel level, with 50 video sequences and 3455 annotated
frames in total. DAVIS2017 contains 150 video sequences, with all their frames annotated
with multiple object masks: 60 for training, 30 for validation, 30 for normal testing, and
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the remaining 30 for specific challenge testing. It consists of 10,459 annotated frames and
376 objects.

4.2. Evaluation Metrics

We used the means of the F-Measures in three experiments as the benchmark metrics.
Let VTP

t , VTN
t , and VFP

t be the number of true positives, true negatives, and false positives
for the foreground mask Mt at time t. Then, we can obtain the precision (P), recall (R),
balanced F-Measure (F or F1), and F-Measure (Fβ) as show in Equation (9):

VTP =
N
∑
t

VTP
t VTN =

N
∑
t

VTN
t VFP =

N
∑
t

VFP
t

P = VTP

VTP+VFP R = VTP

VTP+VFN

F = F1 = 2P×R
P+R Fβ =

(1+β2)P×R
β2P+R

(9)

4.3. Implementation Details

We used PyTorch as our deep learning framework. We adopted the Adam optimizer
and set the learning rate to 10−4. We trained the dataset for 30 epochs with batch sizes
equal to 4. We chose ResNet50 as the default main and auxiliary encoders for our network
and adopted weights pre-trained on ImageNet dataset. The first fusion stage resolution
was 5 and the upsampling had the same resolution as the features in first stage.

For data processing, we resized each video frame to 224 × 224 pixels, and normalize
the pixel value x to [−1, 1] using the linear mapping function x∗ = 2x

255 − 1, x ∈ [0, 255]. For
the segmentation labels of images, we remapped the background and foreground such that
0 stood for the background and 1 stood for the foreground (we ignored the unlabeled area
in the ground truth). For the DAVIS2016, DAVIS2017, FBMS-3D, and SegTrackV2 datasets,
there were only background, foreground, and unlabeled area labels, but for the CDNet2014
dataset, the pixels were labeled with Static, Shadow, Non-ROI, Unknown, and Motion.
Following the official standard process, we viewed Static and Shadow as the background,
Unknown and Motion as the foreground, and ignores the loss for Non-ROI. We set the
frame index gap to 5 for each video sequence, and generated an adjacent frame for the
main frame.

4.4. Comparison with the State-of-the-Art Methods

As shown in Table 2, we used ResNet50 as the same encoder for all networks. Yakubovskiy
and Pavel [43] implemented uni-modal networks (UNet, FPN, PAN, PSPNet, LinkNet, and
DeepLabV3Plus). Additionally, the multi-modal version of DeepLabV3Plus fused two
frames via concatenation at the first layer.

Table 2. Benchmarks. UNet [44], FPN [45], PSPNet [46], LinkNet [47], PAN [48], D3+(DeepLabV3Plus) [49],
and ChangeNet [50]; “*” means that the multi-modal structure of DeepLabV3Plus is not pre-trained on the
ImageNet dataset.

Network UNet FPN PAN PSPNet LinkNet D3+ D3+ ChangeNet Ours Ours-Attention

Multi-modal
√ √ √ √

SegTrackV2 55.69 63.00 58.25 36.91 37.66 60.55 39.61 * 55.41 59.82 60.57
CDNet2014 74.06 73.43 72.44 66.06 57.31 72.00 19.87 * 72.51 72.65 78.36
FBMS-3D 85.14 83.60 84.21 73.78 85.33 85.93 69.02 * 83.68 86.13 86.71

DAVIS2016 78.98 80.04 79.86 65.36 63.83 81.19 60.59 * 78.00 80.96 81.08
DAVIS2017 75.45 75.97 74.77 63.25 63.29 76.51 59.81 * 75.46 77.48 76.11

4.4.1. Performance on SegTrackV2

The SegTrackV2 dataset contains rare objects from the ImageNet dataset and both
fixed and moving camera videos. It is designed for video object segmentation; therefore,
certain secondary foreground objects are not labeled, which hinders the learning of moving
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features. The worst and best state-of-the-art methods were PSPNet with F1 = 36.91%
and FPN with F1 = 63.00%. Our basic Siamese neural network structure achieved an
upper-middle result, with F1 = 59.82%, whereas our multiscale attention-based network
achieved a suboptimal result, with F1 = 60.87%.

4.4.2. Performance on CDNet2014

The main foreground targets in the CDNet2014 dataset are people and cars; however,
there exist numerous possibilities for the distribution of foreground targets in space, and the
scale of the foreground targets varies substantially, as shown in Figure 3. Larger foreground
targets occupy 1/3 of the entire image, whereas smaller foreground targets are near points
in the image. In the majority of cases, our approach yields results that are consistent with
the labeling results, and the primary issue is misclassifying the video background as the
foreground. This indicates that our attention approach is not simply limited to modeling
and predicting people and cars, but can also learn information regarding changes in the
scene and misclassify changes in the scene as changes in the foreground.
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4.4.3. Performance on FBMS-3D

As shown in Figure 4, the results of our attention prediction model are basically
consistent with the labeled results. However, for large targets in the third video in the
first row, the prediction result for vehicles is incomplete. In the second video in row 8, the
prediction for people is inconsistent, which indicates that the features learned by the model
lack global information and it is difficult to obtain segmentation of the whole foreground
target via local motion of the non-rigid body.
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Figure 4. The prediction masks for the FBMS-3D dataset. The order of the images is as follows: main
input image, our attention-based network’s prediction masks, and ground truth.

4.4.4. Performance on DAVIS

The DAVIS2016 and DAVIS2017 datasets are designed for video object segmentation
and they focus on salient main objects in videos. Our methods are slightly worse than
the best state-of-the-art method, DeepLabV3Plus (F1 = 81.08% compared to F1 = 81.19%
on DAVIS2016, and F1 = 76.11% compared to F1 = 76.51% on DAVIS2017), because our
attention-based network cannot distinguish secondary objects from foreground objects
well. As shown in Figure 5, the secondary objects in the video “pigs” are labeled as
foreground, while they are labeled as background in the videos “car-roundabout” and
“camel”. The inconsistency in the datasets makes it hard to learn the fusion of appearance
and movement features.
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Figure 5. The failure case in the DAVIS2017 dataset. The order of the images is as follows: main input
image, our attention-based network’s prediction masks, and ground truth.

4.5. Ablation Study
4.5.1. Siamese Neural Network

As shown in Equation (10), the encoder f shares the weight and processes of the main
input Im and auxiliary input Ia, which enables a reduction in the model parameters. It
facilitates the fast learning and optimization of the model, allowing the network to learn
the generic encoding features of the input and improving the generalization ability of the
model. Meanwhile, a pseudo-Siamese neural network (PSNN) does not share the weight or
use different neural network structures for two inputs, which increases the parameters and
requires learning how to align and fuse two different features. We changed the encoder
f with MobileNetV2 [51], VGG16 [33], VGG19 [33], and ResNet50 [31] and ran the model
three times for each experiment, and reported the mean metric F1. The results are shown
in Table 3. The Siamese neural network can increase F1 for MobileNetV2 and ResNet50;
however, it decreases it for VGG16 and VGG19. The standard deviation std(F1) is smaller
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when using the Siamese structure because the network has fewer parameters. But std(F1)
for MobileNetV2 and ResNet50 is smaller due to the improved network structure.

ℵSNN = (Im, Ia) = g( f (Im), f (Ia)) ℵPSNN = (Im, Ia) = g( f1(Im), f2(Ia)) (10)

Table 3. Siamese neural network experiment on the FBMS-3D validation dataset. SNN: using or
not using the Siamese neural network structure. std(F1): the standard deviation for balancing the
F-Measure F1.

Encoders MobileNetV2 MobileNetV2 VGG16 VGG16 VGG19 VGG19 ResNet50 ResNet50

SNN
√ √ √ √

F1 (%) 79.69 82.00 (+2.31) 83.61 82.81 (−0.80) 84.26 83.72 (−0.54) 84.47 86.14 (+1.67)
std(F1) 1.46 0.31 1.46 1.38 1.25 0.80 1.19 0.29

4.5.2. Uni-Modal vs. Multi-Modal

As shown in Equation (11), the uni-modal network has only one input, while the
multi-modal network takes more than one input. As shown in Table 4, this experiment
analyzed the uni-modal input structure, the bimodal structure based on adjacent frames,
and the bimodal structure based on optical flow. We chose ResNet50 as the encoder f for
the uni-modal network or the main encoder f1 for the multi-modal network. The main
input Im was the current frame in the video sequences, and the auxiliary input Ia could be
an adjacent frame or optical flow. We used LiteFlowNet [52] to generate the optical flow,
and the auxiliary encoder for optical flow was not pre-trained. We propose using light-
weight network structures like MobileNetV2 and VGG [33] to learn optical flow features,
as heavy-weight network structures like ResNet50 cannot improve performance. This
experiment shows that uni-modal is better than multi-modal with simple fusion strategies
(e.g., sum, mean and concatenation) in most cases, except when using an adjacent frame as
the auxiliary input and VGG16 or VGG19 as the auxiliary encoder. For different encoders,
using an adjacent frame is always better than using optical flow, except for ResNet50.

ℵuni−modal = g( f (Im)) ℵmulti−modal = g( f1(Im), f2(Ia)) (11)

Table 4. F1 multi-modal network experiment on the FBMS-3D validation dataset. a: adjacent frame.
o: optical flow. -: uni-modal, without auxiliary encoder and input.

Auxiliary Encoder MobileNetV2 VGG11 VGG16 VGG19 ResNet50 -

Auxiliary Input a o a o a o a o a o -
F1 (%) 85.62 85.54 85.78 85.53 86.49 86.06 86.59 86.12 84.47 85.03 86.34

4.5.3. Attention Experiment

In this paper, we conducted different multi-scale fusion experiments together with
attentional mechanism experiments. Due to memory limitations, the use of dual attention
(d) and position attention (p) could only be applied on the lowest-resolution feature maps.
Both self-attention and collaborative-attention modules could improve the segmentation
results, such as channel attention [53,54], spatial attention [54,55], global attention [56,57],
position attention [53], and dual attention [53]. The fusion stage also influenced the results.
Early-fusion is usually worse than late-fusion in accuracy. However, for video object seg-
mentation, channel attention is better than other types of attention, as shown in Table 5.
The reason may be that the channel attention module tends to learn the complementary
dictionary weight (C × 1) for the feature dictionary (H ×W × 1), while other attention
modules tend to learn the mask weight (H ×W), which is redundant for segmentation
tasks. Note that the dual attention module is a combination of position attention and
channel attention (c2), whose F1 was 85.69%, which is less than that of position attention
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(p: 86.33%), channel attention (c2: 86.71%), and no attention (n: 86.14%). We also experi-
mented on the features to generate attention weight. When we used auxiliary features only
to generate attention weights, we obtained the best result, with F1 = 86.71%, and when we
used all the features, the result was F1 = 85.83%.

Table 5. Attention experiment on the FBMS-3D validation dataset. Attention type (d: dual attention,
s: spatial attention, g1/g2: global attention, n: no attention, p: position attention, c1/c2: channel
attention). Fusion stage (ALL: fuse features at all stages, LR: fuse features at low-resolution stage,
HR: fuse features at high-resolution stage). Attention feature (ALL: focus on all features, Main: focus
on main features, do not focus on auxiliary features).

Attention Type d [48] S [49] G2 [51] n G1 [52] P [48] C1 [49] C2 [48] C2 C1 C1 C1

Fusion Stage LR ALL ALL - ALL LR ALL LR LR ALL LR HR
Attention
Feature ALL ALL ALL - ALL ALL ALL ALL Main Main ALL ALL

F1 (%) 85.69 85.71 85.85 86.14 86.32 86.33 86.48 86.71 86.57 86.20 86.41 86.69

4.5.4. Speed and Accuracy Trade-Off

As shown in Table 6, the most accurate model is ResNet50 + Siamese neural network +
channel attention (c2, F1 = 86.71%), the fastest model is VGG16 + pseudo-Siamese neural
network (FPS = 231), and the smallest model is MobileNetV2 + Siamese neural network
(training parameters = 51 MB). MobileNetV2 has fewer training parameters (51–53 MB,
64 FPS), while its speed is slower than that of VGG16 (55–59 MB, 215–131 FPS), as depth-
wise convolution and point-wise convolution cost more time for the GPU (graphics process-
ing unit) compared to normal convolution. Note that c2 channel attention has a negligible
influence on model size and inference speed, but improves performance.

Table 6. Speed and accuracy trade-off on the FBMS-3D validation dataset for different attention
types and encoders. Enc: encoders for main and auxiliary encoders (M: MobileNetV2, V16: VGG16,
V19:VGG19). SNN: Siamese neural network. Att: Attention type (d: dual attention, s: spatial
attention, g1/g2: global attention, n: no attention, p: position attention, c1/c2: channel attention).
FPS: frames per second with batch size of 4. #Par: training parameters for network (MB).

Enc M M V16 V16 V19 V19 ResNet50

SNN -
√

-
√

-
√

-
√ √ √ √ √ √ √ √

Att n n n n n n n n d s G1 G2 p C1 C2
F1 (%) 79.69 82.00 83.61 82.81 84.26 83.72 84.47 86.14 85.69 85.71 86.32 85.85 86.33 86.48 86.71

FPS 64 64 215 231 198 210 57 62 62 59 57 54 62 55 62
#Par 53 51 69 55 79 60 177 153 173 154 184 157 173 156 153

5. Conclusions

In this study, we proposed a multiscale attention-based Siamese model to learn object
segmentation in videos. The multiscale attention module in our networks can learn and
fuse appearance and movement features more effectively than a simple feature fusion
strategy. In addition, the parameter size of the model can be effectively reduced by sharing
weights. Our model can run on both fixed and moving camera videos in the wild, and
our experiments demonstrate that our method achieves state-of-the-art performance on
video object segmentation datasets. Our method demonstrates superior performance on
fixed-camera videos compared with moving-camera videos. However, the use of current
and adjacent frames as inputs has limitations. When this method is applied to segment
large objects, there may be instances in which the segmentation is incomplete, resulting in
missing parts of the target. Furthermore, accurately segmenting the main objects in multi-
object videos can pose a challenge. In the future, we aim to explore the use of three or more
video frames as inputs, employ advanced methods for motion feature extraction and fusion,
and combine multi-modal input frameworks with a neural architecture search. These
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approaches can enhance the performance of video segmentation methods and improve
their adaptability to various video scenarios.
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