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Abstract: Speech is the primary way via which most humans communicate. Computers facilitate
this transfer of information, especially when people interact with databases. While some methods to
manipulate and interpret speech date back many decades (e.g., Fourier analysis), other processing
techniques were developed late last century (e.g., linear predictive coding and hidden Markov
models). Nonetheless, the last 25 years have seen major advances leading to the wide acceptance of
computer-based speech processing, e.g., cellular telephones and real-time online conversations. This
paper reviews older techniques and recent methods that focus largely on artificial neural networks.
The major highlights in speech research are examined, without delving into mathematical detail,
while giving insight into the research choices that have been made. The focus of this work is to
understand how and why the discussed methods function well.
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1. Introduction

Speech is the most natural form of human communication. People seek to convey
information to others and understand them as well, and vocalizing is convenient and
almost universally used for this purpose. In modern times, using computers and artificial
intelligence to facilitate many tasks of communication has become common, and speech
is among many types of information that are processed efficiently with machines. This
paper examines the digital processing of speech for coding (for transmission or storage),
recognition (of the content of speech, a speaker’s identity, or emotion and health), synthesis
(from text), and enhancement purposes. The objective of this paper is to put recent advances
in the research on and development of speech methods into perspective, given the historical
ways of accomplishing practical speech applications. This is carried out to help explain
speech processing without delving into mathematical detail.

2. The Nature of Speech Signals

To understand why speech needs to be transformed or “processed” for practical
applications, it would be useful to briefly describe how information is represented in the
pressure variations that constitute human speech [1]. Natural speech is produced when
one exhales air through one’s vocal tract (VT) while constraining the air’s passage through
the vocal cords (the fleshy tissue in the larynx) and at other points (Figure 1). The typical
constriction locations in the VT are the lips (e.g., to make labial consonants), the teeth (for
dental fricatives such as /f,v/), the hard upper palate (for so-called alveolar and velar
consonants), and the pharynx.

If the vocal cord passage (glottis) is adducted to a thin slit, the cords vibrate at a rate
called the fundamental frequency (F0). This quasi-periodic airflow excites the VT, which acts
as a filter to modulate the harmonics (energy in multiples of the F0), creating voiced speech.
The different shapes of the VT for various phonemes (the elemental linguistic sounds of
speech) yield spectra with varied resonances that are spaced approximately every 1 kHz
(for a typical 17 cm long VT). The center frequencies of these resonances called formants
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(F1, F2, F3, . . . ) are intentionally varied by speakers to convey the identities of the different
phonemes to listeners. Thus, the primary information in speech is found in the values of
the formants and F0, as a function of time, as speech dynamically varies. The durations
and amplitudes of phoneme sounds are also important for communication, e.g., to help
cue syntactic structure and semantic emphasis [2].

Electronics 2023, 12, x FOR PEER REVIEW 2 of 14 
 

 

(for a typical 17 cm long VT). The center frequencies of these resonances called formants 
(F1, F2, F3,…) are intentionally varied by speakers to convey the identities of the different 
phonemes to listeners. Thus, the primary information in speech is found in the values of 
the formants and F0, as a function of time, as speech dynamically varies. The durations 
and amplitudes of phoneme sounds are also important for communication, e.g., to help 
cue syntactic structure and semantic emphasis [2]. 

Speech has distinct and unique aspects that hinder maximal performance in applica-
tions such as automatic recognition and coding. Speech communication evolved over mil-
lennia to maximize human survival while accommodating the constraints of both the VT 
and mammalian hearing mechanisms [3]. Speech likely developed using VT organs that 
primarily evolved for breathing and eating. While speech perception has much in com-
mon with general audition, it is far different from how humans perceive via vision, smell, 
and touch. To recognize objects in an image, visual processing (whether human- or ma-
chine-based) can exploit the intuitive and inherent physical qualities of shapes, textures, 
and colors. For a video (moving images), one may exploit the constraints imposed by 
physics (momentum and energy). In contrast, the many levels of encoding found in speech 
(semantics, syntax, acoustics, phonetics, psychology, and articulation) make speech diffi-
cult to process with any single approach. 

 
Figure 1. Example of a speech time waveform (4 rows in time, each of 100 ms). 

3. Applications of Speech Processing 
The earliest artificial use of speech was its electrical transmission via telephone lines. 

For that, speech processing involved simply converting the pressure variations of speech 
into electrical currents via a microphone at its source (encoding) and later reconstituting 
audible speech via a loudspeaker or headphones (decoding). Vibrating membranes facili-
tate mechanical/electrical transformations in microphones, loudspeakers, and human ear-
drums. 

Figure 1. Example of a speech time waveform (4 rows in time, each of 100 ms).

Speech has distinct and unique aspects that hinder maximal performance in appli-
cations such as automatic recognition and coding. Speech communication evolved over
millennia to maximize human survival while accommodating the constraints of both the
VT and mammalian hearing mechanisms [3]. Speech likely developed using VT organs
that primarily evolved for breathing and eating. While speech perception has much in
common with general audition, it is far different from how humans perceive via vision,
smell, and touch. To recognize objects in an image, visual processing (whether human- or
machine-based) can exploit the intuitive and inherent physical qualities of shapes, textures,
and colors. For a video (moving images), one may exploit the constraints imposed by
physics (momentum and energy). In contrast, the many levels of encoding found in speech
(semantics, syntax, acoustics, phonetics, psychology, and articulation) make speech difficult
to process with any single approach.

3. Applications of Speech Processing

The earliest artificial use of speech was its electrical transmission via telephone lines.
For that, speech processing involved simply converting the pressure variations of speech
into electrical currents via a microphone at its source (encoding) and later reconstitut-
ing audible speech via a loudspeaker or headphones (decoding). Vibrating membranes
facilitate mechanical/electrical transformations in microphones, loudspeakers, and hu-
man eardrums.
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In the mid-twentieth century, the advent of digital computers allowed the development
of many more applications for speech, as audio representations in binary form could
be obtained via analog-to-digital conversion. Early digital telephony coding, which is still
commonly used, sends 8000 signal samples/s with 8 bits/sample (64 kilobits/s). This
preserves the 0–4 kHz spectrum, which is the most useful frequency range and is sufficient
for most conversations, although it eliminates much of the energy of fricative consonants
(while the phonetic context allows listeners to perceive correctly). More advanced coders
exploit redundancies in speech production and aspects of audition to lower rates below
10 kilobits/s [4] using processing to be discussed later.

Prior to computers, there were some physical devices, based on musical instruments,
that were used to simulate VT airflow and produce synthetic speech. Actual text-to-speech
(TTS), which converts general written messages into intelligible speech, needed computers
to transform writing or text characters into phonemes and then emulate VT acoustical
behavior [5]. Intelligible and reasonably natural TTS now exists for dozens of languages,
although achieving the highest quality often requires much computation beyond the
capacity of portable devices.

Since approximately 1960, perhaps the most challenging speech task has been automatic
speech recognition (ASR), i.e., the conversion of normal spoken utterances into corresponding
text [6]. While commercial applications such as Siri, Cortana, and Echo now provide
common public service for dozens of languages, human listeners still perform significantly
better in difficult acoustic conditions.

Systems can also identify a speaker (automatic speaker verification (ASV)), their language,
and aspects of their health via speech analysis [7]. Another application of speech processing
is for enhancing the quality of degraded speech, e.g., in reverberation and noise [8].

4. History of Speech Processing

Early research on speech in the 1940s showed the importance of the distribution of
energy in frequency. Analog filter devices, which analyze continuous signals such as speech,
created spectrograms, which display the intensity of signals as a function of time (horizontal
axis) and frequency (vertical axis), wherein a darker shade indicates a higher intensity.
Spectrograms are based on a Fourier transform, whereby the bandwidth of pre-chosen
filters was typically either narrow (e.g., 45 Hz) or wide (300 Hz). Thus, a narrow-band
spectrogram displayed clear harmonics, as speakers rarely have an F0 below 45 Hz, while
blurring rapid events in time (e.g., individual vocal cord closures, as the filter response
duration exceeded 20 ms). A wide-band spectrogram showed the movements of (formant)
resonances, as a 300 Hz width smoothed out harmonics, while preserving brief events, such
as plosive consonant releases (Figure 2). The latter is preferred for most applications as
resonances and rapid changes are critical for many practical uses.
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In the 1960s, digital computers facilitated the rapid, precise analysis of many signals,
including speech. Persistent advances in computers have allowed great reductions in the
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sizes of devices, as well as allowing huge amounts of processing. The Internet has brought
a huge increase in available data (both audio and text) to train speech applications. The
discussion below highlights the advances in speech applications in recent years, which
have been assisted greatly by the progress in computer power and huge amounts of data.

The late 1960s saw a major breakthrough in speech analysis called linear predictive
coding (LPC) [9]. Earlier work had noted that wide-band speech spectra were dominated
by resonances spaced approximately every 1 kHz (for an average adult man; formant
spacing is proportionally wider for shorter VTs in women and children). In addition,
owing to the relative lowpass nature of air pulses through the glottis, the spectra of voiced
speech declined with frequency. This meant that speech waveform samples in each pitch
period were generally predictable after each initial excitation at vocal cord closure. As each
resonance could be modelled with 2 poles in the complex z-plane (of digital analysis), an
all-pole spectrum became an efficient model of speech, with 10 poles as the standard for
basic telephony (in the 300–3400 Hz range).

The multiplier coefficients of a decoding (synthesis) all-pole filter are readily estimated
with the inversion of an autocorrelation matrix (obtained directly from the input speech
signal via a process similar to convolution) [10]. Early versions of LPC used a simple binary
choice of excitation: (1) impulses spaced every F0 for voiced, periodic sounds, and (2) white
noise otherwise (Figure 3). In the 1980s, ACELP (algebraic-code-excited LPC) achieved the
current quality of cell phones by dedicating the bulk of the 10 kbps transmission to the
phase of the LPC residual. (Earlier ADPCM transmitted 3–4 bits/sample of the residual at
32 kbps [4].) Phase has been difficult to exploit in many areas of speech processing as it
varies greatly and is not under direct speaker control.
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The use of mean square error (MSE) as the criterion to estimate the LPC model simplifies
computation but diverges from human perception, which is highly non-linear. As a conse-
quence, in the 1980s, Mel-frequency cepstral coefficient (MFCC) analysis became common for
speech analysis in speech applications other than coding [11]. MFCC analysis allows the
use of frequency warping modelled on the logarithmic behavior of the basilar membrane
in the inner ear. Such warping was not feasible for basic LPC for computational reasons.
As MFCC analysis uses the Fourier transform (which is not employed in LPC), this allows
the deformation of the frequency axis prior to further analysis for ASR, which improves
the recognition accuracy. Despite being in common use, MFCC analysis does not exploit
the F0 well, averaging over multiple harmonics in high-frequency bands but not at low
frequencies. The final inverse-transform step of MFCC analysis has no relation to human
perception but is performed to orthogonalize the coefficients.
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A variant of LPC called perceptual linear prediction (PLP) follows the initial steps of
MFCC analysis (FT amplitude and non-uniform frequency-scale weightings) but also
adjusts for loudness with a nonlinear model of audition and a modified autocorrelation [12].
PLP allows the use of auditory factors and fewer parameters than in LPC. PLP uses a
Bark filter bank of 19 asymmetrically shaped filters, while MFCC analysis typically uses
24–40 triangular filters. These filters approximate the 24 critical bands of human audition
and model the logarithmic spacing of hair cells along the inner ear’s basilar membrane,
which ranges from thin at its basal end (high-frequency filter) to thick at its apex.

Another major breakthrough in speech processing was the use of hidden Markov models
(HMMs) in the 1980s for ASR [13]. Earlier ASR used dynamic time warping (DTW) to compare
exemplar templates of test and reference patterns (e.g., of LPC vectors), which was very
inefficient for computer memory and computation [14]. Individual templates were used as
models for all examples, which provided poor representations without any statistics.

HMMs are able to handle much variability in speech in both time and frequency.
Speakers vary greatly in the timing of their articulation, and coarticulation (the overlapping
VT motion of successive phonemes) greatly affects spectral patterns [15]. However, Markov
models assume the first-order independence of frames, which discards much of the useful
coarticulation information that listeners exploit in speech understanding.

While not necessarily a breakthrough, spectral sub-bands [16] have long been em-
ployed in speech analysis to exploit both the diversity of information across frequencies
and the varying human ability to discriminate at different frequencies. Logarithmically
spaced bandpass filterbank energies are now commonly used in ASR in place of MFCCs as
they are simpler and more flexible to use than MFCCs.

Speech processing often involves data compression, i.e., reducing large numbers of
data samples to a much smaller set of information. One form of this is embeddings, which
are mappings of discrete units of variable duration, such as phonemes, words, or positions,
to fixed-length codes [17]. Embeddings carry information about sounds that neighbor
other sounds.

This brief history of speech processing prior to the year 2000 sets the stage for the
ensuing review of recent advances. Most early applications for speech were dominated by
the use of LPC, MFCC analysis, and HMMs. They facilitated the widespread acceptance of
cell phones and voice interaction with the internet and via telephone. However, the quality
of TTS and the accuracy of ASR remained sub-optimal, leading to further research and
development, as discussed below. As noted earlier, the unique challenges of speech (e.g.,
very indirect encoding in terms of VT resonances and F0 over wide temporal spans) are
only partly addressed with the common older techniques.

5. Neural Network Advances

The most significant change in speech processing in the last 20 years has been the
huge increase in the use of artificial neural networks (ANNs). An ANN is a program or
process that transforms a sequence of input data samples into an output sequence through
a series of layers of nodes, wherein each node receives a sum of weighted values of outputs
from the nodes in a prior layer. The output of each node can be binary (zero or one) or an
approximation based on a threshold applied to its weighted sum [18]. This mathematical
action is loosely similar to that of a biological neuron in the nervous systems of living
beings. One distinction is that natural neurons are asynchronous, i.e., each neuron “fires”
(raises its output level for a fraction of a millisecond) whenever the weighted sum of its
inputs exceeds its threshold, whereas ANNs operate synchronously at a computer cycle
rate, running all nodes in a layer at once and then all nodes in the succeeding layer in the
next cycle. The threshold makes each node a non-linear processor, which allows ANNs
to perform very complex operations. As classifiers, ANNs can create complex decision
regions in a representation space (Figure 4).
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5.1. Basics of Artificial Neural Networks

The most common application for an ANN is classification, e.g., the recognition of
speech or speakers. To estimate the identification of a class for a given input data sequence,
a network is trained on an immense number of examples so that the outputs of the final
layer of the ANN form a set in which one (desired) node has an output of one and all the
others show zero. The objective is for that one node to correspond to the desired class
of each input sequence. In the training stage of the network design, the parameters of
the ANN (node weights and thresholds) are updated iteratively with an algorithm called
stochastic steepest gradient, which determines the incremental changes for all parameters
by minimizing a cost or error function called a loss [19] (Figure 5). In some cases, the
loss is directly related to a distortion to minimize elements such as MSE, which can apply
for synthesizing or enhancing signals (e.g., in speech coding to compare the input and
output of the coder). In many cases, however, the loss is complex and indirect as it must be
differentiable to allow the direction (and amount) to be estimated to change the network
parameters [20].
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A basic ANN is a fully-connected multilayer perceptron (MLP), with a few layers of
nodes having all nodes in each layer pass their weighted outputs to each node in the
succeeding layer [21]. The inputs of the initial layer are the samples of the data sequence to
process, e.g., the successive time samples of a speech signal.

Each node in an ANN processes the sum of its weighted inputs to yield a single output
value. Most typically, the process uses an activation function to calculate that output [22].
If directly emulating a biological neuron, the node output is one if the sum exceeds the
node’s threshold and remains at zero otherwise. However, this memoryless function is a
discontinuous step and thus not differentiable, blocking the use of a gradient in training.
Thus, the chosen activation function for mapping from the weighted inputs to the output is
usually a smooth, monotonic function, e.g., tanh, sigmoid, or ReLU (rectified linear unit).

The basic ideas for ANNs were developed in the 1960s, but the availability of data,
efficient training methods, and computer power were all insufficient for practical speech
applications. The last two decades have seen much progress in these needed areas, and we
will discuss the resulting advances for speech applications below.

5.2. Challenges for Artificial Neural Networks

One weakness of basic ANNs is their complexity in practice. Many applications
require inputs of large dimensions, e.g., speech signals consisting of thousands of samples.
Modern ANNs require many millions of parameters to provide suitable interpretations of
data, as the applications are highly complex. Training these networks with basic techniques
that are still in common use (i.e., steepest gradient and simple loss functions) tends to overfit
the models to the available training data, leading to overly specialized systems that are
then less capable to accommodate unexpected inputs. ANNs automatically learn from
examples; they are not directed by human expert “advisors.” Thus, it may help to seek
ways to assist this automatic processing via certain prudent choices of network architecture
and find ways to refine or process the input data prior to applying the data to ANNs.
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5.3. Convolutional Neural Networks (CNNs)

ANNs are trained to automatically seek relevant patterns in data in order to refine or
classify aspects of the data. As much progress in ANN development has been driven by
the huge field of image processing (e.g., autonomous driving and medical diagnosis) [23],
we note the general importance of edges and texture in data to help identify or “enhance”
objects in the data. In many applications, important features appear in limited (local) ranges
of the data, e.g., the network need not examine data beyond very small ranges. Thus, using
fully connected networks is wasteful, and localized analysis can be both efficient and
more precise.

CNNs consist of alternating layers of two types: convolutional layers (forming weight
sums of inputs) and pooling layers (mapping the sums nonlinearly to an output) [24]
(Figure 6). Nodes in a convolutional layer receive data from a very limited range called a
receptive field or kernel. Typically, the input is from a two-dimensional matrix, e.g., pixels in
an image, and the range is square, e.g., 3 × 3. The output can serve to reduce dimensions,
e.g., effectively downsample with the value of the range. For example, a 3 × 3 kernel
outputs one sample, thus performing a 9:1 compression, if the stride is three. (A stride
of one would simply smooth the data instead.) In CNNs, this pooling occurs in a layer
separate from the kernel weighting and can use other functions such as averaging or
choosing a maximum value from the kernel.
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CNNs try to extract features. Given the typically large set of input data points in
most practical applications, CNNs also allow downsampling to reduce dimensionality and,
hence, cost while retaining useful patterns. CNNs smooth patterns, reducing incremental
variations in the input data that often do not correspond to useful information for the given
application (e.g., noisy edges that may reflect imprecision in measuring devices). Many
applications apply high sampling rates to accommodate wide bandwidths (e.g., to satisfy
the Nyquist rate, which requires twice the highest input frequency [25]), whereas most
relevant information often lies at low frequencies; thus, suitable smoothing is often useful.

5.4. Recurrent Neural Networks (RNNs)

A second, major recent advancement in ANNs that applies to speech processing is the
development of RNNs [26,27]. As noted earlier, general MLPs are often too complex, using
thousands of nodes per layer and many layers, with many millions of parameters. For
many applications, information (about relevant patterns) in input data is often distributed
in a non-uniform fashion in both time and frequency. As a result, most nodes in fully
connected networks contribute very little to any specific task. CNNs provide a useful way
to process localized patterns, but they cannot handle the many cases wherein relevant
patterns extend over very wide ranges.
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The use of HMMs for ASR was specifically designed to accommodate correlations in
speech over many frames of data, but HMMs have serious weaknesses, as noted earlier.
RNNs have a somewhat similar mechanism of incorporating data from different layers
of ANNs [20], including recurrent feedback to earlier layers. In basic MLPs, data pass
directly to the next layer only, but RNNs allow the passage of data to other layers via
the use of specialized gates. The states of hidden layers are conditioned on the current
input and previous states, which makes the operation recursive. The recurrence in time
to update hidden states precludes parallelization, which often blocks the use of RNNs in
edge devices.

RNNs accommodate different timings, interpreting words spoken at different speeds
as corresponding to the same text. The information in each cell in a long short-term memory
(LSTM) network resides in a state whose inputs move through input gates, which control
the entry of data [28]. The state unit has a linear self-loop with weight controlled via a
forget gate. The output of each cell can be shut off via an output gate (Figure 7). A reduced
version of LSTM called a gated recurrent unit is more computationally efficient by using only
two gates (vs. three in LSTM) and a single memory cell [29].
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Training ANN parameters usually relies on the derivatives of the loss function, e.g.,
gradients. Loss gradients are backpropagated through the entire ANN [19]. With many layers,
this requires long chains of network parameters, wherein effects are the product of many
partial derivatives (via the chain rule). Such products can become very small, leading to
the vanishing gradient problem, whereby relevant effects are lost owing to small values over
many network layers [30]. Especially in RNNs, the relevant context may extend over many
frames (in acoustic models) or words (in language models). LSTM handles this better than
basic RNNs.

5.5. Attention

RNNs allow applications to focus on relevant speech segments over a much longer
time range than do CNNs or HMMs, but parameter weights in RNNs usually decay over
longer ranges of time. RNNs also have as many hidden state vectors as the length of
the input sequence, which significantly increases computation. A recent classification
method called attention [31] allows freedom to choose various data to emphasize to better
exploit the distribution of relevant information. It selects aspects in an input sequence
(speech/image/text) that are more useful to update internal ANN states to make a predic-
tion for the next output value. Attention is usually interpreted as a correlation of relevant
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information, and it is calculated via matrix operations (e.g., dot products) that combine
several terms: queries (inputs), keys (features), and values (desired outputs weighted via
attention), with a softmax function to obtain normalized values for attention weights [32].
Parallel (multiple) attention layers are called heads [33]. Queries come from an earlier
decoder layer, and memory keys and values come from the output of an encoder.

Using correlation to determine relevance in data eases the computation to calculate
attention in ANNs, but the choice of correlation is simplistic. Correlation is a first-order
linear statistic, and stochastic dependencies are far more complex. It is important to focus
on the architecture for efficient neural network operation, not only to reduce cost but also
for more accurate performance. Better measures for attention than simple correlation will
likely be found in future research.

5.6. Transformers

Basic RNNs do not allow parallel processing, which can be crucial for real-time
applications. As a result, some recent end-to-end (E2E) methods called transformers do
not use recurrence and rely only on attention to focus on critical aspects of the decision
process over a wide range [31]. (E2E means all processing lies in a single uniform ANN,
unlike many earlier applications that use a sequential, modular approach with separate
acoustic and language models, as well as rescoring.) A transformer has no notion of a token
sequence, but instead uses positional encodings in time for data in a separate embedding
table. Transformer ASR typically requires more computation than other approaches in
terms of optimization, network structure, and data augmentation.

The transformer architecture uses an attention-based encoder and decoder, whereby
each module has a stack of identical blocks, each consisting of two sub-layers: a multi-
head attention mechanism and a position-wise fully connected feedforward network.
Multiple attention heads allow the parts of data sequences to be focused on differently.
Speech correlations extend over widely different ranges: very short ranges (e.g., a spectral
resonance structure exploited with 10-sample LPC), medium ranges (e.g., the approximate
repetition of pitch periods in sonorant phonemes), and long ranges (e.g., F0 behavior over
successive words). This complexity makes the application of attention difficult.

5.7. Autoencoders

Signal-coding applications use a process of encoding (transforming) an input signal to
compress data and then decoding to reconstitute the signal at a receiver. This operation
can also apply to signal recognition cases as well, as the data compression can assist in
eliminating less pertinent aspects of the data.

An encoder–decoder trained on unlabeled data is called an autoencoder [34]. This au-
toencoder uses a self-supervised encoding step to find data representations (hidden vector
representational encoder embeddings) in a latent space, while a decoding step is supervised
to match the input and output data (the difference, or loss, may be MSE). The encoder often
consists of bi- or uni-directional LSTM layers. The decoding step generates an output that is
as close as possible to the original input (so as to verify that the encoder captures enough
feature information in the content to reconstruct the signal with good quality).

5.8. Connectionist Temporal Classification (CTC)

A recently developed data processing scheme is called connectionist temporal classifica-
tion. CTC maps an input sequence (e.g., a series of speech frames) to a set of probabilities
for all possible corresponding output sequences (e.g., a text of symbols) [35]. An advantage
of CTC is its ability to handle the large difference between the number of input frames
in many speech applications and the number of output text symbols (e.g., for ASR). A
disadvantage of CTC is that it assumes successive output symbols are independent (HMMs
also assume strong, conditional independence of input frames, whereas CTC symbols are
conditionally independent given the latent state of the neural network, which can depend
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on the entire input sequence). CTC allows sequence models to be trained without needing
a frame-level alignment of the target labels.

A related approach, but which has an autoregressive component, is the recurrent neural
network transducer [36]. It has a prediction network, but, unlike CTC, it does not assume
conditional independence between predictions. (The term “autoregressive” is derived from
filtering, wherein recursive (feedback) units in digital filters allow long responses, as in
all-pole LPC.)

5.9. Types of Network Supervision

Speech system performance is best when networks are trained using labeled data, i.e.,
supervised learning. ANNs have performed well in the supervised learning of high-level
feature representations from labeled speech and text data by using layered differentiable
models. However, labeled datasets can be costly, and many languages have few available
data. Unsupervised systems are trained only on speech with no corresponding text and on
unspoken text. Self-supervised learning (SSL), on the other hand, exploits other information
sources [37], while semi-supervised methods use some labeled data to create pseudo-labels via
initial seed models.

5.9.1. Unsupervised Learning

The Zero Resource Speech Challenge carries out ASR for five languages with no labeled
data. One challenge task uses the unsupervised learning of phoneme-like unit represen-
tations, and another task focuses on SSL spoken term discovery. One method [38] trains
on unlabeled speech to find a mapping to a compact representation (presumably useful
features) that helps discriminate between linguistic units (e.g., sub-words such as syllables).
The method searches for meaningful word- or phrase-like patterns.

5.9.2. Self-Supervised Learning

SSL pre-trains ANNs on unlabeled data to learn general representations, which are
then used to improve the system accuracy with further training on small amounts of
labeled data from a target language. Models of lexical learning based on SSL divide data
into phonetic units. These models “discover” phonetic features but rarely learn longer-
term phonological processes. Averaged latent representations can correspond to relevant
phonetic units. SSL clusters speech data automatically into acoustic units that are presumed
to share some features relevant to ASR.

For ASR, E2E models convert a variable-length speech input into a set of hidden
context states, which are then decoded into a target sequence. Unlike Markov models that
limit the range to one prior state, autoregressive methods condition on all past states, i.e.,
the hidden context states retain information about all prior states.

6. Training Data

When examining the reasons for recent major improvements in the performance of
speech systems, one must include the burgeoning availability of databases to help train
systems. As ANNs are based on examples for training, their accuracy has recently greatly
improved with ever-increasing amounts of suitable data. In addition, to help generalize
models that are derived directly from examples, data augmentation methods have assisted
as well [39]. These procedures effectively increase their input training data artificially by
perturbing actual data examples in ways that try to retain the relevant aspects of real signals
(so that the perturbed data can be viewed as additional training information). Common
methods involve randomly omitting portions of signals in time and frequency or adding
selective noise and reverberation [40]. As humans tend to be able to correctly perceive
such distorted signals (up to a certain point), the view of this research is that such trained
models become more robust to mismatches between training and testing data.
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6.1. Common Databases

Among the early databases of recorded speech are TIMIT, Switchboard, and CallHome.
TIMIT contains broadband recordings of 630 speakers of eight major dialects of American
English, each reading ten phonetically rich sentences, and they are manually labeled
at the phoneme level [41]. Switchboard contains 300 h of training data from telephone
conversations between strangers, while CallHome contains 120 conversations between
people familiar with each other [42]. The Fisher English Training Speech [43] was developed
by the Linguistic Data Consortium and has time-aligned transcript data for 984 h of
telephone conversations in English.

A more recent popular read database called LibriSpeech [44] contains a training subset
of 360 h of speech from 921 speakers. For Mandarin speech, Aishell is a common dataset [45].
For ASV, VoxCeleb has 2000 h of audio and video of famous people’s speech [46].

Recent trends have steered toward larger databases to accommodate the needs of
ANNs. While read databases allow more scientific control over experiments (e.g., with
common texts to allow more direct comparisons), practical applications are clearly for spon-
taneous speech, and speaking styles are very different for read versus spontaneous speech.

6.2. Model Adaptation

Many speech systems build models to apply in treating speech. These models are
based on training, but future testing input often deviates from the prior available training
data. To better match trained models to new input, various methods of adaptation have
been tried [47]. The many variations in speech signals include speakers, contexts, and
acoustic environments.

Model-based adaptation relies on a direct update of ANN parameters. One such
method is speaker-adaptive training (SAT), which appends speaker-specific auxiliary features
to network inputs. One typical set is i-vectors [48], which can be regarded as basis vectors
that span a subspace of speaker variability; they are commonly used for ASV.

7. Conclusions

The treatment or processing of speech signals is needed to achieve improved perfor-
mance of speech applications such as automatic recognition, coding, and enhancement.
Basic spectral analysis with the Fourier transform allowed early progress, while timely
advances in linear prediction and stochastic modelling led to the increased use of speech
systems by the public 40 years ago. The greatly increased recent use of speech applications
has been aided in large part by the major advances in artificial neural networks and by the
huge increase in computer power and available speech and text data.
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