
Citation: Rehman, A.; Saba, T.;

Mujahid, M.; Alamri, F.S.; ElHakim,

N. Parkinson’s Disease Detection

Using Hybrid LSTM-GRU Deep

Learning Model. Electronics 2023, 12,

2856. https://doi.org/10.3390/

electronics12132856

Academic Editors: Andrea Prati,

Luis Javier García Villalba

and Vincent A. Cicirello

Received: 31 May 2023

Revised: 23 June 2023

Accepted: 26 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Parkinson’s Disease Detection Using Hybrid LSTM-GRU Deep
Learning Model
Amjad Rehman 1, , Tanzila Saba 1 , Muhammad Mujahid 2, Faten S. Alamri 3,* and Narmine ElHakim 1

1 Artificial Intelligence & Data Analytics Lab CCIS, Prince Sultan University, Riyadh 11586, Saudi Arabia;
arkhan@psu.edu.sa (A.R.); drstanzila@gmail.com (T.S.); nhakim@psu.edu.sa (N.E.)

2 Department of Computer Science, Khwaja Fareed University of Engineering and Information Technology,
Rahim Yar Khan 64200, Pakistan; mujahidws890@gmail.com

3 Department of Mathematical Sciences, College of Science, Princess Nourah bint Abdulrahman University,
P.O. Box 84428, Riyadh 11671, Saudi Arabia

* Correspondence: fsalamri@pnu.edu.sa

Abstract: Parkinson’s disease is the second-most common cause of death and disability as well
as the most prevalent neurological disorder. In the last 15 years, the number of cases of PD has
doubled. The accurate detection of PD in the early stages is one of the most challenging tasks to
ensure individuals can continue to live with as little interference as possible. Yet there are not enough
trained neurologists around the world to detect Parkinson’s disease in its early stages. Machine
learning methods based on Artificial intelligence have acquired a lot of popularity over the past
few decades in medical disease detection. However, these methods do not provide an accurate and
timely diagnosis. The overall detection accuracy of machine learning-related models is inadequate.
This study collected data from 31 male and female patients, including 195 voices. Approximately
six recordings were created per patient, with the length of each recording extending from 1 to 36 s.
These voices were recorded in a soundproof studio using an Industrial Acoustics Company (IAC)
AKG-C420 head-mounted microphone. The data set was collected to investigate the diagnostic
significance of speech and voice abnormalities caused by Parkinson’s disease. An imbalanced dataset
is the main contributor of model overfitting and generalization errors, and hence one class has the
majority of samples and the other class has minority samples. This problem is addressed in this study
by utilizing the three sampling techniques. After balancing the datasets, each class has the same
number of samples, which has proven valuable in improving the model’s performance and reducing
the overfitting problem. Four performance metrics such as accuracy, precision, recall and f1 score are
used to evaluate the effectiveness of the proposed hybrid model. Experiments demonstrated that
the proposed model achieved 100% accuracy, recall and f1 score using the balanced dataset with the
random oversampling technique and 100% precision, 97% recall, 99% AUC score and 91% f1 score
with the SMOTE technique.

Keywords: Parkinson’s disease; deep learning; LSTM ; GRU; SMOTE; hybrid model

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder that worsens over time,
affected by the premature death of dopaminergic neurons in the substantia nigral region [1].
This degeneration initially occurs in the dorsal striatum and progresses toward the ventral
region because of the disease spread. The putamen and caudate nucleus, which make up
the striatum, is responsible for regulating various motor and cognitive functions. In PD,
the dopamine metabolism produces a high level of reactive-oxygen species, leading to an
increased iron content that can damage cell components and impair neuronal function [2].
The impairment of dopaminergic pathways is associated with PD symptoms, with the
depletion of dopaminergic neurons causing a range of motor and non-motor symptoms.
Motor symptoms include tremors, stiffness, slow movement, and difficulty walking, while
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depression, psychosis, accidents, genitourinary issues, and sleep disorders are examples of
non-motor symptoms [3]. When 60% of dopaminergic neurons are present, these symptoms
manifest [4], and they correlate with aging factors [5], contributing to a decreased quality
of life.

According to records from the World Health Organization (WHO), approximately
10 million people worldwide have been affected by PD. Unfortunately, many patients are
not diagnosed in the early stages of the disease, leading to an untreatable permanent neu-
rological disorder. In later stages, PD becomes incurable and often results in death. In 2015,
PD affected around 6.2 million people and caused 117,400 deaths globally. Compounding
the issue is the fact that current tests for the disease are expensive and not highly accurate.
These concerning facts highlight the urgent need for a low-cost, efficient and accurate
diagnostic method for PD in its early stages, allowing for the timely treatment to potentially
cure patients before the disease becomes incurable [6].

As of now, there is no definitive way to diagnose PD [7]. However, doctors use a
combination of symptoms and diagnostic tests to identify the disease. Researchers have
explored several biomarkers to detect PD early to slow down the disease’s progression.
While current therapies for PD can improve symptoms, they do not slow or stop the
progression of the disease. Studies have revealed that PD can begin earlier than motor
symptoms develop, and about 90% of PD patients experience voice disorders [8]. Therefore,
researchers are searching for better ways to identify non-motor symptoms that develop
earlier and have the potential to delay the progression. However, diagnosing PD based
solely on qualitative criteria can be challenging, as other diseases may present similar
symptoms. Nevertheless, execution time and algorithm complexity are critical factors that
require careful consideration in many medical applications and image analysis [9–13].

The field of medical image analysis has been revolutionized by the emergence of
Deep Learning (DL) neural network techniques [14]. DL has been employed for a variety
of tasks including segmentation, registration, lesion detection, disease classification, and
shape modeling [15]. DL neural networks are particularly well-suited to extract high
level-features that improve accuracy in disease classification due to their exceptional
generalization capacity. The development of Convolutional Neural Networks (CNNs) has
also been instrumental in advancing the field of medical image analysis. CNN has attained
impressive results in numerous medical imaging applications [16].

The Parkinson’s disease dataset has class imbalance issues. These issues can be ad-
dressed through sampling techniques, including random oversampling, undersampling,
and SMOTE, or by utilizing ensemble models. Due to insufficient instances of the mi-
nority class, the imbalanced classification has the issue that a model cannot learn the
decision boundary efficiently. It is possible to oversample a minority group. This can be
accomplished through the straightforward replication of minority-class samples in the
data (training) prior to model fitting. Although this can equalize the class distribution, it
does not add any new data to the model [17]. The undersampling technique equalized the
number of instances in the minority class to those in the majority class. Some information
is mismatched in the process, which may be problematic for the resultant DL models [18].

Traditionally, Parkinson’s disease can be detected by examining the patient’s neuro-
logical history and analyzing their movement in different scenarios. Parkinson’s disease
(PD) is notoriously difficult to diagnose due to the absence of a reliable laboratory test,
especially in its early stages, when motor symptoms are modest. Patients are required to
attend the clinic on a regular basis in order to track the disease’s progression over time.
Voice recordings are an effective non-invasive diagnostic tool because PD patients have
distinct vocal features. Our proposed method is able to detect Parkinson’s disease with
high accuracy and is cost-effective. Moreover, it provides early Parkinson’s disease detec-
tion, which is extremely beneficial for enhancing the individual’s quality-of-life. Existing
methods relied primarily on machine learning models that could only analyze inputs from
sensor devices. Some of these methods were used to detect the disease, even with low
accuracy and an inefficient approach. However, our proposed model, which leverages
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preprocessing and oversampling techniques, is more accurate, efficient, and cost-effective
than existing methods. The main contribution for this study are as follows:

• To balance the highly imbalanced Parkinson’s disease dataset, this study adopted
undersampling and oversampling techniques to accurately detect the disease in its
early stages. Moreover, with these techniques, the problem of model overfitting is
solved and performance increases.

• A hybrid LSTM-GRU model is proposed that automatically detects the PD in time. In
addition, the performance of single models and hybrid models is also investigated
and compared to evaluate the proposed model results.

• The true positive rate (TPR) and the false positive rate (FPR) are calculated and
displayed against one another on the ROC curve for different threshold values to
assess the performance of hybrid models.

• The comparison of different sampling techniques with hybrid models and other state-
of-the-art studies is explored.

This paper is divided into five sections to organize the content. Section 2 offers a
thorough review of the relevant literature. Section 3 provides the proposed methodology.
Section 4 demonstrates the expermental results of the proposed and other methods and
their discussions. Section 5 provide the conclusion of this paper.

2. Literature Review

Multiple researchers used Deep Learning (DL) methods to diagnose Parkinson’s
Disease (PD). Diagnosis techniques include analyzing voice and brain scan images, as well
as drawings such as meander patterns, spirals, waves, etc. [19]. Due to its high accuracy in
detecting PD in its early stages, DL is now commonly used for PD prediction in the medical
imaging field.

A deep learning technique that uses CNN and LSTM models was used by Zhao
et al. [20]. They used the gait data to identify Parkinson’s disease (PD) and modified the
gait signals to correctly transmit them to CNN architecture. In their investigation, the
proposed current approach was contrasted with other models and earlier research. In
terms of accuracy and other measures, they attained outstanding results. Recently, vocal
analysis techniques have attracted the attention of many researchers who seek to construct
predictive telediagnosis and telemonitoring frameworks for identifying PD. A wealth of
voice signal data sources were readily available, and were collected from conversational
exercises involving healthy individuals and PD patients.

A study used the SMOTE technique on 195 voice recordings to artificially expand
the size of the dataset. Their analysis utilized data sampling through SMOTE to create a
balanced dataset by oversampling the minority class. The improved dataset was then used
for classification purposes. The objective of oversampling was to generate a new dataset
with a similar distribution of classes to the original, but with a greater proportion of samples
from minority classes. LSTM improved disease classification into distinct classes [21].
Kemal Polat utilized the oversamling technique for the classification of Parkinson’s disease
from voice signals. Sampling can produce noise in a dataset if the chosen neighbours do
not closely reflect the true underlying distribution. They used 50% of the data for training
and testing but achieved a low 94.8% accuracy [22].

The early detection of PD was crucial for its prevention or slowing its progression.
Voice defects were a significant early symptom of PD, and various techniques have been
used to detect PD early, such as computer vision and speech recognition [23]. There was
no single unique symptom for PD, and the signs vary from person to person. Tremors,
stiffness and slow movement are the primary signs of PD. There was no particular cure
for PD, but the impact can be reduced through early detection and the right medication.
Grover et al. [24] developed a deep neural network for the prediction of Parkinson’s disease
from 42 preprocessed voice recordings. They proved that their approach attained better
accuracy than previous accuracies, but in 2018, 81% accuracy is very low.
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Quan et al. [25] employed a Deep learning bi-directional LSTM model that consists
of two LSTM layers, units 20 and 200, respectively. Adagrad had a 0.1 learning rate and
58 input dimensions. The authors achieved 75% accuracy and an 80% F1 score. A 13-layer
CNN deep model was utilized by Oh et al. [26] for Parkinson’s disease detection through
voice signals. They used a 20-patient dataset for the experimentation. Their model made
361 mistakes in the prediction process and achieved 88% accuracy. Wodzinski et al. [27]
used voice signals to predict PD using the LSTM model. The dataset was collected from a
hundred patients (fifty healthy and fifty unhealthy). They processed the dataset, applied a
deep model, and achieved 91% accuracy.

The authors of study [28] suggested a novel classification method for PD and control
individuals based on dysphonia. They adopted pitch period entropy as a reliable tool of
dysphonia and obtained data from 31 individuals, involving 23 with Parkinson’s disease
and 8 healthy people that generated 195 sustained vowel-phonations. Their approach
comprised three steps: Feature calculation, Preprocessing, Feature selection, and Classi-
fication with a linear kernel. The proposed model was accurate to an accuracy level of
91.4%. Quan et al. [29] employed DL-based algorithms for the detection of PD. The authors
compared the algorithms with and without optimization approaches. They also used k-fold
cross-validation and attained better accuracy. A study [30] utilized an artificial neural
network to detect PD. The dataset used for the study was obtained from the UCI repository.
The study used 45 input properties and one output for classification, with the MATLAB
tool employed for implementation. The proposed model demonstrated high accuracy,
achieving 94.93% in distinguishing healthy subjects from those with PD.

A hybrid CNN-LSTM model was used in a study [31] to predict Parkinson’s disease
from voice signals. CNN was used to extract vital information from the data, while LSTM
was employed to make predictions. Their proposed hybrid procedure outperformed single-
model approaches. Ma et al. [32] published research with the primary objective of detecting
Parkinson’s disease from the Parkinson’s disease dataset using DL, feature extraction, and
balancing the dataset. The authors identified PD with an overall accuracy of 97%.

The performance of the aforementioned work suggests that single models do not
provide accurate results in comparison to ensemble DL models for disease detection.
Moreover, the mentioned results for Parkinson’s disease detection are low, and their efficacy
entails further research. Therefore, we proposed a deep learning-based hybrid model with
sampling techniques to balance the imbalanced dataset classes, increase generalization
performance, and improve the overall performance for Parkinson’s disease detection.
Table 1 shows the summary of the literature review.

State-of-the-Art DL Models

Long-short-term memory, also known as LSTM, is a type of artificial neural network
(ANN) that is utilised in the domains of deep learning (DL) and artificial intelligence (AI).
Because there may be gaps of an undetermined length between significant occurrences in a
time-series, LSTM networks are ideally suited for the task of classification, and generating
predictions based on time series data. The problem of vanishing gradients, which can arise
during the training of conventional RNNs, was the impetus for the development of LSTMs.
It is comprised of three gates: an “input gate”, a “forget gate” and an “output gate” [33].

The performance of gated recurrent unit (GRU) RNNs is comparable to that of LSTMs.
Similar to the LSTM, the GRU consists of two gates: the reset gate and the update gate. The
GRU architecture does not include an output gate. It employs a smaller set of parameters.
This model is preferable to LSTM in terms of the efficiency and training speed. The reset
gate determines ’how much of the previous hidden state’ is to be ignored, whereas the
update gate determines ’how much of the current input is to be used’ to refresh the hidden
state. Both gates have some connection to the hidden state [34].

BI-Directional LSTM is an advanced variant of LSTM that requires significantly more
energy and training time. It is utilised most frequently for NLP tasks and prediction. The
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primary goal of BILSTM is that the input data moves in both directions, implying that this
model utilises information from both directions. BILSTM is a combination of two LSTMs.

Table 1. A summary of Literature review (Advantages and Drawbacks).

Methods Sampling Advantages Drawbacks
CNN+LSTM [20] - Early detection of Parkinson’s disease was es-

sential for its prevention. DL techniques have
been used to detect PD in limited time.

There is no particular cure for PD, but the
impact can be reduced through early de-
tection and the right medication.

DNN [24] - A deep neural network with 42 preprocessed
voice recordings was used for the prediction
of Parkinson’s disease.

Their approach attained only 81% accu-
racy and does not used any augmentation
technique.

BiLSTM [25] - They utilized dynamic features of speech
for Parkinson’s disease detection using
BiLSTM model.

The results achieved are not very accurate.

CNN [26] - CNN with a 13-layer architecture was devel-
oped by the authors to accurately predict the
disease in 40 patients. Moreover, their ap-
proach was implemented for clinical practice.

The results were not accurate, and the
13-layer design was very expensive.

RNN [21] SMOTE The authors employed three DL methods for
the prediction of Parkinson’s disease with ex-
tensive preprocessing techniques. An over-
sampling SMOTE technique was deployed to
enhance the model results.

They do not describe whether they used
oversampling on the whole dataset or only
for training.

CNN-LSTM [31] - They used CNN for feature extraction and
LSTM for prediction. The main objective of this
study is to detect Parkinson’s disease.

Authors first used CNN model to extract
relevant features from the voices and then
employed LSTM for prediction that leads
to high computation cost.

CNN [32] Oversampling The authors utilised explainable DL architec-
ture for disease detection in PD datasets. In
order to improve the overall detection results,
they also increased the number of data sam-
ples by utilising oversampling methods.

Few features are selected from the entire
dataset, resulting in an overfitting issue.

ResNet [27] Augmentation This study used a modified version of the
ResNet model to predict disease using the PD
dataset. The authors used augmentation to bal-
ance the class samples because the dataset only
comprises small samples of audio recordings.

This study utilized augmentation on test
set to increase the results but score is not
good for the accurate detection of Parkin-
son’s disease.

Proposed Method Random over-
sampling
and SMOTE

The authors employed various Dl models with
extensive preprocessing, scaling and sampling
techniques that enhanced the overall results.
The proposed LSTM+GRU model attained su-
perior results compared to previous models. It
detected Parkinson’s disease in its early stage
with the help of hybrid Dl models.

This study has a limited dataset, which is
a drawback and leaves space for others to
do more research.

3. Proposed Methodology

The proposed methodology includes the dataset description, feature extraction, sam-
pling methods, preprocessing and scaling, data splitting, proposed model and evaluation
metrics. The proposed methodology for Parkinson’s disease detection from voice signals is
presented in Figure 1.
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Figure 1. Work Flow of Proposed Methodology.

3.1. Parkinson’s Disease Dataset

This study collected data from 31 male and female patients, including 195 voice
signals (recordings) from these individuals. Out of 31, 23 patients were diagnosed with
Parkinson’s disease, while 8 were declared healthy. Approximately six recordings was
created per patient, with the length of each recording extending from 1 to 36 s. The main
intention of utilizing these data is to differentiate between healthy individuals and PD.
These voices were captured with an Industrial Acoustics Company (IAC) AKG-C420
Head-mounted Microphone in a sound-proof studio. In general, the microphone was eight
centimeters away from the patient’s mouth. The data set was acquired to explore the
diagnostic significance of the Parkinson’s disease effects on speech and voice abnormalities.
The dataset may be utilized to explore the impacts of Parkinson’s disease (PD) on the voice
and the diagnostic value of vocal symptoms (VS). A valid dataset for analysis is generated
by utilizing a large number of patients at different stages of the disease. The first column in
the dataset indicates the names of patients. Table 2 shows the dataset details.

3.2. Extract Features and Sampling Methods

All features except “status” are selected for Parkinson’s disease detection; status is
used to distinguish between healthy and PD-affected individuals. Supervised machine
learning models are used to train the labeled datasets and identify the classes clearly.
A dataset is imbalanced when one class has a higher number of samples than others.
Traditional machine learning techniques, which presume a uniform distribution of classes,
may struggle when the class imbalance is present. Training a model on a dataset with
unequal class distributions may result in poor performance for the inadequate classes.

This is because the model favors the larger majority class because it has more informa-
tion about them. This may result in a low recall rate for the majority class, as the model may
incorrectly designate the majority of minority class cases as negative. Various techniques,
including random oversampling, undersampling and SMOTE are used to address the class
imbalance issue. Random oversampling [35] is a technique for producing more evenly
distributed classes that involves randomly duplicating instances from the minority class.
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Table 2. Description of Dataset

Name and Features Description of Features

MDVP; Fo(Hz) [Average Vocal Fundamental Frequency]

MDVP; Fhi(Hz [Maximum Vocal Fundamental Frequency]

MDVP; Flo(Hz) [Minimum Vocal Fundamental Frequency]

MDVP; Jitter(%)
[Several Measures of Variation in Fundamental Frequency,
Kay pentax multi-dimensional voice program as (%)]

MDVP; Jitter(Abs)
[Kay pentax Multi-dimensional voice program Absolute
in Microseconds]

MDVP; RAP
[Kay pentax Multi-dimensional voice program relative
amplitude perturbation]

MDVP; PPQ
[Kay pentax Multi-dimensional voice program Five point
period perturbation]

Jitter; DDP [Difference of differences between Cycles and period]

MDVP; Shimmer,
[Kay pentax Multi-dimensional voice program
shimmer local]

MDVP; Shimmer(dB)
[Kay pentax Multi-dimensional voice program
shimmer in decibel’s]

Shimmer; APQ3
[Kay pentax Multi-dimensional voice program
amplitude perturbation
quotient with three points]

MDVP; APQ
[Eleven point Kay pentax Multi-dimensional
voice program amplitude
perturbation quotient]

Shimmer; APQ5
[Five point Kay pentax Multi-dimensional
voice program amplitude
perturbation quotient]

Shimmer; DDA
[Difference of differences between amplitude
and period]

NHR, HNR [Noise to harmonic ratio, Harmonic to noise ratio]

Status [Healthy (0) and Parkinson’s disease (1)]

RPDE [Re-currence period density Entropy]

DFA [Detrended fluctuation analysis]

spread1, spread2, PPE
[Pitch period Entropy, the fundamental frequency
can be quantified in three nonlinear ways].

The enhanced dataset is then utilized in the classification tasks. The aim of oversam-
pling is to create a new dataset with a similar distribution of classes to the original but
with a larger proportion of samples from minority classes. Based on existing minority-class
instances, SMOTE creates new Synthetic instances. The method chooses a member of a
minority class, then locates its k closest neighbors in the feature space. The feature vectors
of the selected instance and one of its neighbors are then linearly combined to form a new
instance. The linear combination quantity is chosen at random; however, it commonly
ranges from 0 to 1. Up until equilibrium is reached, this process is repeated. By creating new
minority class instances that are distinct from the existing minority class instances, popular
oversampling techniques such as SMOTE prevent overfitting. SMOTE [36] may introduce
noise into a dataset if the chosen neighbors do not closely reflect the true underlying distri-
bution. SMOTE may also perform poorly if instances of the minority class are distributed
over a broad area or if the feature space is highly dimensional. Figure 2a,b shows the
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Oversampling scatter and count plot using the SMOTE technique and Figure 3a,b shows
the Random oversampling scatter and Count plots for healthy and PD cases.

The oversampling must be evenly distributed to avoid overfitting, and the generaliz-
ability of the model must be confirmed on a different test set. In order to achieve a more
equal ratio of instances in the minority class to instances in the majority class, undersam-
pling involves eliminating a random subset of instances from the majority class. A model
that is more resistant to the class imbalance can then be trained using the resulting dataset.

The majority class instances are randomly chosen as a subset to be retained in the
dataset via random undersampling. Figure 4a,b shows the Random undersampling scatter
and Count plots. Undersampling can result in the loss of essential information which
may be helpful in building an effective model. This information loss may reduce the
model’s accuracy and ability to generalize new inputs. For small datasets, undersampling
is ineffective.

(a) SMOTE Oversampling Minority Scatter Plot (b) SMOTE Oversampling Count Plot

Figure 2. SMOTE Oversampling Scatter and Count Plot.

(a) Random Oversampling Minority Scatter Plot (b) Random Oversampling Count Plot

Figure 3. Random Oversampling Scatter and Count Plot.

Algorithm 1 demonstrates the proposed methodology for Parkinson’s disease de-
tection from voice signals. The proposed method takes a PD dataset as an input and
extracts relevant features, preprocesses them, splits the data, performs sampling on train-
ing, and then trains the model with corelative features and labels. Finally, authors check
the performance of the model on test data.
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(a) Random undersampling Minority Scatter Plot (b) Random undersampling Count Plot

Figure 4. Random undersampling Scatter and Count Plot.

Algorithm 1 Proposed Methodology for Parkinson’s disease detection
Input: Parkinson’s disease Dataset
Output: PD or Healthy
Start:

1: Load the Parkinson’s disease dataset
2: Extract relevant features and convert into relevant format
3: Preprocessing
←− Remove missing values
←− Feature scaling

4: Data splitting
←− Training(80%) and Testing(20%)

5: Perform sampling on training
←− Random oversampling
←− Random undersampling
←− SMOTE oversampling

6: Model training using correlative features and labels
7: Performance evaluation on unseen data (test data)

End

3.3. Data Splitting

The standard approach of data splitting is to randomly split the data into two separate
subsets: training and testing. The training set is used to train the model, while the test
set evaluates its performance. In general, 80% of the data is used for training and 20% for
evaluation.

3.4. Proposed Hybrid Model

Figure 5 depicts the proposed hybrid model for detecting Parkinson’s disease, utilizing
the LSTM and GRU models. Long Term short-term memory (LSTM) and Gated recurrent
unit (GRU) are both neural network architectures used in deep learning. Neural networks
face the problem of the vanishing gradients and find it very challenging to handle long
term dependencies. To address the vanishing gradient problem, LSTM is used with the
combination of the GRU model. GRU is fast and has fewer parameters than the LSTM
model. LSTM and GRU handle data in different ways. The LSTM employed input, output
and forget gates to regulate the flow of data through the network, while the GRU has a
Reset and Update gate to control the flow of data through GRU networks. The input gate
decides how much data will be fed into the memory cell, the forget gate decides how much
data will be removed from the memory cell, and the output gate decides how much data
will be output from the memory cell to the rest of the network.
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Figure 5. Hybrid Model Architecture.

In GRU, the Update gate in GRU decides how much data from the previous state
will be retained, and the Reset gate dictates what proportion of the previous state will be
removed and combined with the current input to generate the new concealed state. This
enables the network to reset the previous state to a standard setting if the previous state is
regarded as unnecessary for the current input.

We employed two LSTM layers with 1000 units plus the activation function “RELU”
and set return sequences to True at each time-step. To avoid overfitting and reducing the
model complexity, a 10% dropout is used after the LSTM layers. One GRU layer with
256 filter sizes and set return sequences to True for this layer. Two dense layers with same
128 units and activation function “RELU” is used, and the last dense layer is used for
classification. A ’sigmoid’ function is used to predict binary labels. After that, the hybrid
model is compiled with a binary-cross entropy loss-function and the Adam optimizer with
200 epochs.

3.5. Performance Metrics

Performance metrics [37] are utilized to assess the efficacy and precision of various
models. Models use the accuracy, precision, recall and f1 score to make predictions based on
given data. True Positive (TP), True Negative (TN), False Positive (FP) and False Negative
(FN) are used to examine the performance of evaluation metrics.

• True Positive (TP): positive cases, correctly identified.
• True Negative (TN): negative cases, correctly identified.
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• False Negative (FN): cases in which a negative result is predicted incorrectly.
• False Positive (FP):cases in which a positive result is predicted incorrectly.

Accuracy:
The ratio of accurately predicted cases to the overall number of predicted cases is

known as accuracy.

Accuracy = (TP + TN)/(TP + TN + FP + FN) (1)

Precision: Precision is defined as the ratio of actual positives to the total number of
positive predictions.

Precision = TP/(TP + FP) (2)

Recall: The fraction of actual positives to positive class cases is known as recall.

Recall = TP/(TP + FN) (3)

F1 score: The F1 score uses Harmonic Mean instead of Arithmetic Mean to calculate
precision plus recall at almost the same rate.

F1 Score = (2× precision× recall)/(precision + recall) (4)

4. Results and Discussion

The experiments were conducted using several oversampling techniques, including
the random oversampling, random undersampling, and synthetic minority oversampling
technique (SMOTE), on a Parkinson’s disease dataset to assess the efficacy of the proposed
method. Furthermore, comparisons of the proposed method with previous studies or deep
learning models are discussed.

4.1. Performance of DL Models Using Different Sampling Techniques

Tables 3 and 4 indicate the effectiveness of deep learning models. The findings show
that DL models, especially BILSTM and GRU, achieved 92.3% accuracy, compared to the
LSTM model with 89.7% accuracy. The results of deep learning using a balanced dataset
with the random oversampling technique is shown in Table 4, which indicates that neural
networks achieved an accuracy of 98%, LSTM of 97%, GRU of 93%, and BILSTM also of
97%. Table 5 shows the performance of deep learning models using the balanced dataset
with the SMOTE technique. SMOTE DL models also performed better with a 98% accuracy
of NN.

Table 3. Performance of DL models using Original Dataset.

Model Class Accuracy Score Precision Score Recall Score F1 Score

NN
PD

0.87
0.80 0.57 0.67

Healthy 0.91 0.97 0.94

LSTM
PD

0.89
0.80 0.57 0.67

Healthy 0.91 0.97 0.94

BILSTM
PD

0.92
0.83 0.71 0.77

Healthy 0.94 0.97 0.92

GRU
PD

0.92
0.83 0.71 0.77

Healthy 0.94 0.97 0.95
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Table 4. Performance of DL models using Balanced Dataset (With Random Oversampling Technique).

Model Class Accuracy Score Precision Score Recall Score F1 Score

NN
PD

0.98
0.97 1.00 0.98

Healthy 1.00 0.97 0.98

LSTM
PD

0.97
0.97 0.97 0.97

Healthy 0.96 0.96 0.96

BILSTM
PD

0.97
0.94 1.00 0.97

Healthy 1.00 0.93 0.96

GRU
PD

0.93
0.91 0.97 0.94

Healthy 0.96 0.89 0.92

Table 5. Performance of DL models using Balanced Dataset (With SMOTE Technique).

Model Class Accuracy Score Precision Score Recall Score F1 Score

NN
PD

0.98
1.00 0.97 0.98

Healthy 0.97 1.00 0.98

LSTM
PD

0.97
0.94 1.00 0.97

Healthy 1.00 0.93 0.96

BILSTM
PD

0.90
0.91 0.91 0.91

Healthy 0.89 0.89 0.89

GRU
PD

0.95
0.94 0.97 0.95

Healthy 0.96 0.93 0.94

4.2. Performance of Hybrid Models Using Different Sampling Techniques on % (70:30) Dataset

In first case, we performed anexperiment analysis of hybrid deep learning models
using the original dataset. Table 6 shows the performance of LSTM+GRU, BILSTM+GRU
and LSTM+BILSTM on the original dataset with binary classes (PD and Healthy). Different
performance metrics are utilised to check the performance of these models. The best
accuracy is achieved by LSTM+GRU at 95%, which is highest for detecting Parkinson’s
disease. The LSTM+BILSTM model performed very poorly on the original dataset. In
the second case, we used a randomly oversampled dataset to conduct an experiment
analysis on a DL model. To evaluate the effectiveness of these models, many performance
metrics are used. The accuracy score for LSTM+GRU and BILSTM+GRU are the same but
other metrics are different. With a detection rate of 100% for recall, the LSTM+GRU has
the highest accuracy for detecting Parkinson’s disease. On the oversampled dataset, the
LSTM+BILSTM model also did not perform well at all.

The performance of various models is also evaluated using a balanced dataset with
an undersampling technique. The results obtained demonstrate that DL does not perform
well using Undersampled data when compared with original and Oversampled data. With
undersampling, DL attained the lowest 93% accuracy score and highest 96% score. On the
Parkinson’s disease dataset, we applied a different oversampling method called synthetic
minority oversampling to efficiently and quickly detect the disease. Table 6 demonstrates
that DL models have made some advancements over the balanced dataset with SMOTE.

The performance of hybrid models are more outstanding than single models. In Table 7,
LSTM+GRU achieved 95% accuracy using both the original dataset and the balanced dataset
with the random undersampling technique. Using a balanced dataset with SMOTE and
random oversampling, LSTM+GRU achieved 100% accuracy and 98% accuracy, respectively.
Results demonstrate that single models are less accurate than hybrid models. A single
LSTM model attained 89% accuracy; when we combined LSTM with GRU, they attained
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95% accuracy. The hybrid model achieved 3% greater accuracy as compared to the single
model. Table 8 shows the results of hybrid models using different sampling techniques on
the training dataset.

Table 6. Performance of Hybrid models using different Sampling Techniques with % (70:30) dataset.

Original Dataset Balanced Dataset
(With Random Oversampling Technique)

Model Class Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

LSTM+GRU
PD

0.95
0.95 0.92 0.96

0.98
0.96 1.00 0.98

Healthy 0.94 0.91 0.95 1.00 0.95 0.97

BILSTM+GRU
PD

0.93
0.92 0.93 0.93

0.98
0.98 0.98 0.98

Healthy 0.93 0.92 0.92 0.98 0.98 0.98

LSTM+BILSTM
PD

0.91
0.91 0.92 0.91

0.94
0.93 0.95 0.94

Healthy 0.91 0.93 0.92 0.96 0.95 0.94

Balanced Dataset
(With Random Undersampling Technique)

Balanced Dataset
(With SMOTE Oversampling Technique)

LSTM+GRU
PD

0.96
1.00 0.93 0.96

0.98
0.98 0.98 0.98

Healthy 0.94 1.00 0.97 0.98 0.98 0.98

BILSTM+GRU
PD

0.93
0.93 0.93 0.93

0.96
0.93 0.97 0.95

Healthy 0.93 0.93 0.93 0.98 0.94 0.96

LSTM+BILSTM
PD

0.93
0.93 0.93 0.93

0.94
0.90 0.97 0.94

Healthy 0.93 0.93 0.93 0.98 0.92 0.95

Table 9 demonstrates the time consumption of deep learning using balanced data with
the SMOTE oversampling technique and the random oversampling technique. The training
and detection times for single-DL models such as LSTM, GRU and BILSTM are 110, 135 and
140 s, respectively. Hybrid DL models such as LSTM+GRU take 150 s to train and detect
the disease; BILSTM+GRU takes 165 s; and LSTM+BILSTM takes 211 s. On balanced data
with the SMOTE technique, LSTM+BLSTM takes too much time. The proposed model,
based on random oversampled data, takes 170 s to detect the disease. The proposed model
is computationally efficient and yields accurate detections.

4.3. ROC Curves

The true Positive rate (tpr) and the false Positive rate (fpr) are displayed against one
another on the ROC curve for different threshold values [38]. TPR is the ratio of instances
correctly identified as positive to all positive instances, whereas FPR is the ratio of instances
wrongly labeled as negative to all negative cases. The upper-left corner of the ROC curve
would be occupied by a classifier with a tpr of 1 and an fpr of 0. The general effectiveness
of the classifier can be assessed using the area under the ROC curve, or AUC. An ideal
classifier has an area under the curve (AUC) of 1, whereas a random classifier has an AUC
of 0.5. If the AUC is higher, it means that the performance of discriminating between
positive and negative events has improved.

Figure 6a shows the ROC curves of hybrid models using the original dataset. The
LSTM+BILSTM model achieved 0.96 AUC, LSTM+GRU achieved 0.90 AUC and BIL-
STM+GRU achieved 0.94 AUC. Figure 6b,c shows that using SMOTE and random over-
sampling techniques on the original dataset, the hybrid model achieved 1.00 AUC. The
undersampled dataset achieved a 0.98 highest AUC and 0.95 lowest AUC in Figure 6d. The
ROC curve proved that undersampled and original datasets do not provide accurate results,
whereas random oversampling and SMOTED datasets achieved an excellent 1.00 AUC.
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Table 7. Performance of Hybrid models using different Sampling Techniques on whole dataset.

Original Dataset Balanced Dataset
(With Random Oversampling Technique)

Model Class Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

LSTM+GRU
PD

0.95
1.00 0.71 0.83

1.00
1.00 1.00 1.00

Healthy 0.94 1.00 0.97 1.00 1.00 1.00

BILSTM+GRU
PD

0.92
0.83 0.71 0.77

1.00
1.00 1.00 1.00

Healthy 0.94 0.97 0.95 1.00 1.00 1.00

LSTM+BILSTM
PD

0.92
0.83 0.71 0.77

0.95
0.91 1.00 0.95

Healthy 0.94 0.97 0.95 1.00 0.90 0.95

Balanced Dataset
(With Random Undersampling Technique)

Balanced Dataset
(With SMOTE Oversampling Technique)

LSTM+GRU
PD

0.95
0.92 1.00 0.96

0.98
1.00 0.97 0.98

Healthy 1.00 0.89 0.94 0.97 1.00 0.98

BILSTM+GRU
PD

0.95
0.92 1.00 0.96

0.98
1.00 0.97 0.98

Healthy 1.00 0.89 0.94 0.97 1.00 0.98

LSTM+BILSTM
PD

0.90
0.91 0.91 0.91

0.97
1.00 0.93 0.97

Healthy 0.89 0.89 0.89 0.94 1.00 0.97

Table 8. Performance of Hybrid models using different Sampling Techniques on Training set.

Original Dataset Balanced Dataset
(With Random Oversampling Technique)

Model Class Accuracy Precision Recall F1 Score Accuracy Precision Recall F1 Score

LSTM+GRU
PD

0.94
1.00 0.79 0.86

0.98
0.97 0.97 0.98

Healthy 0.91 0.97 0.93 0.96 1.00 0.96

BILSTM+GRU
PD

0.91
0.87 0.74 0.72

0.97
0.94 0.97 0.97

Healthy 0.90 0.95 0.92 0.97 0.93 0.97

LSTM+BILSTM
PD

0.90
0.83 0.75 0.88

0.95
0.96 0.97 0.95

Healthy 0.91 0.97 0.92 0.96 0.95 0.96

Balanced Dataset
(With Random Undersampling Technique)

Balanced Dataset
(With SMOTE Oversampling Technique)

LSTM+GRU
PD

0.95
1.00 0.90 0.95

0.97
0.97 1.00 0.98

Healthy 0.91 1.00 0.95 1.00 0.96 0.98

BILSTM+GRU
PD

0.95
0.92 1.00 0.96

0.97
0.97 0.97 0.98

Healthy 1.00 0.89 0.94 0.96 0.95 0.96

LSTM+BILSTM
PD

0.91
0.91 0.91 0.91

0.96
0.96 0.97 0.96

Healthy 0.89 0.89 0.89 0.96 0.95 0.96



Electronics 2023, 12, 2856 15 of 21

Table 9. Time Consumption for DL models.

Random Oversampling SMOTE

Model Time consumption Model Time consumption

LSTM 110 s LSTM 120 s

GRU 135 s GRU 150 s

BILSTM 140 s BILSTM 130 s

LSTM+GRU 150 s LSTM+GRU 170 s

BILSTM+GRU 165 s BILSTM+GRU 185 s

LSTM+BILSTM 211 s LSTM+BILSTM 203 s

(a) (b)

(c) (d)

Figure 6. Receiver Operating Characteristic (ROC) Curves. (a) Using original data, (b) using SMOTE
data, (c) using oversampled data and (d) using undersampled data.

4.4. Comparison Results of Hybrid Models Using Different Sampling Techniques

Imbalanced datasets have a negative impact on the efficacy of Arabic tweet classifi-
cation models. This is because these models tend to support the majority class and have
difficulties accurately classifying instances that belong to the minority-class. Employing
sampling techniques, which provide training data that is more representative and more
balanced, increases the performance of the model, allowing-it to efficiently learn from the
classes. Figure 7 indicates the performance comparison of sampling techniques used in this
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study with hybrid models. Figure 7 shows that the hybrid model performance is outclassed
on balanced datasets using random oversampling and SMOTE oversampling techniques.

Figure 7. Comparison results of Hybrid Models using Different Sampling Techniques.

These models do not perform well on the original and undersampled datasets. With
undersampling, some data from the majority-class are lost and the size of training-data
are reduced that cause low model accuracy; the chance of overfitting increases. The under-
sampling technique is not suitable to address class imbalance issues in text classification.
Figure 8 demonstrates the train and test accuracy for individual and hybrid DL models
with a balanced dataset.

Figure 9 presents the confusion matrix results using the balanced dataset with a
random oversampling technique. The LSTM model achieved two wrong predictions, the
GRU achieved four wrong predictions and the BILST model also achieved two wrong
predictions. The proposed LSTM+GRU model achieved 59 correct predictions from a total
of 59 predictions, with no wrong predictions.

(a)
Figure 8. Cont.



Electronics 2023, 12, 2856 17 of 21

(b)
Figure 8. Train and Test accuracy (a) shows the accuracy for Individual DL models; (b) shows the
accuracy for Hybrid DL models, using Balanced Parkinson’s dataset

Figure 9. Confusion Matrix results using balanced dataset with random oversampling technique.

4.5. Comparative Results of Proposed Hyrbrid Model with the State-of-the-Art Studies

Several studies in the literature used multiple individual DL models, and some studies
used ensembles of various DL models and an ANN model to obtain more accurate results
for Parkinson’s disease detection. Table 10 presents the comparison of our proposed hybrid
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model with previous studies to assess the proposed approach. For example, in order to
predict Parkinson’s disease using 42 preprocessed speech samples, Grover et al. [24] created
a deep neural network. However, in 2018, the 81% accuracy is quite low. They demonstrated
that their technique achieved greater accuracy than earlier accuracies. They did not use
any oversampling or augmentation technique to balance the dataset and enhance the
performance of DNN. Quan et al. [25] employed two LSTM layers, units 20 and 200; each
make up the bidirectional deep learning LSTM model. Adagrad had 58 input dimensions,
and a 0.1 learning rate was used for the BiLSTM model. With an 81% F1 score, the authors
had an accuracy of 75%. For the purpose of detecting Parkinson’s disease using voice
sounds, Oh et al. [26] used a 13-layer CNN deep model. To conduct the experiment, they
needed a dataset of 20 patients. While making predictions, their model had an accuracy
rate of 88% and made 361 errors. Voice signals were employed by Wodzinski et al. [27]
in their LSTM model to forecast the PD illness. A total of 100 patients (50 healthy and
50 unwell) contributed to the dataset. They processed the dataset, applied a deep model
and achieved 91% accuracy. Previous studies demonstrated lower detection accuracy and
were not efficient. Comparison with previous studies demonstrate that the proposed hybrid
model shows better results for Parkinson’s disease detection, with 98% accuracy.

Table 10. Comparative results of Proposed Hyrbrid model with the state-of-the-art studies.

Authors Dataset Model Accuracy

Grover et al. [24] 42 patients DNN 81%

Quan et al. [25] 45 patients RNN 84%

Oh et al. [26] 20 patients CNN 88%

Wodzinski et al. [27] 100 patients ResNet 90%

Abdullah et al. [39] - CNN 95%

Yasir et al. [30] 80 patients ANN 95%

Caliskan et al. [23] 31 patients DNN 94%

Yasir et al. 80 patients ANN 95%

Our Study 31 patients Hybrid LSTM+GRU 98%

4.6. Discussion and Limitations

The experimental design is conducted using multiple deep learning and hybird models,
including three sampling techniques (random oversampling, undersampling and SMOTE
oversampling) to balance the dataset classes. Random oversampling is a technique for
creating classes with a more uniform distribution that entails duplicating instances from
the minority class at random. SMOTE generates new minority-class instances based on
existing instances. The method selects a minority class member and then identifies its k
closest neighbors in the feature space. Undersampling can result in the loss of crucial data
that could have contributed to the development of an effective model. First, we conduct
experiments on an imbalanced dataset and observe that DL models also performed worse
in the imbalanced case, and hybrid models achieved some better results. Second, we
balance the dataset using the SMOTE oversampling technique, and hybrid models provide
97% more accurate detection than other models. Thirdly, we balanced the dataset using the
random oversampling technique and achieved 98% through our proposed model.

Results demonstrate that the undersampling technique does not provide better results
as compared to the oversampling technique for detecting Parkinson’s disease using Dl,
and hybrids of the LSTM+GRU model. Oversampling techniques are proven to be more
helpful for increasing the performance of models. Figure 6 showed a 0.90 ROC-AUC for
LSTM+GRU on imbalanced data; 0.95 ROC-AUC on balanced data with undersampling
technique. Balanced data with oversampling techniques attained a 1.00 ROC-AUC score.
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Figure 8 demonstrated that hybrid models performed better than individual Dl models.
The LSTM model provided two wrong predictions, the GRU model provided three wrong
predictions, and when combining these two models, they achieved 59 correct predictions
and made no mistakes in detecting the disease. The proposed model attained 98% accuracy
on oversampled, 97% on SMOTE, and 95% on undersampled datasets. Comparative
analysis demonstrated that oversampling techniques are proven to be more helpful for
increasing the performance of models.

This study has some limitations, one of which is the proposed model’s utilization of
every feature, which could be identified as a limitation. We did not follow any particular
technique when selecting the features. Additionally, the collected dataset contains fewer
features; we applied sampling techniques to enhance the samples of the dataset that might
lead to generalization errors and biases. These cannot be effectively trained using deep
learning models.

5. Conclusions

The early detection of Parkinson’s disease is one of the most challenging tasks in
medical research. This study proposed a hybrid deep learning approach (LSTM+GRU) to
detect early Parkinson’s disease automatically. The Gated recurrent unit (GRU) achieved
92% accuracy, and LSTM+GRU achieved 95% accuracy on imbalanced datasets. Using
the random oversampling technique, LSTM achieved 97% accuracy, and LSTM+GRU
achieved 100% accuracy. Using the SMOTE technique, LSTM+GRU achieved 98% accuracy.
Results suggest that deep learning models performed better. In addition, the proposed
hybrid model achieved excellent, accurate results for Parkinson’s disease detection. The
proposed hybrid model is 100% accurate in detection with the balanced dataset, enhanc-
ing the detection accuracy and minimizing generalization errors. Our proposed model
successfully distinguishes between PD and healthy patients with outclass performance
accuracy. Comparing hybrid models to four DL individual models, hybrid models offer a
superior performance.

In the future, to extract the majority of important features from the dataset in order to
detect Parkinson’s disease, we will investigate more advanced feature selection techniques,
as well as evaluate the results using an independent dataset to determine the method’s
robustness and reliability. Second, we we will strengthen existing data by combining two
or more datasets in order to predict Parkinson’s disease.
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