
Citation: Fan, W.; Liu, Q.; Zhang, X.;

Gao,Y.; Qi, X.; Wang, X. A Symmetric

and Multilayer Reconfigurable

Architecture for Hash Algorithm.

Electronics 2023, 12, 2872. https://

doi.org/10.3390/electronics12132872

Academic Editor: Paris Kitsos

Received: 2 June 2023

Revised: 24 June 2023

Accepted: 26 June 2023

Published: 29 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Symmetric and Multilayer Reconfigurable Architecture for
Hash Algorithm
Wang Fan 1 , Qinrang Liu 1,*, Xinyi Zhang 1 , Yanzhao Gao 2 , Xiaofeng Qi 2 and Xuan Wang 3

1 Institute of Information Technology, PLA Information Engineering University, Zhengzhou 450001, China;
isfanw@163.com (W.F.)

2 National Digital Switching System Engineering and Technological Research Center,
Zhengzhou 450001, China

3 College of Cyberspace Security, Zhengzhou University, Zhengzhou 450003, China
* Correspondence: lqr@ndsc.com.cn

Abstract: As an essential protection mechanism of information security, hash algorithms are exten-
sively used in various security mechanisms. The diverse application scenarios make the implementa-
tion of hash algorithms more challenging regarding flexibility, performance, and resources. Since
the existing studies have such issues as wasted resources and few algorithms are supported when
implementing hash algorithms, we proposed a new reconfigurable hardware architecture for common
hash algorithms in this paper. First, we used the characteristics of symmetry of SM3 (Shang Mi 3) and
SHA2 (Secure Hash Algorithm 2) to design an architecture that also supports MD5 (Message Digest 5)
and SHA1 (Secure Hash Algorithm 1) on both sides. Then we split this architecture into two layers
and eliminated the resource wastes introduced by different word widths through exploiting greater
parallelism. Last, we further divided the architecture into four operators and designed an array.
The experimental results showed that our architecture can support four types of hash algorithms
successfully, and supports 32-bit and 64-bit word widths without wasting resources. Compared
with existing designs, our design has a throughput rate improvement of about 56.87–226% and a
throughput rate per resource improvement of up to 5.5 times. Furthermore, the resource utilization
rose to 80% or above when executing algorithms.

Keywords: hash algorithm; reconfigurable computing; hardware design; parallelism

1. Introduction

With the development of network and communication technology, modern society
has higher requirements for protection of information security. As a branch of cryptog-
raphy, hash algorithms have become an important protection mechanism of information
security [1]. After years of development, many mature hash algorithms have been pro-
posed and applied [2]. The most widely used hash algorithms are the MD family, SHA
family, and national commercial cypher, specifically including MD5, SHA1, SHA2 (SHA224,
SHA256, SHA384, SHA512), and SM3.

Hash algorithms convert a plaintext with arbitrary length into a ciphertext with fixed
length [3] through a mapping algorithm which must be unidirectional, and collision resis-
tant [4]. They are sensitive to input, such as the chaotic system [5]. The data processed by
the hashing algorithms is greatly reduced in size and unrecoverable. As a computational
method, hashing algorithms can be applied to many fields, such as encryption, secure
authentication, and identification. Combining hash algorithms with cryptographic algo-
rithms can implement digital signatures and identity authentication [6]. The processing or
transmitting of messages processed by hash algorithms can reduce computation overheads,
improve identification speed and ensure safety. Combining hash algorithms with water-
marking techniques can be used for copyright protection, etc. [7]. In blockchain technology,
many mechanisms require the involvement of hash algorithms [8]. For example, the miner

Electronics 2023, 12, 2872. https://doi.org/10.3390/electronics12132872 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132872
https://doi.org/10.3390/electronics12132872
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0009-0005-3340-2182
https://orcid.org/0009-0003-6328-4776
https://orcid.org/0009-0000-1987-892X
https://orcid.org/0009-0005-7372-2893
https://doi.org/10.3390/electronics12132872
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132872?type=check_update&version=1


Electronics 2023, 12, 2872 2 of 24

responsible for packing transactions needs to find a message digest that satisfies a specific
format through hash computing and message digests from the transaction records of blocks
should be calculated by hash algorithms, layer by layer, eventually forming a chain table
that cannot be tampered with reversibly [9]. Another evident example is HTTPs protocol.
HTTPs have become the mainstream Internet protocol replacing HTTP. The certificate
required by Https is created by hash calculating [10]. In other words, without the hash algo-
rithm, we barely have access to the Internet. So hash algorithms are a necessary component
of modern technology.

In recent years, the scale of information transmitted by networks has increased dra-
matically. The information transmission speed in 5G networks can be 100 times faster than
4G [11]. The booming data scale and rapid request speed require the computational perfor-
mance of the hashing algorithms to be improved because otherwise the digest generation
speed inevitably lags far behind the service request speed. In addition, the expanding
application scenarios also pose challenges. Although a single hash algorithm can perform
data digest generation, many security protocols or software applications under the existing
security framework often provide multiple hash algorithms for users to negotiate or choose
from. For example, the IPSEC (Internet Protocol Security) protocol provides MD5 and
SHA1 [12], etc., and the TLS (Transport Layer Security) protocol supports SHA256 and
SHA384 [13], etc. These changes require that hash algorithms be implemented with high
performance and flexibility.

So how to implement hash algorithms with high performance and flexibility is a
problem that must be solved in technology development. Although existing research
on hash algorithm acceleration has partially improved performance through dedicated
design, resource-for-time, and local optimization means, the balance between performance,
flexibility, and resources is not satisfactory and either supports few algorithms or wastes
computational resources. To solve this problem, we analyzed the characteristics of common
hash algorithms, searched for the primary causes of resource wastage at the structure and
module levels, so as to propose a new reconfigurable architecture in this paper. The main
contributions of this paper are summarized as follows:

1. We proposed a reconfigurable architecture from the perspective of the left–right
symmetry at the structural level to solve the problem of resources unused when
executing the algorithms.

2. We divided the computational structure into upper and lower layers, to solve the issue
of resources being wasted due to different word widths among algorithms, separated
the structure further into left and right parts, and analyzed the array design method
through four generated operators.

3. We evaluated the performance of the architecture, and the experimental results
showed that our design has a throughput rate improvement of about 56.87–226% and
a throughput rate per resource improvement of up to 5.5 times, with a high resource
utilization rate on the premise of algorithm reconfiguration.

The rest of this paper is organized as follows. Section 2 introduces the existing work
and algorithm information. Section 3 describes our reconfiguration idea and detailed
design. Section 4 is the experimental evaluation. Section 5 concludes this paper.

2. Background
2.1. Related Work

The research on hash algorithm acceleration can be divided into three main categories:
ASIC (application-specific integrated circuit), reconfigurable design, and ASIP (Application
Specific Instruction Set Processor).

The ASIC architecture designs a dedicated circuit for cryptographic algorithms, which
mainly targets every single cryptographic algorithm and can achieve very high process-
ing speed through parallel acceleration, pipeline design technology, and so on. Wang
Zhendao achieved a processing speed of 81.31 Gb/s for the MD5 algorithm on the Ar-
ria10 device by optimizing the critical path and adopting 32-stage pipelining [14]. Fang



Electronics 2023, 12, 2872 3 of 24

Yi [15] improved the SM3 processing speed to 80.43 Gb/s through 64-stage pipelining,
but this is clearly a strategy of space for time. Another strategy is to design a multi-in-
one architecture that shifts operations from the critical path to the non-critical path [16].
This strategy essentially calculates the critical path in advance, but it is not universal; for
example, it is not applicable to MD5, and the effects of its improvements vary among
algorithms because the number of operations which can be calculated in advance differ.
The most evident advantage of ASIC is the execution speed, but it can only accelerate a
single algorithm [17]. When multiple algorithms need to be accelerated, even if they are the
same type, it needs to design multiple hardware architectures, which results in enormous
hardware overheads and resource waste [18]. Multiple algorithms are rarely accelerated by
this means.

Reconfigurable architecture means the overall architecture remains unchanged, but the
chip functionality can still be adjusted according to the application requirements. It is as
efficient as ASIC and as flexible as CPU through commonality analysis, operator extraction,
reconfiguration cell design, interconnection, and configuration information generation [19].
The essential feature is that configuration information determines the data path. Much
research has been carried out on reconfigurable architectures for hash algorithms, but there
are still many problems, such as, for example, few algorithms are supported and there is
severe waste of resources. Liu Heng from Zhejiang University proposed a hash algorithm
reconfigurable architecture [20], in which the basic idea is to select different data paths for
different algorithms through Mux by reusing the addition unit and implementing other
operations separately. It can accelerate four standard algorithms, but the most severe
problem is that, when performing 32-bit word width operations, more than 50% of the
resources are idle, resulting in serious resource waste. The architecture proposed by Xi
Shengxin only supports two algorithms [21], which directly merge the algorithmic data
flow graphs, failing to avoid the resource wastage introduced by the data width problem.
Yang Xiaohui designed an architecture that only supports SHA1/224/256 [22]. She used
CSA (Carry Save Adder) adders to reduce the latency on the critical path but this doed not
multiplex computational resources and, thus, cannot significantly improve performance
and resource indicators. Zhu Ninglong designed an architecture, supporting SM3 and
SHA2 [23], which only multiplexed the assignment circuit, while other computational logic
was still implemented separately. Despite it supporting a few algorithms, its resource
utilization still remains low. In Reference [24], the author multiplexed the adder through
selecting different inputs and optimized the performance by using the CSA adder for
SM3 and SHA2. Another type of design reconfigures the hash algorithm with the block
cipher, such as the high-performance reconfigurable cryptoprocessors Anole [25] and
PVHArray [26]. When running the hash algorithms, the reconfiguration granularity is only
at the addition and shift levels, and, thus, the throughput is low, being only 460 Mb/s for
SHA256 in Anole. So, even though this branch has been studied for a long time, there
are still no efficient architectures for standard hashing algorithms that achieve balance in
performance, flexibility, and area.

Hardware acceleration based on extended instruction sets involves designing instruc-
tions specifically for cryptographic computing on the CPU (Central Processing Unit) [27–29]
and adding hardware acceleration units to the ALU (Arithmetic and logic unit) to ex-
ecute these instructions [30], which often uses ultra-long instruction word techniques.
However, it can never eliminate the constraint of von Neumann architecture, which makes
it challenging to design coarse-grained instructions and issues of programmability ex-
ist [31]. In existing studies, the throughput rate for classical cryptographic algorithms is
only 89.73 Mbps [32].

2.2. Introduction of the Algorithm

Hash algorithms are used to compute data digests, which compress plaintext with
arbitrary length to ciphertext with fixed length. The computing can be divided into data
padding, compression, and extension. Data compression and expansion are arithmetic-



Electronics 2023, 12, 2872 4 of 24

intensive operations, which are suitable for hardware implementation, while the padding
operation is a control-intensive operation, which is more suitable for software imple-
mentation, so we do not introduce the padding operation in this paper. Table 1 lists the
algorithm information.

Table 1. Algorithm information.

Algorithm
Maximum

Input
Length

Block
Length Word Width Output

Length Round

MD5 264 512 32 128 64
SHA1 264 512 32 160 80

SHA224 264 512 32 224 64
SHA256 264 512 32 256 64
SHA384 2128 1024 64 384 80
SHA512 2128 1024 64 512 80

SM3 264 512 32 256 64

Most hash algorithms adopt an iterative compression structure with strong similarities.
Figure 1 shows the schematic diagram of the compression function [14,33–35], where the
letters of a to h are the input/output registers. And Table 2 depicts these in mathematical
language. Table 3 shows the data extension rule.

Ti

a b c d

Logic +

+

+

<<<s

+

a b c d

Wj

Ti

a b c d

Logic +

+

+

<<<s

+

a b c d

Wj

Ti

a a b ca b ca b c db c d e

Logic +

+

+

a a b ca b ca b c db c d e

Wj

+<<<5

Ti

<<<30

a a b ca b ca b c db c d e

Logic +

+

+

a a b ca b ca b c db c d e

Wj

+<<<5

Ti

<<<30

a b c d a b ca b ca b c de f g h

Logic +
Logic

+

+

+

`

+

a b c d a b ca b ca b c de f g h

Wj

+

Σ0

Σ1

+

Ti

a b c d a b ca b ca b c de f g h

Logic +
Logic

+

+

+

`

+

a b c d a b ca b ca b c de f g h

Wj

+

Σ0

Σ1

+

Ti

a b c d a b ca b ca b c de f g h

GG +FF<<<12

+

+<<<j

<<<7
+

+
XOR

P0+

+

+

a b c d a b ca b ca b c de f g h

<<<9 <<<19

Wj’

Wj

MD5

SHA1SHA2

SM3

Figure 1. Compression function structure.



Electronics 2023, 12, 2872 5 of 24

Table 2. Compression function in mathematical description.

Algorithm Mathematical Description

MD5 (A, B, C, D)→ (D, ((A + F/G/H/I(B, C, D) + W + T) <<< s) + B, B, C)

SHA1 (A, B, C, D, E)→ (Ft(B, C, D) + E + (A <<< 5) + W + K, A, (B <<< 30), C, D)

SHA2
T1 = ∑ 1(E) + H + Ch(E, F, G) + K + W

T2 = ∑ 0(E) + Maj(A, B, C)
(A, B, C, D, E, F, G, H)→ (T1 + T2, A, B, C, D + T1, E, F, G)

SM3

SS1 = ((A <<< 12) + E + (T <<< j)) <<< 7
SS2 = SS1 ⊕ (A <<< 12)

TT1 = FFj(A, B, C) + D + SS2 + W ′

TT2 = GGj(E, F, G) + H + SS1 + W
(A, B, C, D, E, F, G, H)→ (TT1, A, (B <<< 9), C, P0(TT2), E, (F <<< 19), G)

Table 3. Data extension rule.

Round(s) Algorithm Extension Rules

0 ≤ s < 16 all Ws = Ms
s > 16 MD5 Select one form the plaintext word

SHA1 Ws = (Ws−3 ⊕Ws−8 ⊕Ws−14 ⊕Ws−16) <<< 1
SHA1 Ws = σ1(Ws−2) + Ws−7 + σ0(Ws−15) + Ws−16
SHA1 Ws = P1(Ws−16 ⊕Ws−9 ⊕ (Ws−3 <<< 15))⊕ (Ws−13 <<< 7)⊕Ws−6

3. Reconfiguration Architecture

In this section, we analyze the reconfiguration strategy and design the reconfiguration
architecture at three levels: the structural level, the module level, and the array level. At
the structural level and module level, our main methodology was multiplexing as much
as possible, including using the symmetry of the algorithm to design architecture and
splitting the architecture to exploit greater parallelism. At the array level, we separated the
architecture again to decouple all operators and then analyzed the array design method to
select an optimal scheme according to some common metrics.

3.1. Reconfiguration Analysis

It is easy to observe, in Figure 1, that the overall structure of the compression function
is similar. They all have a critical path based on addition, and several paths based on simple
logic operations, and the assignment logic for them all presents the characteristics of shift
assignment. In existing designs, the difficulty of reconfiguration is SM3, which needs more
computational resources. The architecture must provide all the resources required by SM3.
If an appropriate reconfiguration strategy is not adopted, it results in 50% waste of adder
and 5/8 register resources when performing MD5 and SHA1. After careful observation,
we found that both the left and right sides of SM3 have a complex path, and the structure
of each side can contain MD5 and SHA1. SHA2 also presents such characteristics. So, we
concluded that designing an architecture according to SM3 and SHA2, and supporting MD5
and SHA1 on both sides of the architecture, would fully utilize computational resources at
the structural level. This was the reconfiguration strategy adopted in this paper.

The above analysis solves the problem of resource waste at the structural level, but seri-
ous resource wastage still exists in the phase of algorithmic performance.
The fundamental reason is that word widths vary among algorithms. The word widths of
SHA384 and SHA512 are 64 bits, while the others are 32 bits. In existing designs, the word
width of all computational resources is designed to be 64 bits, resulting in at least 50% of the
resource being in an idle state when executing algorithms with 32-bit word width [20–24].
However, if designed to 32 bits, this cannot meet the operational requirements of 64-bit
word widths. To address the above problem, we used a processing unit with 32-bit word
width to build a unit with 64-bit word width and to select execution modes through control
signals. So, after optimizing, the architecture can execute one set operation of 64-bit word



Electronics 2023, 12, 2872 6 of 24

width or two sets of operations of 32-bit word width simultaneously, which means that the
architecture can support two sets of SM3 or SHA224/256, etc., or one set of SHA384/512 at
the algorithm level. So, the problem of resource waste introduced by word widths is solved.

Data expansion rules among algorithms are simple, and the most crucial feature is 16-
level shift registers and simple arithmetic operations. Different computing logic is selected
according to the algorithms. The output value of the shift register is passed directly to the
iterative compression module to participate in computing.

3.2. Structural Level Design

In this section, we design the compression module and data extension module separately.

3.2.1. Compression Module Design

In the above reconfiguration analysis, the implementation of MD5 and SHA1 should
reuse the resources of the left and right sides of SM3 and SHA2 as much as possible. Ac-
cording to this principle, we designed the hardware architecture, shown in Figure 2, which
the symbols of A to E and A_n to E_n mean the input and output registers respectively.
And it satisfies the following design requirements:

1. Supports SHA2 and SM3;
2. Supports MD5 and SHA1 on both sides.

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

A1_n B1_n C1_n D1_n E1_n A2_n B2_n C2_n D2_n E2_n

Logic Adder

Adder

Adder

Shift

Adder

Logic Adder

Adder

Adder

Shift

Adder

P0

Ti

<<<7

+

<<<
<<<

Tj

Wj
Wj

Figure 2. Reconfigurable architecture.

To be compatible with SHA1 on both sides, we set register numbers on each side
to 5. The extra registers can execute other computational branches when performing other
algorithms. For example, the operation of (Ti <<< j) + E in SM3 can be implemented by
A2, the shift unit, and the addition unit. For MD5 and SHA2, the extra registers can copy



Electronics 2023, 12, 2872 7 of 24

the values of B1 and B2 to alleviate their fan-out. Figures A1–A4 in Appendix A provide
the data flow diagram when executing the four algorithms.

It can be seen in the data flow diagram, that few wasted resources exist at the whole
structural level. When running MD5 and SHA1 algorithms, resources on both the left and
right sides are utilized, and the throughput rate for these algorithms is theoretically doubled.

3.2.2. Data Extension Module Design

The data extension module needs to calculate Wi for the compression module. The data
extension rules for different algorithms are shown in Table 3. The data path to execute can
be selected according to the selected algorithm. According to the reconfiguration analysis,
we designed the hardware architecture shown in Figure 3. The 16 registers are W0–W15, W
is the extended data word, and W ′_SM3 is Wp is used in SM3.

w0 w1 w2 w3 w4 w5 w6 w7 w8 w9 w11 w12 w13 w14 w15

XOR

w10

XOR XOR

<<<7 XOR

P1

XOR

σ 1

<<<1

σ 0

Adder Adder Adder

`

<<<15

W

W’_SM3

MD5_select

SHA2

SM3

SHA1

Figure 3. Data extension module.

3.3. Module Design

The architecture above only provides the design at the structural level, but two issues
remain unexplained:

1. How to set word width;
2. How to design the sub-module.

To be compatible with SHA512 and SHA384, in existing works, the word width of
the computational units and registers are all set to 64, and when executing 32-bit width
algorithms, only the high 32 bits are used, while the low 32 bits are set to 0, which leads to
at least 50% waste of resources. To solve the problem, we built the processing units with
64-bit word width through units with 32-bit data width. The specific idea was to divide the
64-bit processing unit into high 32-bit and low 32-bit. Each part can handle 32-bit operation
independently, while the two can work together to handle 64-bit operation. In other words,
we divided the hardware structure shown in Figure 2 into two layers, with the upper
layer processing high 32 bits data and the lower layer processing low 32 bits data, and an
algorithm with a bit width of 64 bits, such as SHA384/512, is calculated by the two layers
together. The data extension module also adopts this strategy.

The logic unit in Figure 2 undertakes the task of calculating the logic functions shown
in Table 4. The logic unit must be reconfigurable to meet all the computational requirements.
We adopted a three-layer CLB interconnection structure in this paper, with each CLB word
width being 32 bits. The detailed structure is shown in Figure 4. The logic function is bit
operations and the high and low bits do not disturb each other, so the logic function units
in both layers are the same as in Figure 4.



Electronics 2023, 12, 2872 8 of 24

CLB1 CLB2 CLB3

CLB4

CLB6

4'b0000:out=0
4'b0001:out=A^B
4'b0010:out=A&B
4'b0011:out=A|B
4'b0100:out=~A
4'b0101:out=(~A)^B
4'b0110:out=(~A)&B
4'b0111:out=(~A)|B
4'b1000:out=A
4'b1001:out=B

in2 in1 in3 in2 in3in1

Figure 4. Logic function unit.

Table 4. Logic functions of algorithms.

Algorithm Function Symbol Definition

MD5

F(B,C,D) (B ∧ C) ∨
(

B ∧ D
)

G(B,C,D) (B ∧ D) ∨
(
C ∧ D

)
H(B,C,D) B⊕ C⊕ D
I(B,C,D) C⊕

(
B ∨ D

)
SHA1

F1(B,C,D) (B ∧ C) ∨
(

B ∧ D
)

F2(B,C,D) B⊕ C⊕ D
F3(B,C,D) (B ∧ C) ∨ (B ∧ D) ∨ (C ∧ D)
F4(B,C,D) B⊕ C⊕ D

SHA2 Ch(B,C,D) (B ∧ C)⊕
(

B ∧ D
)

Maj(B,C,D) (B ∧ C)⊕ (B ∧ D)⊕ (C ∧ D)

SM3

FFj(B,C,D) B⊕ C⊕ D0 ≤ j ≤ 15
(B ∧ C)⊕ (B ∧ D)⊕ (C ∧ D)16 ≤ j ≤ 63

GGj(B,C,D) B⊕ C⊕ D0 ≤ j ≤ 15
(B ∧ C) ∨

(
B ∧ D

)
16 ≤ j ≤ 63

The addition operation was designed differently for high and low layers due to the
carry flag, such as the structure shown in Figure 5. Our goal was to construct a 64-bit adder
with two 32-bit adders which could work separately or cooperatively. When working
separately, they are essentially two independent 32-bit adders, without carrying any flag.
When they work cooperatively, they are essentially a 64-bit carry ripple adder consisting
of two 32-bit adders. Now, the low bits adder needs to output a carry flag to the high bits
adder. The two modes can be selected through the dword signal.

Low 32-bit 

adder

In1

In2

dword

sum

flag

high 32-bit 

adder

In1

In2

dword

sum

flag

Low bits adder high bits adder

Figure 5. Adder module.

When analyzing algorithms, we found that there are many computational patterns,
such as (A >>> n1 ⊕A >>> n2 ⊕A >>> n3). So, we designed a dedicated shift unit.



Electronics 2023, 12, 2872 9 of 24

The shift unit includes three shift operations and two xor operations. The unit is designed
to perform two functions:first, shift for one input; second, multiple shifts and xor for one
input. Since 64-bit shift operations cannot be calculated through 32-bit shift operations,
64-bit shift operations cannot reuse the 32-bit shift operation calculation logic. The structure
of the designed shift unit is shown in Figure 6. The lower layer uses the low bits shift
unit, and the upper layer uses the high bits shift unit. The σ0 and σ1 operations in the
data expansion module can also be implemented by the same method but with a fixed
shift number.

Low bits shift unit 
High bits shift unit

shift32 shift32 shift32

XOR

XOR

shift64 shift64shift64

XOR

XOR

high 32-bit Low 32-bit

0

Input from low bits

Input to low bits

Input_data dwordInput_data dword

output

shift32 shift32 shift32

XOR

XOR

Input to high bits

Input form low bits

0

output

Figure 6. Shift unit.

After the module was designed, as above, the architecture in Figure 2 was divided
into two layers. Each layer can perform two sets of MD5 and SHA1 and one set of SHA256,
SHA224, and SM3. When executing SHA384 and SHA512 algorithms, the upper and lower
layers work together to expand the computing logic and register unit word width to 64 bits.
In this way, the waste of resources introduced by the different word widths is eliminated,
and the computational capability of all resources can be utilized entirely.

3.4. Array Design

In the above analysis, we optimized the reconfigurable architecture at the structural
and module levels. However, due to massive iterations and computation of hash algorithms,
a single hardware structure only provides limited computational capability, and, thus, the
array design is necessary. The design of the array affects the implementation model of the
performing algorithms, and the main difference is whether or not to adopt the pipeline.
After analysis, we found that the pipelined implementation was not suitable for the hashing
algorithm, mainly for the following reasons: first, if the data extension module pipelines,
each data extension module introduces an extra 512 bits interconnection overhead for data
words pipelining, as shown by the red line of Mode a in Figure 7; second, if the data
expansion module does not pipeline, this means that a set of data is processed in only
one data expansion module, as shown in Mode b of Figure 7. At this time, each data
expansion module needs to connect with all the compression modules, which introduces
enormous interconnection and control overheads and may, ultimately, result in frequent
switching of configuration information or failures in data synchronization. Therefore, we
did not use the pipelined implementation and processed the whole hash computing in a
set of data extension modules and compression modules, as shown in Mode c of Figure 7.
From another perspective, pipelined implementation is more suitable for dealing with



Electronics 2023, 12, 2872 10 of 24

programs containing multiple sub-processes. However, our design can complete the whole
iteration process just once without dividing into several sub-processes, and, hence, we did
not use the pipelined implementation.

Data 

extension 

module

Compression 

module

Data 

extension 

module

Compression 

module

Register Register

32bit

512bit

512bit

128bit

128bit

input

32bit

Data 

extension 

module

Compression 

module

Data 

extension 

module

Compression 

module

input

Mode a

Data 

extension 

module

Compression 

module

Mode b

Data 

extension 

module

Compression 

module

Data 

extension 

module

Compression 

module

Data 

extension 

module

Compression 

module

Mode c

input

input

input

input

input

32bit

32bit

32bit

Figure 7. Executing mode.

In array design, function units should be decoupled as much as possible to reduce
control difficulties and to increase flexibility. In Section 3.2.1, we designed the architecture
according to the principle of left–right symmetry, so, when designing arrays, we could
separate the left and right sides from the middle to obtain the two sub-modules. And we
denote the left side as A and the right side as B. We connected modules A and B with the
data expansion module, deriving A and B operators, as shown in Figure 8. The A and B
operators can work together by transmitting three sets of signals. So far, we had obtained
four operators according to the high/low and left/right separation principles: A_high,
A_low, B_high, and B_low. Table 5 provides the interconnection relations between the
operators. Table 6 depicts the requirements of the different algorithms for the operators.

A Data extension 

module

Ti

Wi/W_p

Ins

alg

SM3_out

SHA2_out

W

W’_SM3

Dword

Data_en

alg

Md5_select

block

Ext_in

B Data extension 

module

Ti

Wi/W_p

Ins

alg

Ext_in

W

Dword

Data_en

alg

Md5_select

block

SHA2_out

SM3_out

A_high/low
B_high/low

Figure 8. Operators.

Table 5. Interconnection among operators.

A_high A_low B_high B_low

A_high × Low/High Left/Right ×
A_low Low/High × × Left/Right
B_high Left/Right × × Low/High
B_low × Left/Right Low/High ×



Electronics 2023, 12, 2872 11 of 24

Table 6. Operator requirements of algorithms.

Algorithm Operators

MD5 A_high or A_low or B_high or B_low
SHA1 A_high or A_low or B_high or B_low

SHA224/256 A_high + B_high or A_low + B_low
SHA384/512 A_high + B_high + A_low+B_low

SM3 A_high + B_high or A_low + B_low

The computing capability of the array is positively related to the number of compu-
tational resources, so we needed to determine the scale of the array first. Assuming that
the array size is M × N, where N is the width of the array, and M is the depth of the array,
when the array is not designed in the pipeline, its computational power is proportional
to M, so the size of N is the crucial factor affecting the array efficiency. The design of the
row structure should consider the parallelism of multiple algorithms and single algorithm.
Parallelism of a single algorithm means how many messages belonging to one algorithm are
executing simultaneously, while for multiple algorithms it means the number of messages
many kinds of algorithms are executing simultaneously. When considering the maximum
parallelism of multiple algorithms, the row must satisfy the requirements for computational
resources of all algorithms, as shown in Equation (1).

RSM3 + RSHA224/256 + RSHA384/512 + RMD5 + RSHA1 ≤
N1 ∗ A_high + N2 ∗ A_low + N3 ∗ B_high + N4 ∗ B_low

(1)

where Ralg is resources occupied by algorithm, which is shown in Table 6, and Ni is the
number of every operator in one row. According to the barrel principle, the parallelism of a
single algorithm depends on the smallest amount of resources required by the algorithm.
Equation (2) shows the parallelism of a single algorithm.

PSM3= min{N1, N3}+ min{N2, N4},
PSHA224/245= min{N1, N3}+ min{N2, N4},
PSHA384/512 = min{N1, N2, N3, N4},
PMD5 = N1 + N2 + N3 + N4,
PSHA1 = N1 + N2 + N3 + N4

(2)

After a simple analysis, the minimum design solution meeting the parallelism require-
ments was N1 = N2 = 2, N3 = N4 = 3, or N1 = N2 = 3, N3 = N4 = 2. Both solutions provide
the same computing capability, and the one that occupied less area was a better choice.
The parallelism of the individual algorithms at this time is shown in Table 7.

Table 7. Parallelism of individual algorithm.

MD5 SHA1 SHA224/256 SHA384/512 SM3

Parallelism 10 10 4 2 4

In this paper, we took N1 = N2 = 2, N3 = N4 = 3 as an example. The design could
achieve maximum parallelism only when the interconnection relationships in Table 5 were
satisfied. At this time, the whole problem became a permutation problem. After excluding
part solutions that did not satisfy the interconnection relationship and equivalent solution,
the number of solutions satisfying requirements was (C2

5−2)/2 = 4 , and the detailed
solution is shown in Figure 9.

Although the four schemes provide the same maximum parallelism for each algorithm,
they do not provide the same mapping flexibility. In this paper, we defined the number of
mapping solutions as mapping freedom, and Table 8 gives the mapping freedom of the
four schemes.



Electronics 2023, 12, 2872 12 of 24

Figure 9. Array design solution.

Table 8. Mapping freedom.

Mapping Freedom
with Parallelism = 1

Mapping Freedom
with Max_Parallelism

MD5 1 SHA224 2 SHA384 3 MD5 1 SHA224 2 SHA384 3

so1ution1 10 6 3 1 1 1
solution2 10 6 3 1 2 2
solution3 10 8 4 1 3 3
solution4 10 4 2 1 1 1

1 SHA1 has the same value as MD5; 2 SHA256 and SM3 have the same value as SHA224; 3 SHA512 has the same
value as SHA384.

Therefore, we chose solution 3 as the row design solution in this paper, and the
array structure is shown in Figure 10. No interconnection is required between rows,
and interconnecting lines within rows and layers are used for the operators to work together.
Let us denote the row computing capability as Cap_row, then the array computational
capability Caparray = M ∗ Caprow. The maximum throughput rate of the array when the
computational resources are fully utilized is:

Tharray=
4

∑
i=0

αi∗Th_alg[i] (3)

where alg = [MD5, SHA1, SHA224/256, SHA384/512, SM3], αi is the number of messages
of alg[i], Tharray is the array throughput rate, Th_alg[i] is the throughput rate when running
alg[i], and satisfies α1 + α2 + 2α3 + 4α4 + 2α5 = M ∗ 10.

The mapping requirements for multiple algorithms can be satisfied according to the
following principles: first, do not map MD5 and SHA1 on the same layer; second, search
the operator suitable for algorithms from upper to lower and left to right.



Electronics 2023, 12, 2872 13 of 24

Figure 10. Array.

4. Experiments

In this section, we validate and test the architecture proposed above. Figure 11 shows
the verification system platform used. When executing algorithms on our architecture,
the users need to input the algorithm type and plaintext and generate the corresponding
configuration information. For other information, such as Ti and round in algorithms, the
information can be stored in the system in advance. After comparing our computing results
with the message digests calculated by software tools, the correctness of our design was
validated. To test the performance, we used Quartus II 13.0 to synthesize our design and
selected the Stratix II family device to lay out.

Cortex-A9

Axi crossbus

BRAM

BRAM

Hash module 

axi

axi

axi

axi

axi

M

M

M

M

M S

S

S

S

S

Data

Instruction

Figure 11. Verification system platform.

4.1. Area Overhead

We could obtain the number of Adaptive Look-Up Tables (ALUTs) and Register easily
after laying out our operators and their combinations on Quartus II. The Power included
the total of dynamic and static power. However, when performing timing analysis, we
could not use the results of the TimeQuest Timing Analyzer as the maximum frequency
of our design because Quartus uses the longest path in the design as the critical path by
default to perform timing analysis. However, for our design, algorithms supported by



Electronics 2023, 12, 2872 14 of 24

the architecture were fixed, and the computing paths for each algorithm were also fixed.
The longest path in the design was not, in fact, used. Therefore, the algorithm’s longest
computing path should be used as the critical path in timing analysis, rather than the
longest path in the whole design. In this paper, we searched the critical path of each
operator when algorithms were running through the Report path and Set false path options
to calculate the maximum frequency. Then, we used the Frequency parameter to calculate
the Latency. The specific information obtained is shown in Table 9.

Table 9. Operator information.

Operator ALUT Register Power (W) Frequency (MHZ) Latency (ns) Algorithm Supported

A_low 1872 772 1.956 125.64 7.959 MD5 and SHA1
A_high 2572 778 2.141 118.69 8.435 MD5 and SHA1
B_low 1793 740 2.208 121.21 8.25 MD5 and SHA1
B_high 2468 778 2.45 131.7 7.593 MD5 and SHA1

A_low+B_low 3711 1512 3.732 115.32 8.671 SM3 and SHA224 and
SHA256

A_high+B_high 4907 1556 3.913 111.27 8.987 SM3and SHA224and
SHA256

A_high+B_high
+A_low+B_low

8882 3068 5.7 108.96 9.177 SH512and SHA384

To compare the computing capability of the architectures with other designs, we
selected the A_high + B_high + A_low + B_low scheme. The results of all designs are
shown in Table 10, and the target devices of the design in Table 10 were all from the Stratix
II family for convenience of comparison.

Table 10. Architecture comparison.

Algorithms
Supported

ALUT Register Maximum
Frequency/MHz

Throughput
Rate/Mbps

Individual
implementation

MD5 2334 892 133.6 1068.8
SHA1 1131 874 171.821 1099.65

SHA-224/256 2150 1066 136.78 1094.24
SHA-384/512 4316 2126 127.535 1632.45

SM3 1936 1161 68.9 526.2

Ref. [24]
SHA1 5887 2124 105.7 727.8

SHA-224/256 909.8
SHA-384/512 1455.7

Ref. [20]

MD5 7441 2210 100 800
SHA1 640

SHA-224/256 800
SHA-384/512 1066.6

SM3 742

ours

MD5 8882 3068 108.96 3486.72
SHA1 2789.37

SHA-224/256 1716.54
SHA-384/512 1394.688

SM3 1716.54

We easily ascertained that the ALUT number that implemented all algorithms indi-
vidually was 11,876, and the Register number was 6119, as can be observed from Table 10.
The individual implementation did not reuse any computational resources and, thus. se-
riously wasted resources. Figure 12 provides the resource overheads of the design in
Reference [20], our design, and the individual implementation scheme. We could not
compare other schemes under such conditions due to the limited algorithms they support.



Electronics 2023, 12, 2872 15 of 24

Figure 12. Resources overhead [20].

It was easy to ascertain that, compared with the individual implementation scheme,
both the design in Reference [20] and our design could save ALUT and Register to a large ex-
tent because both reused computational resources and, thus, the amounts of computational
units and registers were reduced. However, the design in Reference [20] achieved more
significant resource savings than our design because our architecture provides more pow-
erful reconfiguration capabilities and, therefore, requires more computational resources,
providing greater parallelism and more powerful computational capability . Even so, our
design also achieved more than 25% ALUT savings and 45% Register savings.

4.2. Resource Utilization Rate

In this paper, our core innovation was to design an architecture and split it into two
sides and two layers based on the characteristics of symmetry and word width. By multi-
plexing, each computing resource can be fully utilized. To validate this feature, we adopted
the resource utilization rate indicator to evaluate the resource utilization degree in the
compression module. The ALUT numbers sub-modules occupied after synthetization are
shown in Table 11.

Table 11. ALUT numbers sub-modules occupy .

A_high_com 1 A_low_com 1 B_high_com 1 B_low_com 1

Adder_high1 97 0 64 0
Adder_high2 96 0 96 0
Adder_high3 96 0 97 0
Adder_high4 64 0 96 0
Adder_low1 0 65 0 33
Adder_low2 0 65 0 33
Adder_low3 0 64 0 65
Adder_low4 0 34 0 65
Shift_high 619 0 677 0
Shift_low 0 271 0 336
Logic 162 162 162 162
<<< 175 175 174 175
P0 0 0 32 32
Others 2 380 412 239 266
total resource 1689 1248 1637 1167

The resources of all compress modules after synthesization: 5802
1 com means the compression module of the corresponding operator; 2 Other means other modules, excepting the
modules listed in the table.



Electronics 2023, 12, 2872 16 of 24

In Table 11, the same sub0module occupied different amounts of resources in different
parent modules, which was mainly because EDA (Electronics Design Automation) tools
automatically adopt optimization strategies, including merging logic, removing unused
logic, etc. The tactics of layout also affect the result. So even the same modules have
different results.

Although the architecture provides many resources, each algorithm uses just a few of
them. In Table 12, we calculated the resource that the algorithms would actually use when
executing according to the information in the Appendix figures and Table 11. However,
these results were approximate, because, the modules in Others were tiny and we could
not obtain the detailed ALUT numbers. For these resources, our calculation method was:

(The number of modules that the algorithm occupies in Others/the total number of
modules in Others) * the total number of ALUT of Others.

Table 12. ALUT number occupied by algorithms.

MD5 SHA1 SHA224/256 SHA384/512 SM3

A_high_com 1419 1626 1419 1419 1689
A_low_com 970 1179 970 970 1248
B_high_com 1397 1605 1397 1397 1637
B_low_com 922 1135 922 922 1167

In this paper, we define resource utilization rate as (resources actually occupied by
algorithm when executing)/(total resources provided by architecture) * 100%. If the uti-
lization rate is low, it means that the algorithm only uses a small fraction when executing,
although the architecture provides more resources, which means the degree of reconfigura-
tion of the architecture is low, and potential waste exists. We adopted the A_high + A_low
+ B_high + B_low scheme and calculated the ALUT utilization rate of the compression
module. The results are shown in Table 13.

Table 13. ALUT utilization rate of our design.

MD5 SHA1 SHA224/256 SHA384/512 SM3

ALUT utilization rate 81.14% 95.55% 82.85% 82.85% 98.95%

In Reference [20], the designer did not provide information about the resources the
inner modules occupied, so we could not calculate the ALUT utilization rate exactly.
However, as we said before in Section 3.1, because the design in Reference [20] just uses
the low 32 bits of all computational resources when executing MD5, SHA1, SHA224/256
or SM3, even though the word width of all computational resources are 64 bits, at least
50% of the resources are unused. This means that the ALUT utilization rate is lower than
50% when executing these algorithms. For SHA384/512, it uses the whole 64 bits, and the
ALUT utilization rate is only related to the architecture of the design. Although we could
do an evaluation due to the limited data, we believe our utilization rate would be higher
from the multiplexing degree.

The Register utilization rate mainly refers to the input/output register utilization. We
could calculate it directly, in accordance with the algorithm and architecture information,
and the results are shown in Table 14.

Table 14. Register utilization rates of our design and of the design in Reference [20].

MD5 SHA1 SHA224/256 SHA384/512 SM3

Our design 80% 100% 80% 80% 80%
Design in ref. [20] 25% 31.25% 50% 100% 50%



Electronics 2023, 12, 2872 17 of 24

It can be seen from the above data that both the utilization rate of ALUT and Register
of our design were not lower than 80%, while the utilization rate in Reference [20] was not
higher than 50%, except for the SHA384/512 algorithm. The main reason why our design
could achieve a higher utilization rate was our use of the symmetry of the SM3 and SHA2
algorithms to design MD5 and SHA1, so the resources occupied by the SM3 and SHA2
algorithms were fully utilized, greatly improving the multiplexing degree. Furthermore, we
eliminated the resource waste introduced by word width. Therefore, the ALUT utilization
rate in our design was very high, and especially so for the SM3 algorithm, for which it was
as high as 98.95%. In regard to Register utilization rate, our architecture failed to reach
100%. That is because, to enhance the parallelism of SHA1, we set two additional registers.
Although other algorithms can also use these two registers, it is not necessary. The essential
reason for the high resource utilization rate was that we turned the problem of redundant
resources into exploiting greater parallelism, which not only reduced the resource waste,
but also greatly improved throughput.

4.3. Throughput

In Section 4.2, we mentioned that the throughput rate was greatly improved due to
the greater parallelism. Figure 13 depicts the throughput improvement rate of the design
in Reference [20] and of our design, compared with the individual implementation scheme.

Figure 13 indicates that the throughput improvement rate generated by our design
was pretty evident. The throughput improvement of our architecture reached 56.87–226%,
compared with the individual implementation, except for SHA384/512, let alone the design
in Reference [20]. The design in Reference [20] is not a dedicated architecture, therefore
the throughput rate was lower than that of the individual implementation. Although our
design is also not dedicated, we reused computational resources as much as possible
to enhance the parallelism of the architecture processing algorithms. For example, our
architecture can support four sets of MD5 messages or four sets of SHA1 messages or two
sets of SHA224/256 messages or two sets of SM3 messages or one set of SHA384/512
message. So our throughput was much higher than that of the design in Reference [20] and
of the individual implementation. This also explains the reason why the improvement effect
of SHA384/512 was not satisfactory, while for other algorithms it was very significant.
Please note that our improvement ratio was based on the individual implementation
scheme rather than the design in Reference [20].

Figure 13. Throughput rate improvement ratio [20].

Computational capability relates to the number of computational resources, so the
throughput rate alone cannot objectively evaluate a design. Therefore, we used the through-
put rate per resource to measure performance, and the results are shown in Figure 14.



Electronics 2023, 12, 2872 18 of 24

(a) (b)

Figure 14. (a) Throughput rate per ALUT. (b) Throughput rate per Register [20,24].

It can be seen that the throughput rate per resource of our design was evidently
much higher than those of the other schemes, except SHA384/512. We calculated the
improvement of throughput rate per resource of our design compared with other schemes,
and the result is shown in Table 15.

The design in Reference [24] had higher resource utilization than ours when executing
the SHA384/512 algorithm because it supports fewer algorithms than ours. It is easy to
understand that when an architecture supports fewer algorithms, it is closer to a dedicated
circuit and, thus, has a higher throughput rate per unit resource. For other algorithms, our
architecture achieved better results because our architecture is designed and optimized
at both the structural and module levels, so reached up to 5.5 times that of the individual
implementation and 2.65 times that of Reference [20] in throughput rate improvement per
resource. As we split our architecture into two layers and two sides, each part can run
independently and so every computational resource can be fully used without wastage.
The architecture had greater parallelism capability, so the improvement was more evident,
especially for MD5 and SHA1. For SHA384/512, all the four parts were used cooperatively
and, hence, it could not obtain greater parallelism, so the improvement was limited.

Table 15. Register utilization rate.

Comparison Scheme MD5 SHA1 SHA224/256 SHA384/512 SM3

ALUT Reg ALUT Reg ALUT Reg ALUT Reg ALUT Reg
Ref. [24] - - 1.54 1.64 0.25 0.31 −0.36 −0.34 - -
Ref. [20] 2.65 2.14 2.65 2.14 0.798 0.55 0.09 −0.05 0.94 0.67

individually 3.37 5.5 2.39 4.06 1.1 2.13 0.14 0.7 3.36 5.5

4.4. Array Performance

Maximum parallelism requires three array mapping situations in one row to validate
parallelism and mapping principles, as seen in Figure 15. Other mapping cases are similar
to this. Since the row structure we designed can meet the resource requirements of all
algorithms, and the operator can work separately or cooperatively, all algorithms can be
mapped successfully without any operator waste, according to the mapping principle we
proposed in Section 3.4, even under the condition of maximum parallelism.



Electronics 2023, 12, 2872 19 of 24

Figure 15. Mapping schemes.

In fact, the pipelined implementation not only results in massive control difficulties
and interconnection overheads, but also reduces computing efficiency compared with
the non-pipelined implementation, due to the setup and emptying time. Assuming k-
level computing stages exist and n computing tasks, the processing time of non-pipelined
implementation is:

Time_nonpipeline =
{
bn/kc ∗ k = n n%k == 0

(bn/kc ∗ k + 1) ∗ k n%k! = 0
(4)

The processing time of pipelined implementation is:

Time_pipeline = n + k− 1 (5)

Then

Time_pipeline− Time_nonpipeline

=

{
n + k− 1− n = k− 1, n%k == 0

n + k− 1− (bn/kc ∗ k + 1) ∗ k = n− bn/kc ∗ k− 1, n%k! = 0
(6)

When n%k! = 0, n − bn/kc ∗ k ∈ [1, k − 1], then n − bn/kc ∗ k − 1 ∈ [0, k − 2] and
because k− 1 > 0, Time_pipeline− Time_nonpipeline ≥ 0 where the equation sign is true
when n−1%k == 0. Therefore, the processing time with the non-pipelined implementation
is shorter. When dealing with the hash algorithms, k = 64 or k = 80. The function curve of
the processing time with the number of tasks is shown in Figure 16.

Figure 16. Processing time curve.



Electronics 2023, 12, 2872 20 of 24

The curve when k = 80 was similar to k = 64. The difference between the two imple-
mentation approaches of processing time was due tpo the fact that, when adopting the
non-pipelined implementation, the computational resources can be put into work immedi-
ately once the computing tasks arrive without waiting for the setup and emptying latency.
So, the design approach adopted in our architecture was more efficient.

After the array is designed, the computing capability of the array is enhanced. In this
section, we take a 4 × 5 array as an example. Table 16 gives the maximum throughput rate
of a single algorithm. When multiple algorithms run in parallel, the maximum throughput
rate can be calculated using Equation (3). When the array provides more computational
resources, the computing capability is more powerful.

Table 16. Array computational capability.

Algorithm Max Throughput Rate
(Gbpsz)

Average Time Processing
One Message (Cycle)

MD5 34.87 1.6
SHA1 27.9 2

SHA224/256 13.73 4
SHA384/512 11.16 10

SM3 13.73 4

5. Summary

As an important component of information security, improving the processing speed
of hashing algorithms to more efficiently deal with booming data scales and rapid data
request speeds is a problem that must be solved in modern technology development. To
address the problems of imbalance between performance, flexibility, and resources in the
existing research on hash function hardware acceleration, we propose a new reconfigurable
architecture in this paper. First, we designed hardware architecture based on the characters
of the left–right symmetry of SM3 and SHA2, which also supports MD5 and SHA1 on
both sides. Secondly, to eliminate the waste of resources due to the different word widths
among algorithms, we divided the architecture into two layers to handle high and low data,
respectively. Lastly, we decoupled the left and right sides of the architecture, generating
four operators, and analyzed the array design method when considering parallelism. The
experimental results showed that our design not only supports more algorithms, but also
has a throughput rate improvement of about 56.87–226% and a throughput rate per resource
improvement of up to 5.5 times. The resource utilization when executing algorithms can
reach 80% or above. In future work, we will optimize the timing of our design and explore
new methods to generate operators automatically.

Author Contributions: Conceptualization, W.F.; methodology, W.F.; validation, Y.G.; investigation,
X.W. and X.Q.; data curation, W.F.; writing—original draft preparation, X.Z.; supervision, X.Q. and
Y.G.; project administration, Q.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This work was supported by the National Key R&D Program of China (Grant
Nos. 2022YFB4500404).

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the reviewers for their valuable comments and suggestions.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have influenced the work reported in this paper.

Appendix A

In this section, we give the data flow diagram when executing the four algorithms.



Electronics 2023, 12, 2872 21 of 24

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

A1_n B1_n C1_n D1_n E1_n A2_n B2_n C2_n D2_n E2_n

Logic Adder

Adder

Adder

shift

Adder

Logic Adder

Adder

Adder

shift

Adder

P0

Ti

<<<7

+

<<<
<<<

Tj

Wj

Wj

Figure A1. MD 5_flow.

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

A1_n B1_n C1_n D1_n E1_n A2_n B2_n C2_n D2_n E2_n

Logic Adder

Adder

Adder

shift

Adder

Logic Adder

Adder

Adder

shift

Adder

P0

Ti

<<<7

+

<<<
<<<

Tj

Wj

Wj

Figure A2. SHA1_flow.



Electronics 2023, 12, 2872 22 of 24

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

A1_n B1_n C1_n D1_n E1_n A2_n B2_n C2_n D2_n E2_n

Logic Adder

Adder

Adder

shift

Adder

Logic Adder

Adder

Adder

shift

Adder

P0

Ti

<<<7

+

<<<
<<<

Tj

Wj

Wj

Figure A3. SHA2_flow.

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2

A1_n B1_n C1_n D1_n E1_n A2_n B2_n C2_n D2_n E2_n

Logic Adder

Adder

Adder

shift

Adder

Logic Adder

Adder

Adder

shift

Adder

P0

Ti

<<<7

+

<<<
<<<

Tj

Wj

Wj

Figure A4. SM3_flow.



Electronics 2023, 12, 2872 23 of 24

References
1. Anwar, M.R.; Apriani, D.; Adianita, I.R. Hash Algorithm in Verification of Certificate Data Integrity and Security. Aptisi Trans.

Technopreneurship 2021, 3, 181–188. [CrossRef]
2. Al-Odat, Z.A.; Ali, M.; Abbas, A. Secure hash algorithms and the corresponding FPGA optimization techniques. ACM Comput.

Surv. 2020, 53, 1–36. [CrossRef]
3. Navamani, T.M. A review on cryptocurrencies security. J. Appl. Secur. Res. 2021, 18, 49–69. [CrossRef]
4. Lai, Q.Q.;Yang, B.;Chen, Y. Novel construction of identity-based hash proof system based on lattices. J. Softw. 2018, 29, 1880–1892.
5. Wu, G.C.; Deng, Z.G.; Baleanu, D. New variable-order fractional chaotic systems for fast image encryption. Chaos Interdiscip. J.

Nonlinear Sci. 2019, 29, 083103. [CrossRef] [PubMed]
6. Ma, J.; Huang, X.; Xu, J. Public Accountable Redactable Signature Scheme. J. Electron. Inf. Technol. 2020, 42, 1079–1086.
7. Abrar, A.; Abdul, W.; Ghouzali, S. Secure image authentication using watermarking and blockchain. Intell. Autom. Soft Comput.

2021, 28, 577–591. [CrossRef]
8. Xia, Q.; Dou, W.S.; Guo, K.W.; Liang, G.; Zuo, C.; Zhang, F.G. Survey on blockchain consensus protocol. J. Softw. 2021, 32, 277–299.
9. Wang, L.P.; Guan, Z.; Li, Q.S.; Chen, Z.; Hu, M.S. Survey on Blockchain-based Security Services. J. Softw. 2023, 34, 1–32.
10. Li, B.; Chu, D.; Lin, J. The Weakest Link of Certificate Transparency: Exploring the TLS/HTTPS Configurations of Third-Party

Monitors. In Proceedings of the 2019 18th IEEE International Conference on Trust, Security and Privacy in Computing and
Communications on Big Data Science and Engineering (TrustCom/BigDataSE), Rotorua, New Zealand, 5 August 2019.

11. Chen, S.Z.; Kang, S.L. A tutorial on 5G and the progress in China. Front. Inf. Technol. Electron. Eng. 2018, 19, 309–322. [CrossRef]
12. Kumar, J.; Kumar, M.; Pandey, D.K. Encryption and Authentication of Data Using the IPSEC Protocol. In Proceedings of the Fourth

International Conference on Microelectronics, Computing and Communication Systems: MCCS 2019, Ranchi, India, 11 May 2019;
pp. 855–862.

13. Yildiz, R.O.; Yilmazer-Metin, A. Design and Implementation of TLS Accelerator. In Proceedings of the 2022 IEEE 15th Dallas
Circuit and System Conference, Dallas, TX, USA, 17 June 2022.

14. Wang, Z.D.; Li, N. An Optimized MD5 Algorithm and Hardware Implementation. J. Hunan Univ. Natural Sci.2022, 49, 106–110.
15. Fang, Y.; Cong, L.H.; Deng, J.Q.; Chen, Z.Y. Fast Implementation of SM3 algorithm based on FPGA. Comput. Appl. Softw. 2020, 37,

259–262.
16. Miao, J. Hardware Design and Implementation of Secure Hash Algorithms SM3/SHA256/SHA3. Master’s Thesis, Tsinghua

University, Beijing, China, 2018.
17. Hannig, F.; Derrien, S. Special Issue on Applied Reconfigurable Computing. J. Signal Process. Syst. 2022,94, 847–848. [CrossRef]
18. Yuan, H. Research on Key Technologies of Dynamic Reconfigurable Cryptographic Chip. Ph.D. Thesis, Tsinghua University,

Beijing, China, 2019.
19. Li, P.J.; Zhang, L.; Xia, Y.F.; Xu, L.M. Architecture design of re-configurable convolutional neural network on software definition.

Chin. J. Netw. Inf. Secur. 2021, 7, 29–36.
20. Liu, H.; Huang, K.; Xiu, S.W.; Li, Y.J.; Yan, X.L. A reconfigurable hardware architecture design for multiple Hash algorithms.

Comput. Eng. Sci. 2016, 38, 411–417.
21. Xi, S.X.; Zhou, Q.L.; Si, X.M.; Li, B.; Tan, J. Optimized implementation of SHA series functions on reconfigurable computing

platform. Appl. Res. Comput. 2018, 35, 2172–2175.
22. Yang, X.H.; Dai, Z.B. Researching and implementation of reconfigurable Hash chip based on FPGA. J. Syst. Eng. Electron. 2007, 18,

183–187.
23. Zhu, N.L.; Dai, Z.B.; Zhang, L.Z.; Zhan, F. Design and Implementation of Hardware Reconfiguration for SM3 and SHA-2 Hash

Function. Microelectronics 2015, 45, 777–780+784.
24. Li, M.; Xu, J.F.; Dai, Z.B.; Yang, Y.H. Design and Implementation of Reconfigurable Hash Function Cryptographic Chip. Comput.

Eng. 2010,36, 131–132+136.
25. Liu, L.B.; Wang, B. Anole: A Highly Efficient Dynamically Reconfigurable Crypto-Processor for Symmetric-Key Algorithms. IEEE

Trans. Comput. Aided Des. Integr. Circuits Syst. 2018, 37, 3081–3094. [CrossRef]
26. Du, Y.R.; Li, W.; Dai, Z.B. PVHArray: A Pipeline Variable Hierarchical Reconfigurable Cryptographic Logic Array Structure. Acta

Electron. Sin. 2020, 48, 781–789.
27. Salim, S.I.M.; Soo, Y.; Samsudin, S.I. Application Specific Instruction Set Processor (ASIP) Design in an 8-bit Softcore Microcontroller.

J. Telecommun. Electron. Comput. Eng. 2018, 10, 57–61.
28. Eisenkraemer, G.H.; Moraes, F.G.; Oliveira, L.L.D. Lightweight Cryptographic Instruction Set Extension on Xtensa Processor.

In Proceedings of the 2020 IEEE International Symposium on Circuits and Systems, Seville, Spain, 12 October 2020.
29. Yin, J.; Xu, Z.; Fang, X. The design of reconfigurable instruction set processor based on ARM architecture. In Proceedings of the

Advanced Computer Architecture: 12th Conference, ACA 2018, Yingkou, China, 10 August 2018; pp. 66–78.
30. Wang, S.S.; Xiao, C.L.; Liu, W.J. Parallel Enumeration of Custom Instructions Based on Multidepth Graph Partitioning. IEEE Embed.

Syst. Lett. 2018, 11, 1–4. [CrossRef]
31. Wei, S.J.; Li, Z.S.; Zhu, J.F.; Liu, L.B. Reconfigurable computing: Toward software defined chips. Sci. Sin. Informationis 2020, 50,

1407–1426.
32. Hou, P.F. Research and Design of Cipher Specific Instruction Extension on RISC-V Processor. Master’s Thesis, PLA Information

Engineering University, Zhengzhou, China, 20 June 2018.

http://doi.org/10.34306/att.v3i2.212
http://dx.doi.org/10.1145/3311724
http://dx.doi.org/10.1080/19361610.2021.1933322
http://dx.doi.org/10.1063/1.5096645
http://www.ncbi.nlm.nih.gov/pubmed/31472503
http://dx.doi.org/10.32604/iasc.2021.016382
http://dx.doi.org/10.1631/FITEE.1800070
http://dx.doi.org/10.1007/s11265-022-01806-y
http://dx.doi.org/10.1109/TCAD.2018.2801229
http://dx.doi.org/10.1109/LES.2018.2812784


Electronics 2023, 12, 2872 24 of 24

33. Wu, D.; Xu, T.G.; Wang, Z.Y.; Liu, J.W. Design of SM3 Hardware Implementation with Integrated Message Padding. J. Wuhan Univ.
Nat. Sci. Ed. 2019, 65, 218–222.

34. Ma, Z.G.; Li, T.T.; Cao, X.X. Design Methodology of SHA2 Hardware Accelerator. Acta Sci. Nat. Univ. Pekin. 2022, 58, 1007–1014.
35. Ji, Z.X.; Yang, Z.; Sun, Y.; Shan, Y.W. GPU High Speed Implementation of SHA1 in Big Data Environment. Netinfo Secur. 2020, 20,

75–82.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


	Introduction
	Background
	Related Work
	Introduction of the Algorithm

	Reconfiguration Architecture
	Reconfiguration Analysis
	Structural Level Design
	Compression Module Design
	Data Extension Module Design

	Module Design
	Array Design

	Experiments
	Area Overhead
	Resource Utilization Rate
	Throughput
	Array Performance

	Summary
	Appendix A
	References

