
Citation: Valdez, R.; Maldonado, Y.;

Quevedo, J.A. Fuzzy Hardware Tool:

An Adaptable Tool to Facilitate the

Implementation of Fuzzy Inference

Systems in Hardware. Electronics

2023, 12, 2853. https://doi.org/

10.3390/electronics12132853

Academic Editor: Javid Taheri

Received: 11 May 2023

Revised: 20 June 2023

Accepted: 26 June 2023

Published: 28 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Fuzzy Hardware Tool: An Adaptable Tool to Facilitate the
Implementation of Fuzzy Inference Systems in Hardware
Rogelio Valdez , Yazmin Maldonado * and Joel A. Quevedo

Posgrado en Ciencias de la Ingenieria, Tecnologico Nacional de Mexico, Instituto Tecnologico de Tijuana,
Tijuana 22414, Mexico; rogelio.valdez17@tectijuana.edu.mx (R.V.); joel.quevedo201@tectijuana.edu.mx (J.A.Q.)
* Correspondence: yaz.maldonado@tectijuana.edu.mx

Abstract: A Fuzzy Inference System (FIS) is a system that represents human reasoning based on fuzzy
if-then rules to extract valid results from imprecise or uncertain information. These systems have been
applied to various engineering fields, such as control and image recognition, and have encouraged the
search for development tools that provide facilities for the design, simulation, and implementation of
FISs. Most of the available software tools for the design of FISs have been developed by the scientific
community, and very few are commercial tools. According to the state of the technology, the fuzzy
systems implemented in hardware have shown higher performance than software implementations.
For this reason, different strategies for automatic hardware synthesis of FISs have been proposed
in the literature. The available tools for FIS implementation, including MATLAB, Simulink, and
Xfuzzy environment, require advanced hardware knowledge, and it is necessary to synthesize and
implement the program on FPGA each time a change is made to the code. This paper presents a
novel approach for the implementation of fuzzy systems on hardware devices that enables the direct
implementation of FISs through a graphical user interface. The VHDL code is pre-synthesized and
integrated with the interface, allowing users to experiment with different input parameters, such as
membership functions and fuzzy rules, without resynthesizing the code on an FPGA. To verify the
effectiveness of the proposed approach, experiments were conducted on two similar System-on-Chip
(SoC) devices, VEEK-MT and VEEK-MT2. The results showed that the proposed solution represents
a significant advancement in the study of fuzzy systems on hardware devices, providing a flexible
and user-friendly approach to their design and implementation.

Keywords: fuzzy inference system; mandami; fuzzy hardware tool; FPGAs; VHDL; SoCs

1. Introduction

In order to describe the approximate reasoning typically used by humans, in 1965,
Zadeh [1] introduced the concept of fuzzy sets. Then, fuzzy logic appeared as an extension
of classical set theory, providing an attractive solution to easily model human reasoning.
In a fuzzy system, the knowledge given by human experts is modeled through if-then rules
from which the system can infer a valid result despite natural language uncertainty [2].
The application of a Fuzzy Inference System (FIS) in many fields, such as control [3], mod-
eling [4], classification [5–7], energy [8], health [9], among others [10–12] has encouraged
the search for developmental tools capable of providing facilities for the design, simulation,
and implementation of fuzzy systems to either standard processor or specific hardware
devices. Most of the available software tools for the design of FISs are developed by the
scientific community and are open source, some of them are FISDeT [13], fuzzycreator [14],
FisPro [15], jFuzzyLogic [16], and JUZZY Online [17], which is an online toolkit. In ad-
dition, there are commercial tools, such as Fuzzy Logic Toolbox for MATLAB [18]. This
toolbox has been used extensively in engineering and computer science to design fuzzy
systems [19–21]. MATLAB has another open source toolbox for Interval Type-2 Fuzzy

Electronics 2023, 12, 2853. https://doi.org/10.3390/electronics12132853 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12132853
https://doi.org/10.3390/electronics12132853
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6825-6078
https://orcid.org/0000-0002-3793-7484
https://doi.org/10.3390/electronics12132853
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12132853?type=check_update&version=1


Electronics 2023, 12, 2853 2 of 19

Logic Systems (IT2-FLSs) [22]. The availability of these software tools empowers FIS de-
signers to create models effectively, regardless of their expertise level. The user-friendly
interfaces offered by these tools facilitate the creation of FIS models by providing intuitive
functionalities and visualization capabilities [23]. However, fuzzy systems implemented in
hardware have shown higher performance than software implementations [24]. For this
reason, different strategies for automatic hardware synthesis of FISs have been proposed in
the literature.

Hardware implementation of fuzzy systems has the potential to greatly speed up
processing time, but comes with its own set of challenges. First, an advanced knowledge of
hardware is required to efficiently design the FIS. In addition, according to the complexity
of the system this task could take a lot of time and effort. On the other hand, every
modification made to the code will require the system to be re-synthesized on the device,
which can be a time-consuming process.

Over the years, the application of fuzzy logic in control and decision-making prob-
lems has increased, leading to various approaches for hardware implementation of fuzzy
algorithms. First, a design methodology for the implementation of fuzzy systems based
on Hardware Description Language and Very High Speed Integrated Circuits (VHDL)
specification improving their performance was proposed by Hollstein et al. in [25]. Since
then, CAD tools were presented by research groups with an interest on these kind of
systems. One of them is Xfuzzy [26], this tool enables the development of fuzzy systems
through modules that convert a language for fuzzy logic (XFL) description into Look-Up
tables for Field Programmable Gate Array (FPGA) implementation. At this time, the Xfuzzy
environment is in its 3.5 version which contains new features to improve and accelerate
the design flow of fuzzy systems on hardware devices. In the literature, there are works
which leverage the Xfuzzy capabilities to explore for fully automated methodologies that
covers the entire process, from the description of the system to implementation of fuzzy
systems on VHDL [27], while others take advantage of tools such as MATLAB and Simulink
to generate the corresponding files with the parameters of the system [28]. The goal of
these methods is to accelerate the creation and deployment of fuzzy systems on hardware.
However, there are limitations such as the need for extensive hardware design knowledge
and the need for a computer to perform synthesis every time code is modified.

The limitations of the current implementation process for fuzzy systems in hardware
have motivated the need for a more adaptable solution. To address this, we propose
a VHDL code that incorporates a graphical user interface (GUI) for designing an FIS.
The VHDL program is pre-synthesized and integrated with the interface, enabling the user
to experiment with various input parameters without the need for re-synthesis the code
on the FPGA. Additionally, the GUI provides an on-screen display of the input/output
membership functions. Therefore, our proposed solution represents a significant advance
in the implementation of fuzzy systems on hardware devices, providing a flexible and
user-friendly approach for the design and implementation.

In order to verify the effectiveness of our proposed approach, experiments were
conducted on two similar SoC devices, VEEK-MT and VEEK-MT2. On both devices, an FIS
was implemented and evaluated by introducing data for simulation. After a successful
validation of the results, the same experiments were repeated using the proposed GUI,
obtaining the expected results. Finally, the results obtained by performing the same
experiment using the Fuzzy Logic Toolbox available on MATLAB, JUZZY Online, and FISDeT
were compared.

The current study highlights the importance of developing tools for the automatic
design of FISs in the fuzzy logic community. In this paper, is presented an adaptable
Fuzzy Hardware Tool that facilitates the direct implementation of FISs in hardware through a
GUI. The proposed tool enables the user to select features such as the type of membership
functions and fuzzy rules. Furthermore, the tool is pre-synthesized in VHDL code and
implemented on a FPGA, providing the user with the opportunity to design the FIS without
the need for a computer.



Electronics 2023, 12, 2853 3 of 19

This paper is organized as follows: Section 2 presents the theoretical background on
a Mamdani-type FIS. Section 3 presents an overview of the existing methodologies for
the implementation of fuzzy systems on software and hardware. Section 4 describes the
approach proposed in this work, and the design stages of the FIS in VHDL and the GUI.
Section 5 presents the implementation, experimental tests, and results using the Fuzzy
Hardware Tool. Section 6 presents a performance comparison and discussion of the results.
Finally, Section 7 summarizes the conclusions and future work of this research.

2. Theoretical Background

This section aims to provide a theoretical background related to Mamdani-type Fuzzy
Inference Systems, which are employed in this project. It describes the general process of
Fuzzification, Inference, and Defuzzification, highlighting the methods used in this work.

2.1. Mamdani Fuzzy Inference System

Fuzzy systems are convenient tools to deal with uncertain and vague concepts com-
monly found in natural language. These systems have the ability to represent human
reasoning translating the experts’ knowledge into fuzzy if-then rules from which a valid
result may be inferred. The above is achieved by applying fuzzy logic to transform crisp val-
ues into linguistic variables. All the possible values of a linguistic variable are established
over a universe of discourse [2].

One of the most common methods of inference for fuzzy systems based on linguistic
rules is that presented by Mamdani and Assilian [29]. In order to illustrate the general
idea, consider a Mamdani-type FIS with a two-rule system where each rule comprises two
antecedents and one consequent, which is analogous to a dual-input and single-output
fuzzy system. This fuzzy system with two non-interactive inputs, x1 and x2, and a single
output y can be described by a collection of r linguistic if-then propositions in the form [30]:

if x1 is Ak
1 and x2 is Ak

2 then y is Bk, for k = 1, 2, . . . , r, (1)

where Ak
1 and Ak

2 are the fuzzy sets representing the k-th antecedent pairs and Bk is the
fuzzy set representing the k-th consequent. These collections of fuzzy if-then rules model
the qualitative features of human reasoning and be used by a fuzzy system that is composed
by the three main stages; Fuzzification, Inference, and Defuzzification. In this work, fuzzy
logic was applied to convert control rules supplied by humans into an automatic control
strategy for a steam engine.

2.1.1. Fuzzification

The process of converting crisp quantities into fuzzy values is called Fuzzification.
These fuzzy values are known as linguistic variables whose states are described by lin-
guistic terms. Linguistic terms are defined by their Membership Function (MF), which is a
graphical representation of the participation of each input in the system. An input can be
evaluated in the MF to express the membership degree. Usually, this number has a value
between [0, 1]. In this interval, 0 and 1 represent the non membership and full membership
for the input, respectively.

In fuzzy logic, each input and output can be associated with a different MF whose
shape can be symmetrical or asymmetrical. However, triangular and trapezoidal shapes
are the most common MFs for hardware applications [2]. The values which represent the
membership degree are defined by Equation (2) for triangular MF and Equation (3) for
trapezoidal MF:

µA(x) =


0, x ≤ a

x−a
b−a , a < x ≤ b
c−x
c−b , b < x < c
0, x ≥ c

(2)



Electronics 2023, 12, 2853 4 of 19

µB(x) =


0, x ≤ a

x−a
b−a , a < x ≤ b
1, b < x ≤ c

d−x
d−c , c < x < d
0, x ≥ d

(3)

where µA(x) and µB(x) are the corresponding membership degree for the input x and the
parameters a, b, c and d are shown in Figure 1 which is a graphical representation of these
two MFs.

Figure 1. (a) Triangular membership function and (b) trapezoidal membership function.

2.1.2. Inference

At this stage, the base of rules that describe the behavior of the FIS is contained.
This set of rules is in the form (1). Here, the if-then rules are evaluated according to the
results obtained in the Fuzzification process. For the Mamdani-type system studied in this
work, the evaluation was performed using a Minimum implication operation. Therefore,
the output of the r rules will be:

γBk (y) = min
[
γAk

1
(x1), γAk

2
x2)

]
, for k = 1, 2, . . . , r, (4)

where γAk
1
(x1) and γAk

2
(x2) correspond to the firing strength.

2.1.3. Defuzzification

The Defuzzification process mainly consists in obtaining a crisp value from the Infer-
ence stage output.

There are several methods to calculate the output of the Defuzzification stage, such
as centroid, Center of Gravity (COG), Center of Height (COH), among others. The COH
method is shown in Equation (5):

y(x) = ∑n
m=1 CmOm

∑n
m=1 Om

, (5)

where Cm is the maximum height and Om represents the firing strength of the m-th conse-
quent.

The COH method uses the maximum height of the membership functions of the
consequent Cm; this value is multiplied by the firing strength Om that is obtained in the
inference stage. The products of these multiplications are added from 1 to n, where n is the
number of active membership functions. Finally, the resulting sum is divided by the sum
of all the values of the firing strength Om.

3. Related Work

In the literature different approaches and design methodologies have been reported,
aiming at the same objective: the implementation of fuzzy logic systems in a wide range
of problems.



Electronics 2023, 12, 2853 5 of 19

Currently, researchers are taking advantage of using commercial tools such as MAT-
LAB for implementing fuzzy systems. For instance, ref. [31] presented a MATLAB/Simulink
implementation of a interval type-3 fuzzy inference system. The authors demonstrated the
effectiveness of their approach through two practical examples: identification of a chaotic
system and control of a robotic manipulator. In addition to its functionality, MATLAB also
includes a Fuzzy Logic Toolbox, that allows the users to construct an FIS using a GUI [18].
This toolbox was employed in [19] to design a fuzzy system for the control of ventilation
systems. In order to allow the intuitive implementation of IT2-FLSs, Taskin et al. [22]
presents an open source Toolbox for MATLAB environment, it has the capacity to cover all
stages of the IT2-FLSs design through a GUI that facilitates the development of the system.

On the other hand, there are several open-source software alternatives available for
creating and executing fuzzy systems. Many of these alternatives have been developed by
the scientific community and are shared in the form of libraries, source code, or toolkits [23].
Among the available options, we can highlight Java-based toolkits for the implementation
of a type-1 FIS [15,16]. Both of these provide visualizations and a graphical interface. In [17]
an online toolkit, based on Java, allows the user to create a type-1 and interval type-2 FIS
without familiarity with Java. Moreover, this online toolkit offers the option to plot the
FIS and the control surface of the system. Recently, a Python-based toolkit for designing
type-1 fuzzy systems and creating fuzzy rules was introduced in [42]. This implementation
utilizes the pyfuzzy library. In addition, ref. [14] has proposed another Python-based toolkit
that allows the construction of type-1 and type-2 fuzzy sets from data automatically.

The existing approaches mentioned above offer many advantages and features, but they
do not provide the capability to implement an FIS directly on hardware devices. FPGAs,
on the other hand, are known for their ability to parallelize computations, which can
significantly accelerate the execution of complex algorithms. By implementing a fuzzy
system on an FPGA, the computational performance can be greatly enhanced compared to
software-based implementations, enabling real-time and high-speed processing of fuzzy
logic operations. However, it is important to note that implementing a fuzzy system on an
FPGA requires a deep understanding of hardware design. To achieve the implementation of
an FIS on hardware, the researchers could design their own VHDL or Verilog code, such as
the fuzzy logic controller presented in [32]. Or, leverage of the available tools that support
the hardware implementation such as Xfuzzy [26] which is used in [33] to design fuzzy logic
system for predicting productivity in agriculture. The Xfuzzy environment is one of the
most attractive options for FIS design in hardware, because it provides a path to implement
an XFL description of a fuzzy system on an FPGA. Furthermore, the XFL specification can
be translated into a VHDL description that can be synthesized on an FPGA or Application
Specific Integrated Circuit (ASIC). This environment integrates several tools for fuzzy
systems design, covering description, tuning, verification, and synthesis stages [34,35].

In [28] are discussed two tools for hardware synthesis included in the Xfuzzy environ-
ment. They achieve to demonstrate that the hardware implementation of fuzzy systems
can be accelerated, as well as facilitate the exploration of the design space for different
applications if a design flow, supported by the utilization of parameterized cell libraries
and CAD tools, is available. The first tool, XFVHDL, is focused on the generation of VHDL
code that can be synthesized and implemented on a reconfigurable device such as an
FPGA. The second one, XFSG, is based on Xilinx System Generator which is integrated into
the MATLAB environment. This tool includes a library named XfuzzyLib that includes,
in addition to Simulink’s basic building blocks, components to describe fuzzy logic con-
trollers. Those components vary in the number of inputs, the connective used to calculate
the rule activation degrees, and the Defuzzification method. Since the building blocks used
to describe fuzzy logic controller architectures are fully parametrizable, it is possible to
adapt them according to the required application. The main purpose of the XSFG tool is to
automate the design process of a fuzzy system by providing a file containing the Simulink
model and a MATLAB file with the parameters that define its components.



Electronics 2023, 12, 2853 6 of 19

To simplify the implementation of fuzzy systems on hardware, in [36] an Intellec-
tual Property (IP) Core for two-input/single-output FIS that can be set into a SoC was
developed. This module used as a building block permits the user to develop an FIS
through a configuration interface without focusing on hardware details. In this interface,
users can choose between trapezoidal or triangular membership functions (up to three per
input) and Defuzzification methods, according to whether the FIS is Mamdani or Sugeno.
The implementation of the IP block was performed on a Zynq SoC using Vivado CAD tool;
moreover, this configurable IP block is independent of the target hardware, allowing the
system to be synthesized and implemented in a variety of FPGAs.

The development of different methodologies for fuzzy systems implementation has
provided hardware designers with the opportunity to select the best approach for their
projects. However, such techniques often require a deep understanding of hardware design,
posing a challenge for users interested in exploring the potential of FPGAs for their research.
In addition, the need to re-synthesize the system for every modification made to the code
can result in a time-consuming process and remains a significant limitation for the existing
approaches towards hardware implementation of fuzzy systems.

In Table 1, is presented a comparison of the general features of some tools for the
design of fuzzy systems available in the literature. Remarking that only few of them
provides a path to implement the system in hardware devices. The adaptable tool for
the design of an FIS in hardware presented in this work offers several advantages. While
many available tools already provide a GUI for system construction and data visualization,
the proposed GUI-touchscreen takes user interaction to a new level. It offers an intuitive
and user-friendly approach to interacting with the fuzzy system implemented on an
FPGA, eliminating the need of a deep understanding of VHDL or Verilog. Thanks to its
adaptable features, the VHDL code is previously synthesized on the FPGA, users can make
modifications to membership functions, inference rules, and other system components
without the requirement of re-synthesizing the code. As a result, rapid prototyping and
experimentation become possible, greatly facilitating the design process.

Table 1. Comparison of fuzzy logic tools by features as GUI, support for hardware implementation,
and additional notes.

Tool Name GUI Support Hardware Additional Notes

FISDeT [13] X - -
FisPro [15] X - -

jFuzzyLogic [16] X - -
fuzzycreator [14] - - Supports T1 and IT2 FIS

JUZZY Online [17] X - Online application

MATLAB/Simulink [18] X X
Includes Fuzzy Logic Toolbox and

XSG in its environment

Xfuzzy [34,35] X X
Implements XFL3 specification

language

Fuzzy Hardware Tool X X
Configurable through

touchscreen GUI

4. Experimental Test and Results

The Fuzzy Hardware Tool is a proposal for beginners or experts in the area of fuzzy
systems. With this proposal, FIS designers will be able to interact through a multi-touch
screen with an FIS implemented in an SoC with FPGA device and processor. The Fuzzy
Hardware Tool is a didactic environment to design, simulate, and implement a Mamdani FIS.
The tool lets you select and configure inputs, output, membership functions, and rules.

This section explains how the two parts of the Fuzzy Hardware Tool, the VHDL and the
GUI, are designed. The first part is the code design, then the VHDL design examines the
main variables and the process to obtain the result of the given problem. The GUI design is
concerned with the visual interface where the problem is designed by the users.



Electronics 2023, 12, 2853 7 of 19

4.1. FIS VHDL Design

The FIS is divided into four stages: Top, Fuzzification, Inference, and Defuzzification.
The GUI was programmed using variables with 32 bits and the VHDL code used variables
with other sizes of bits, for example, the FIS has 8 bits, for this reason a converter between
the data from the GUI is used. Figure 2 shows the basic diagram of the Fuzzy Hardware Tool,
the following paragraphs explain in detail each of these stages.

Figure 2. Basic diagram for the Fuzzy Hardware Tool with the three main stages.

TOP is the stage programmed in VHDL code and is the connection between GUI in
C/C++ and the FIS. The FIS in VHDL receives variables with different bit sizes that are
joined into a bus of 32 bits. The first bus from the GUI is called func. This bus is used for
the three parameters of the triangular MF or four parameters for the trapezoidal MF and is
the union of four variables, as shown in the Figure 3.

Figure 3. Bus func divided into four variables of 8 bits to receive MFs of the GUI.

The second bus is vars which contains nine variables to use in the FIS. This bus has 6
bits empty, the free space is to complete the 32 bits of the bus. Figure 4 shows the diagram
of vars. In this case, vars contains the flags to start fuzzification (start_fuzz), read or write the
MFs of the inputs (we_fuzz), start inference (start_inf ), read or write the MFs of the output
(we_defuzz), read or write the rules (we_rule), MF type selection (data_type), or choose the
stored rules (dir_mem). It also has the values of the inputs (x1, x2).

Figure 4. Bus vars divided into nine variables of different bits.

The third bus is reg_mem which contains two variables to use in the FIS, and one empty
variable with 8 bits, as shown in Figure 5. In addition, reg_mem contains a 12-bit memory
address pointer for the rules (dir_mem2) and another 12 bits to save the rules (rule).

Figure 5. Bus reg_mem divided in two variables of different bits.



Electronics 2023, 12, 2853 8 of 19

The last one is the bus output. This bus, unlike the others, receives the crisp value from
the FIS in VHDL code and after it is sent to the GUI, the bus output has 24 bits of free space
because the crisp value only has 8 bits, as represented in Figure 6.

Figure 6. Bus output has one variable with 8 bits and one empty variable with 24 bits.

Fuzzification: The first stage of the FIS is when the tool receives the MFs parameters
and calculates the membership degree with Equations (2) and (3). The FIS has two lin-
guistic variables x1 and x2 and one output, also the users can add up to 15 MFs for each
linguistic variable. The supported types of MFs are triangular and trapezoidal, which are
the most common for hardware due their ease of implementation and their simplicity [2,32].
The process is started when the input called “start_fuzz” is activated. The process consists
of a loop with all MFs evaluated with x1 and x2; the results are saved in four registers, two
registers for the membership degree to x1 and x2, and other two to indicate which MFs are
activated. The activated MFs are used in the Inference stage. Figure 7 shows the process.

Figure 7. Diagram of Fuzzification stage for two linguistic variables (x1 and x2) and up to 15
triangular and trapezoidal MFs.

Inference: In this stage, the rules of the FIS are evaluated. Through a loop, each MF
is evaluated and compared to define which MF is activated for the input of the FIS. Then
the firing strength is activated, and all the firing strengths are compared to compute the
min method (see Equation (4)). The result is saved in a register called result_inf. When the
evaluation of the rules is finished, a variable is activated to indicate that the next stage is
ready to start. Figure 8 shows the diagram of the process.

Figure 8. Diagram of the control process to the Inference stage.



Electronics 2023, 12, 2853 9 of 19

Defuzzification: This is the last stage of the FIS, when the crisp value is obtained.
At this stage, the COH is computed using Equation (5). This stage uses the variables from
the previous stages.

The VHDL design of the FIS considers the following characteristics and constraints:

• Contains only two linguistic variables for the input (x1 and x2).
• Contain only one output.
• Each linguistic variable can have up to 15 MFs.
• The MFs are trapezoidal and triangular type.
• The number of fuzzy rules depends on the number of MFs for each linguistic variable.
• Use the min method for the inference.
• Use the COH method for defuzzification stage.
• The universe of discourse is discretized in 8 bits.

4.2. Graphic User Interface Design

This section explains the graphic interface that the user uses to manage the FIS.
To explain the main functionality of the GUI, a Unified Modeling Language (UML) diagram
is shown in Figure 9. A user starts the FIS and the first screen shows the tool logo. This
screen is just to provide a welcome. When the user touches the screen, it changes to the
second screen, which is the menu. In this screen, the user selects an option to interact with
the FIS, as shown in Figure 10. Because the FIS has three stages, the menu screen has three
options. The first option is Fuzzification, the second option is Inference, and the last option
is Defuzzification.

Figure 9. UML of the process into the GUI.

Figure 10. First and second screen of the GUI.

The Fuzzification screen has some options and features. Figure 11 shows the GUI of
Fuzzification. In this screen, there are nine options, which are explained bellow. (1) the
first thing to do is add an MF, the first step is to select the MF type; (2) put the parameters
of the MFs, three for the triangular MF and four for the trapezoidal MF (see Figure 1);
(3) when the user touches the textbox a numeric keyboard will appear, this tool is used
to make it easier add data to the FIS. After that, the user can add a name for the MF in
option 3; an alphanumeric keyboard appears in this part, as shown in Figure 12. Both
keyboards are programmed to be used in other parts of the FIS when the user needs to
capture a name or numeric label; (4) this option is to add the MF to the FIS; (5) this option is
to select between input or output of the FIS; (6) the viewfinder is to see the whole discourse,
the type of MF and their parameters. In addition, by adding option (5) it is possible to



Electronics 2023, 12, 2853 10 of 19

change between inputs and output of the FIS; (7) this option is to update the parameters
and type of MFs; (8) it is used to save the parameters of the Fuzzification stage; and (9) to
close the Fuzzification stage and return to the main menu.

Figure 11. Fuzzification screen with nine options.

Figure 12. Keyboards for the GUI used to capture the name of the MFs.

The next screen is the Inference stage. The interface is divided into six options, as
shown in Figure 13. (1) Shows the rules when the user adds them. This is called the
inference display. In this part, the user can create fuzzy rules with the data from the
previous stage denoted by option (2); (3) this option is to add the rule to the inference
display; (4) and (5) allow the user to update or delete rules; and (6), when the user finishes
adding rules, they can use the button X in the corner of the screen and return to the
main menu.

Figure 13. Inference screen with their 6 options.



Electronics 2023, 12, 2853 11 of 19

Figure 14 is the last screen. This is the Defuzzification stage, where there are five
options. (1) Selects the Defuzzification method, which, as mentioned above, is the COH
method; (2) the user can add the values for the x1 and x2 in order to calculate the crisp
value; (3) computes the crisp value; (4) displays the MFs of the inputs, x1 and x2; and
(5) prints the MFs output of the FIS.

Figure 14. Defuzzification screen with their 5 options.

In summary, the design of the Fuzzy Hardware Tool consists of two main components.
The first component is the FIS in VHDL code. The second component is the GUI that
allows users to design FISs in hardware. To facilitate the communication between these
components, the High-Speed Mezzanine Card (HSMC) bus is used. The HSMC bus,
integrated into the VEEK-MT and VEEK-MT2 SoCs, serves as a high-speed interface
developed by Intel specifically for expanding connectivity between Intel FPGAs. It enables
efficient data transfer and synchronization between the VHDL code and the GUI. The NIOS
II processor is responsible for executing the C++ code of the GUI and ensuring its proper
display on the LCD screen. The NIOS II works as an intermediary, facilitating the interaction
between the C++ code and the FIS implemented in VHDL code. It manages data flow, user
inputs, and communicates with the VHDL code, creating an efficient user experience. The
GUI provides an easy-to-use interface for configuring and entering parameters, as well as
viewing the results.

5. Experimental Test and Results

This section explains the experiment to validate the Fuzzy Hardware Tool. The first
part explains the specifications of the computer and the SoCs; the second part is about
the experiment and their parameters for the different stages. Finally, the results and
comparation between the two SoCs are shown.

5.1. Experimental Setup and Tools

For all experiments, a PC with Windows 7 Ultimate, i7 4th generation processor, 12 GB
DDR3, and 480 GB SSD was used. In addition, Intel® Quartus® Prime Lite Edition Design
Software Version 15.1 and Qsys System Design software tools were used.

The experiments and results were evaluated by hardware implementation. VEEK-MT
(Video and Embedded Evaluation Kit—Multi-touch) and VEEK-MT2 (Video and Embedded
Evaluation Kit—Multi-touch Second Edition) [37] from Terasic SoC were used.

The FIS is compatible with both SoCs because the VHDL code and the GUI were
designed to use in SoCs with similar resources, as shown in Figure 15, where the left is the
VEEK-MT and the right is the VEEK-MT2.



Electronics 2023, 12, 2853 12 of 19

Figure 15. VEEK-MT and VEEK-MT2, respectively, with Fuzzy Hardware Tool loaded.

The features of the two SoCs are shown in Table 2. The VEEK-MT2 is one generation
newer than VEEK-MT. The RAM memory has been increased from 128 MB to 1024 MB,
although the screen size is the same on both SoCs. Finally, the clock is 2× faster than VEEK-
MT; the VEEK-MT2 SoC has more capacities because it is the newer generation. Other
important resources in the SoC are logic elements, registers, pins, memory, and Phase-
Locked Loop (PLL). For example, the logic elements express how the percent of the FPGA
is used and total pins represent the inputs and outputs used to implement the design.

Table 2. Features of VEEK-MT and VEEK-MT2 SoCs.

Features VEEK-MT VEEK-MT2

Processor NIOS II NIOS II
FPGA Cyclone IV E Cyclone V SX
Device EP4CE115F29C7 5CSXFC6D6F31C6

Clock rate 50 MHz 100 MHz
Time period 20 nS 10 nS

RAM 128 MB SDRAM 1024 MB DDR3
Screen 7 inches LCD 7 inches LCD

5.2. Description of Problem

For the experiment, an FIS was proposed with the following characteristics: three MFs
(two trapezoidal MFs and one triangular MF) for each input and three MFs (two triangular
MFs and one trapezoidal MF) output. The parameters of the MFs are in Table 3 and the MFs
are shown in Figure 16. The FIS also has three fuzzy rules, as shown in Equation (6); and
finally, to compute the crisp, the input values are x1 = 40 and x2 = 80.

Table 3. MFs parameters of the experiment.

Linguistic Term
Linguistic Variable

Linguistic Term
Linguistic Variable

x1 x2 Output

MF1_in_1
MF1_in_2

a = 0 a = 0

MF1_out_1

a = 10
b = 30 b = 30 b = 40
c = 60 c = 60 c = 60
d = 90 d = 90

MF2_in_1
MF2_in_2

a = 60 a = 60

MF2_out_1

a = 50
b = 90 b = 90 b = 90
c = 150 c = 150 c = 120
d = 180 d = 180

MF3_in_1
MF3_in_2

a = 150 a = 150

MF3_out_1

a = 90
b = 180 b = 180 b = 120
c = 230 c = 230 c = 140

d = 170



Electronics 2023, 12, 2853 13 of 19

Figure 16. Graphical representation of the MFs of the input x1 and x2 and output.

if MF1_in_1 is x1 and MF2_in_2 is x2 then MF1_out_1

if MF2_in_1 is x1 and MF2_in_2 is x2 then MF2_out_1

if MF2_in_1 is x1 and MF3_in_2 is x2 then MF3_out_1

(6)

5.3. Experimentation Procedure

To carry out the experiments on the two SoCs, the Fuzzy Hardware Tool was loaded
into the VEEK-MT and VEEK-MT2. The characteristics of the SoCs are presented in Table 2.
Once the Fuzzy Hardware Tool was loaded, the input MFs were entered on the Fuzzification
screen, with three input MFs and three output MFs set as shown in part two of Figure 17.
Continuing with the process, the experiment rules were input on the Inference screen,
resulting in the configuration shown in part three of Figure 17. This experiment consisted
of three rules. Finally, on the Defuzzification screen, the process was continued by selecting
the values of x1 and x2. The Defuzzification method was also selected to obtain the FIS
output, as shown in part four of Figure 17.

Figure 17. Process of the experiment with Fuzzy Hardware Tool.



Electronics 2023, 12, 2853 14 of 19

5.4. Experimental Results

After completing the process using the Fuzzy Hardware Tool, the simulation was per-
formed on the VEEK-MT and VEEK-MT2 SoCs. Figure 18 illustrates the timing of the FIS
and the number of clock cycles required for each step. In this case, the FIS takes six cycles to
capture the data, seven cycles for the fuzzification stage, then four cycles for the inference
stage, and finally three cycles for the defuzzification stage. The figure also shows that the
crisp is calculated at 400 nS for VEEK-MT and 200 nS for VEEK-MT2, due to the clock
oscillators of each SoC (see Table 2).

Figure 18. Simulation of the FIS in the Fuzzy Hardware Tool for the VEEK-MT and VEEK-MT2 SoCs.

Once the simulation was finished, the consumption of resources was analyzed, re-
sources estimation are presented in Table 4. The difference between the two SoCs are that
the VEEK-MT has many components such as VGA, LEDs, and display, but the VEEK-MT2
does not have that activated. Finally, the FIS uses two PLLs, which means 50% for VEEK-
MT and 25% for the VEEK-MT2. The VEEK-MT2 SoC used 13,832 registers of a total of
166,036, which represents an estimate of 8.3%, while the VEEK-MT SoC used 9562 registers;
however, the total number of registers was not found in the SoC documentation.

Table 4. Resources utilization of two SoCs with the Fuzzy Hardware Tool.

Resource VEEK-MT VEEK-MT2

Logic elements 12% 18%
Total pins 90% 41%

Total memory bits 3% 16%
Total PLLs 50% 25%

The results obtained are encouraging becauses the Fuzzy Hardware Tool does not
consume even 50% of the resources of the most modern SoC, which allows us to consider
adding other implication functions and Defuzzification methods.

The results obtained using the Fuzzy Hardware Tool represent a promising solution for
FISs based in hardware. Unlike existing FIS systems that need to be reconfigured each time
when the problem changes, the Fuzzy Hardware Tool can be used with different problems



Electronics 2023, 12, 2853 15 of 19

without needing to be reloaded or reconfigured. This makes it a highly flexible and efficient
option for implementing FISs in hardware.

6. Performance Comparison and Discussion

This section offers a comparative study of the results obtained with state of the art
tools, such as the Fuzzy Logic Toolbox [18], FISDeT [13], and JUZZY Online [17]. To do this
comparison, the new FIS was designed using the same parameters that the experiment
used in Table 3. Figure 19 shows the FIS configuration in MATLAB. First, it shows that the
FIS has two inputs and one output; next, the characteristics of the membership functions
are shown; and finally the fuzzy rules. The centroid is used to calculate the defuzzification
instead of the COH method because MATLAB does not have this method in the toolbox.

Figure 19. Design of the FIS in MATLAB using Fuzzy Logic Toolbox [18].

Figure 20 shows the FIS configuration in FISDeT tool. The difference of this FIS with
respect to Figure 19 is the defuzzification method. FISDeT uses the COG method.

Figure 20. Design steps for FIS implementation using FISDeT [13].



Electronics 2023, 12, 2853 16 of 19

Figure 21 shows the FIS configuration in JUZZY Online tool, which has the same COH
defuzzification method as the Fuzzy Hardware Tool.

Figure 21. FIS design using JUZZY Online [17].

Table 5 shows the comparative results between four tools for FIS design, three in
software, and the other in hardware. It is important to note that the crisp value of the Fuzzy
Hardware Tool and JUZZY Online are the same because the tools use the same inference and
defuzzification methods, while the other two tools use other defuzzification methods such
as COG and centroid; therefore, the crisp value is different. Hence, we can mention that
the differences in the results occur for the following factors: (1) different defuzzification
methods and (2) quantization of the data. The Fuzzy Hardware Tool is 8-bit quantized.

Table 5. FIS comparison using Fuzzy Hardware Tool, Fuzzy Logic Toolbox, FISDeT, and JUZZY Online.

Fuzzy Hardware
Tool

Fuzzy Logic
Toolbox [18] FISDeT [13] JUZZY

Online [17]

Inputs values x1 = 40, x2 = 80 x1 = 40, x2 = 80 x1 = 40, x2 = 80 x1 = 40, x2 = 80
Implication min min min min

Defuzzification COH Centroid COG COH
Crisp 40 36.4 36.3 40

According to the results obtained, the Fuzzy Hardware Tool has the following advan-
tages: (1) it is the first tool developed on a SoC with a GUI for FIS, with the ability to be
adapted to different problems without the need for reprogramming in VHDL or other
HDL; (2) the tool leverages the strengths of SoCs, such as their speed; (3) furthermore,
the Fuzzy Hardware Tool is an all-in-one tool that can be used without a computer to design
and resolve FIS; and (4) the tool can be used by anyone without knowledge about SoCs,



Electronics 2023, 12, 2853 17 of 19

only requiring basic knowledge about fuzzy design. Therefore, it makes it an attractive tool
for beginners and advanced users.

However, some limitations of the Fuzzy Hardware Tool should be noted. The tool is
limited to only two inputs, namely, x1 and x2. In addition, only supports trapezoidal and
triangular membership functions. Finally, the tool is limited to problems of 8 bits.

The results obtained using the Fuzzy Hardware Tool represent a promising solution for
FIS based in hardware. Unlike existing FIS systems that need to be reconfigured each time
when the problem changes, the Fuzzy Hardware Tool can be used with different problems
without needing to be reloaded or reconfigured. This makes it a highly flexible and efficient
option for implementing FIS in hardware.

7. Conclusions

In this work, we present the Fuzzy Hardware Tool, a user-friendly tool for designing
Fuzzy Inference Systems (FISs) in hardware. The tool consists of two main components: a
user interface for designing the FIS and a VHDL code for the underlying process. The user
interface allows users to interact with the tool, designing the FIS without the need for
expertise in digital system design or FPGA programming. The VHDL code, which is
divided into Fuzzification, Inference, and Defuzzification stages, runs the principal process
of the FIS when it is loaded by the user. Although there are limitations in this work,
as mentioned in Sections 4 and 6, such as the number of inputs and outputs and the types
of membership functions supported, the adaptability of the tool still offers advantages,
such as intuitive and easy interaction with the fuzzy system through the GUI, which
allows the user to implement their system on an FPGA without a deep understanding of
VHDL. Moreover, because the code is already synthesized on the FPGA, a computer is not
needed, users can make modifications to membership functions, inference rules, and other
system components without the requirement to re-synthesize the code. As a result, rapid
prototyping and experimentation become possible, greatly facilitating the design process.

In addition, fuzzy systems have found applications in various domains, such as traffic
control [38], energy and irrigation systems [39], and temperature and humidity control [40].
These applications sometimes involve the use of fuzzy systems with two inputs, one
output, and trapezoidal and triangular membership functions. The proposed tool in this
work is capable of accommodating such systems, making it an ideal platform for their
implementation on FPGA. This offers users the opportunity to leverage the benefits of these
specific fuzzy system characteristics in hardware-based implementations.

The tool was tested through simulations on two SoCs (VEEK-MT and VEEK-MT2) and
demonstrated satisfactory results. In conclusion, the Fuzzy Hardware Tool is an innovative
solution for utilizing FPGAs in solving FIS problems, making it accessible to individuals
without previous knowledge of SoCs or embedded systems, taking advantage of its fea-
tures. The FIS VHDL code can be implemented on any FPGA regardless of manufacturer,
considering a priori the amount of device resources, while the GUI is designed only for
VEEK-MT SoCs.

As part of our future work, we plan to expand the capabilities of Fuzzy Hardware Tool
by incorporating additional types of membership functions. Furthermore, we intend to
explore different implication functions, including max and product, to improve the rule
inference process. Additionally, we aim to incorporate the centroid defuzzification method
to provide an alternative option for obtaining crisp outputs.

Moreover, we are keen to explore alternative paths for hardware implementation of
our FIS, such as utilizing MATLAB/Simulink and the Xfuzzy environment. This investi-
gation will allow us to assess and compare the benefits of each approach in terms of cost,
performance, and flexibility. By doing so, we can gain valuable insights into the strengths
and limitations of different implementation strategies.



Electronics 2023, 12, 2853 18 of 19

Author Contributions: Conceptualization, R.V., Y.M. and J.A.Q.; methodology, R.V., Y.M. and J.A.Q.;
software, R.V., Y.M. and J.A.Q.; validation, R.V., Y.M. and J.A.Q.; formal analysis, R.V., Y.M. and
J.A.Q.; investigation, R.V., Y.M. and J.A.Q.; resources, R.V., Y.M. and J.A.Q.; writing—original draft
preparation, R.V., Y.M. and J.A.Q.; writing—review and editing, R.V., Y.M. and J.A.Q.; visualization,
R.V., Y.M. and J.A.Q.; supervision, Y.M.; project administration, Y.M.; funding acquisition, Y.M. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by TecNM (Mexico) project 17615.23-P and the first, and third
author were supported by CONAHCYT scholarships 692786 and 1014860, respectively.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zadeth, L. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
2. Zavala, A.; Nieto, O. Fuzzy hardware: A retrospective and analysis. IEEE Trans. Fuzzy Syst. 2011, 20, 623–635. [CrossRef]
3. Li, H.; Wu, C.; Shi, P.; Gao, Y. Control of nonlinear networked systems with packet dropouts: Interval type-2 fuzzy model-based

approach. IEEE Trans. Cybern. 2014, 45, 2378–2389. [CrossRef]
4. Gacto, M.J.; Galende, M.; Alcalá, R.; Herrera, F. METSK-HDe: A multiobjective evolutionary algorithm to learn accurate TSK-fuzzy

systems in high-dimensional and large-scale regression problems. Inf. Sci. 2014, 276, 63–79. [CrossRef]
5. Ishibuchi, H.; Mihara, S.; Nojima, Y. Parallel distributed hybrid fuzzy GBML models with rule set migration and training data

rotation. IEEE Trans. Fuzzy Syst. 2012, 21, 355–368. [CrossRef]
6. Narayan, V.; Mall, P.K.; Awasthi, S.; Srivastava, S.; Gupta, A. FuzzyNet: Medical Image Classification based on GLCM Texture

Feature. In Proceedings of the 2023 International Conference on Artificial Intelligence and Smart Communication (AISC), Greater
Noida, India, 27–29 January 2023; pp. 769–773.

7. Nassiri, S.M.; Tahavoor, A.; Jafari, A. Fuzzy logic classification of mature tomatoes based on physical properties fusion. Inf.
Process. Agric. 2022, 9, 547–555. [CrossRef]

8. Hannan, M.A.; Ghani, Z.A.; Hoque, M.M.; Ker, P.J.; Hussain, A.; Mohamed, A. Fuzzy logic inverter controller in photovoltaic
applications: Issues and recommendations. IEEE Access 2019, 7, 24934–24955. [CrossRef]

9. Rahman, M.Z.; Akbar, M.A.; Leiva, V.; Tahir, A.; Riaz, M.T.; Martin-Barreiro, C. An intelligent health monitoring and diagnosis
system based on the internet of things and fuzzy logic for cardiac arrhythmia COVID-19 patients. Comput. Biol. Med. 2023, 154,
106583. [CrossRef]

10. Jan, N.; Gwak, J.; Pamucar, D. Mathematical analysis of generative adversarial networks based on complex picture fuzzy soft
information. Appl. Soft Comput. 2023, 137, 110088. [CrossRef]

11. Jan, N.; Gwak, J.; Maqsood, R.; Nasir, A. Analysis of Networks and Digital Systems by Using the Novel Technique Based on
Complex Fuzzy Soft Information. IEEE Trans. Consum. Electron. 2022, 69, 183–193. [CrossRef]

12. Gwak, J.; Garg, H.; Jan, N. Investigation of robotics technology based on bipolar complex intuitionistic fuzzy soft relation. Int. J.
Fuzzy Syst. 2023, 25, 1834–1852. [CrossRef]

13. Castellano, G.; Castiello, C.; Pasquadibisceglie, V.; Zaza, G. Fisdet: Fuzzy inference system development tool. Int. J. Comput. Intell.
Syst. 2017, 10, 13–22. [CrossRef]

14. McCulloch, J. Fuzzycreator: A python-based toolkit for automatically generating and analysing data-driven fuzzy sets. In
Proceedings of the 2017 IEEE International Conference on Fuzzy Systems (FUZZ—IEEE), Naples, Italy, 9–12 July 2017; pp. 1–6.

15. Guillaume, S.; Charnomordic, B. Fuzzy inference systems: An integrated modeling environment for collaboration between expert
knowledge and data using FisPro. Expert Syst. Appl. 2012, 39, 8744–8755. [CrossRef]

16. Cingolani, P.; Alcalá-Fdez, J. jFuzzyLogic: A java library to design fuzzy logic controllers according to the standard for fuzzy
control programming. Int. J. Comput. Intell. Syst. 2013, 6, 61–75. [CrossRef]

17. Wagner, C.; Pierfitt, M.; McCulloch, J. Juzzy online: An online toolkit for the design, implementation, execution and sharing of
type-1 and type-2 fuzzy logic systems. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
Beijing, China, 6–11 July 2014; pp. 2321–2328.

18. The MathWorks, Inc. Matlab Fuzzy Logic Tool Users Guide. 2022. Available online: https://www.mathworks.com/help/fuzzy/
(accessed on 5 May 2023).

19. Sharma, S.; Obaid, A.J. Mathematical modelling, analysis and design of fuzzy logic controller for the control of ventilation
systems using Matlab fuzzy logic toolbox. J. Interdiscip. Math. 2020, 23, 843–849. [CrossRef]

20. Dagar, P.; Jatain, A.; Gaur, D. Medical diagnosis system using fuzzy logic toolbox. In Proceedings of the International Conference
on Computing, Communication & Automation, Greater Noida, India, 15–16 May 2015; pp. 193–197.

21. Elias, N.; Yahya, N.M.; Sing, E.H. Numerical analysis of fuzzy logic temperature and humidity control system in pharmaceutical
warehouse using Matlab fuzzy toolbox. In Proceedings of the Intelligent Manufacturing & Mechatronics, Pekan, Malaysia, 29
January 2018; pp. 623–629.

http://doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/TFUZZ.2011.2181179
http://dx.doi.org/10.1109/TCYB.2014.2371814
http://dx.doi.org/10.1016/j.ins.2014.02.047
http://dx.doi.org/10.1109/TFUZZ.2012.2215331
http://dx.doi.org/10.1016/j.inpa.2021.09.001
http://dx.doi.org/10.1109/ACCESS.2019.2899610
http://dx.doi.org/10.1016/j.compbiomed.2023.106583
http://dx.doi.org/10.1016/j.asoc.2023.110088
http://dx.doi.org/10.1109/TCE.2022.3226819
http://dx.doi.org/10.1007/s40815-023-01487-0
http://dx.doi.org/10.2991/ijcis.2017.10.1.2
http://dx.doi.org/10.1016/j.eswa.2012.01.206
http://dx.doi.org/10.1080/18756891.2013.818190
https://www.mathworks.com/help/fuzzy/
http://dx.doi.org/10.1080/09720502.2020.1727611


Electronics 2023, 12, 2853 19 of 19

22. Taskin, A.; Kumbasar, T. An open source Matlab/Simulink toolbox for interval type-2 fuzzy logic systems. In Proceedings of the
2015 IEEE Symposium Series On Computational Intelligence, Cape Town, South Africa, 7–10 December 2015; pp. 1561–1568.

23. Alcalá-Fdez, J.; Alonso, J.M. A survey of fuzzy systems software: Taxonomy, current research trends, and prospects. IEEE Trans.
Fuzzy Syst. 2015, 24, 40–56. [CrossRef]

24. Costa, A.; de Gloria, A.; Faraboschi, P.; Pagni, A.; Rizzotto, G. Hardware solutions for fuzzy control. Proc. IEEE 1995, 83, 422–434.
[CrossRef]

25. Hollstein, T.; Halgamuge, S.; Glesner, M. Computer-aided design of fuzzy systems based on generic VHDL specifications. IEEE
Trans. Fuzzy Syst. 1996, 4, 403–417. [CrossRef]

26. López, D.; Jiménez, C.; Baturone, I.; Barriga, A.; Sánchez-Solano, S. Xfuzzy: A design environment for fuzzy systems. In
Proceedings of the 1998 IEEE International Conference on Fuzzy Systems Proceedings. IEEE World Congress On Computational
Intelligence, Anchorage, AL, USA, 4–9 May 1998; Volume 2, pp. 1060–1065.

27. Montesino Pouzols, F.; Barriga Barros, Á.; Lopez, D.; Sánchez Solano, S. Open FPGA-based development platform for fuzzy
systems with applications to communications. In Proceedings of the XXII Conference on Design of Circuits and Integrated
Systems, Rio de Janeiro, Brazil, 3–6 September 2007; pp. 1–6.

28. Brox, M.; Sánchez-Solano, S.; Toro, E.; Brox, P.; Moreno-Velo, F. CAD tools for hardware implementation of embedded fuzzy
systems on FPGAs. IEEE Trans. Ind. Inform. 2012, 9, 1635–1644. [CrossRef]

29. Mamdani, E.; Assilian, S. An experiment in linguistic synthesis with a fuzzy logic controller. Int. J.-Man-Mach. Stud. 1975, 7, 1–13.
[CrossRef]

30. Ross, T. Fuzzy Logic with Engineering Applications; John Wiley & Sons: Hoboken, NJ, USA, 2005.
31. Huang, H.; Xu, H.; Chen, F.; Zhang, C.; Mohammadzadeh, A. An Applied Type-3 Fuzzy Logic System: Practical Matlab Simulink

and M-Files for Robotic, Control, and Modeling Applications. Symmetry 2023, 15, 475. [CrossRef]
32. Ilyas, A.; Khan, M.R.; Ayyub, M. FPGA based real-time implementation of fuzzy logic controller for maximum power point

tracking of solar photovoltaic system. Optik 2020, 213, 164668. [CrossRef]
33. Prabakaran, G.; Vaithiyanathan, D.; Ganesan, M. FPGA based intelligent embedded system for predicting the productivity using

fuzzy logic. Sustain. Comput. Inform. Syst. 2022, 35, 100749. [CrossRef]
34. Moreno Velo, F.; Sánchez Solano, S.; Barriga Barros, Á.; Baturone Castillo, M.; López, D. Xfl3: A new fuzzy system specification

language. In Proceedings of the 5th WSES /IEEE Multiconference on Circuits, Systems, Communications And Computers,
Rethymnon, Greece, 8–15 July 2001; pp. 361–366.

35. Velo, F.; Baturone, L.; Solano, S.; Barriga, A. Rapid design of fuzzy systems with Xfuzzy. In Proceedings of the 12th IEEE
International Conference On Fuzzy Systems, St. Louis, MO, USA, 25–28 May 2003; Volume 1, pp. 342–347.

36. Mohammadi, M.; Shaout, A. Reconfigurable implementation of fuzzy inference system using FPGA. In Proceedings of the 2017
International Conference On New Trends In Computing Sciences (ICTCS), Amman, Jordan, 11–13 October 2017; pp. 18–23.

37. Terasic Inc. Video and Embedded Evaluation Kit—Multi-Touch. 2022. Available online: https://www.terasic.com (accessed on 5
May 2023).

38. Alam, J.; Pandey, M.K. Design and analysis of a two stage traffic light system using fuzzy logic. J. Inf. Technol. Softw. Eng. 2015,
5, 162. [CrossRef]

39. Munir, M.S.; Bajwa, I.S.; Naeem, M.A.; Ramzan, B. Design and implementation of an IoT system for smart energy consumption
and smart irrigation in tunnel farming. Energies 2018, 11, 3427. [CrossRef]

40. Furizal, F.; Sunardi, S.; Yudhana, A. Temperature and Humidity Control System with Air Conditioner Based on Fuzzy Logic and
Internet of Things. J. Robot. Control 2023, 4, 308–322.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TFUZZ.2015.2426212
http://dx.doi.org/10.1109/5.364488
http://dx.doi.org/10.1109/91.544301
http://dx.doi.org/10.1109/TII.2012.2228871
http://dx.doi.org/10.1016/S0020-7373(75)80002-2
http://dx.doi.org/10.3390/sym15020475
http://dx.doi.org/10.1016/j.ijleo.2020.164668
http://dx.doi.org/10.1016/j.suscom.2022.100749
https://www.terasic.com
http://dx.doi.org/10.4172/2165-7866.1000162
http://dx.doi.org/10.3390/en11123427

	Introduction
	Theoretical Background 
	Mamdani Fuzzy Inference System
	Fuzzification
	Inference
	Defuzzification


	Related Work
	Experimental Test and Results
	FIS VHDL Design
	Graphic User Interface Design

	Experimental Test and Results
	Experimental Setup and Tools
	Description of Problem
	Experimentation Procedure
	Experimental Results

	Performance Comparison and Discussion
	Conclusions
	References

