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Abstract: An intrusion detection system (IDS) plays a critical role in maintaining network security by
continuously monitoring network traffic and host systems to detect any potential security breaches
or suspicious activities. With the recent surge in cyberattacks, there is a growing need for auto-
mated and intelligent IDSs. Many of these systems are designed to learn the normal patterns of
network traffic, enabling them to identify any deviations from the norm, which can be indicative of
anomalous or malicious behavior. Machine learning methods have proven to be effective in detecting
malicious payloads in network traffic. However, the increasing volume of data generated by IDSs
poses significant security risks and emphasizes the need for stronger network security measures. The
performance of traditional machine learning methods heavily relies on the dataset and its balanced
distribution. Unfortunately, many IDS datasets suffer from imbalanced class distributions, which
hampers the effectiveness of machine learning techniques and leads to missed detection and false
alarms in conventional IDSs. To address this challenge, this paper proposes a novel model-based
generative adversarial network (GAN) called TDCGAN, which aims to improve the detection rate
of the minority class in imbalanced datasets while maintaining efficiency. The TDCGAN model
comprises a generator and three discriminators, with an election layer incorporated at the end of the
architecture. This allows for the selection of the optimal outcome from the discriminators” outputs.
The UGR’16 dataset is employed for evaluation and benchmarking purposes. Various machine
learning algorithms are used for comparison to demonstrate the efficacy of the proposed TDCGAN
model. Experimental results reveal that TDCGAN offers an effective solution for addressing imbal-
anced intrusion detection and outperforms other traditionally used oversampling techniques. By
leveraging the power of GANs and incorporating an election layer, TDCGAN demonstrates superior
performance in detecting security threats in imbalanced IDS datasets.

Keywords: Generative Adversarial Network; Intrusion Detection System; imbalanced dataset;
machine learning; unsupervised learning

1. Introduction

The process of data science comprises multiple stages, starting with the collection
of a dataset, followed by its preparation and exploration, and eventually modeling the
data to yield solutions. However, since different problem domains have varying datasets,
the data-gathering process may uncover various issues within the dataset that must be
addressed and rectified before proceeding with data modeling. Successfully handling these
problems can significantly impact the model’s accuracy.

One application where machine learning methods are widely used is intrusion detec-
tion systems (IDSs) [1,2]. IDS is employed to monitor the network traffic and identify any
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unauthorized efforts to access that network through the analysis of incoming and outgoing
actions, with the aim of detecting indications of potentially harmful actions [3].

Machine learning (ML) methods, such as supervised network intrusion detection, have
demonstrated satisfactory effectiveness in identifying malicious payloads within network
traffic datasets that are annotated with accurate labeling. Nevertheless, the substantial
growth in network scale and the proliferation of applications processed by network nodes
have led to an overwhelming volume of data being shared and transmitted across the
network. Consequently, this has given rise to significant security threats and underscored
the urgency to enhance network security. As a result, numerous researchers have focused
their efforts on enhancing intrusion detection systems (IDSs) by improving the detection
rate for both novel and known attacks, while concurrently reducing the occurrence of false
alarms (false alarm rate or FAR) [1]. Unsupervised intrusion detection techniques have
emerged as a solution that eliminates the need for labeled data [4]. These methods can
effectively train using samples from a single class, typically normal samples, aiming to
identify patterns that deviate from the training observations. However, the accuracy of
these unsupervised learning approaches tends to decline when faced with imbalanced
datasets, where the number of samples in one class significantly exceeds or falls short of
the number of samples in other classes.

To tackle the issue of imbalanced datasets, oversampling techniques are frequently
employed. Traditional approaches utilize interpolation to generate samples among the
nearest neighbors, such as the synthetic minority oversampling technique (SMOTE) [5] and
the adaptive synthetic sampling technique (ADASYN) [6]. However, a novel generative
model called the generative adversarial network (GAN) has emerged, providing a fresh
framework for sample generation [7]. GAN allows the generator to effectively learn data
features by engaging in a game-like interaction with the discriminator to simulate data
distributions. GAN has demonstrated remarkable advancements in generating images,
sounds, and texts [8-10]. As a result, researchers from various domains are increasingly
incorporating this method into their research endeavors.

This paper proposes a new oversampling technique based on GAN applied for IDS
considering the viewpoint of imbalanced data. The new model is called the triple dis-
criminator conditional generative adversarial network (TDCGAN). This model consists of
one generator and three discriminators with an added layer at the end for election. The
TDCGAN employs a structure comprising a single generator and three discriminators.
The generator utilizes random noise from a latent space as input and produces synthetic
data that closely resemble real data, with the intention of evading detection by the dis-
criminators. Each discriminator is a deep neural network with distinct architecture and
parameter settings. Their primary task is to extract features from the generator’s output
and classify the data with varying levels of accuracy, differing for each discriminator. A
new layer called the election layer is incorporated at the end of the TDCGAN architecture.
This layer receives the outputs from the three discriminators and conducts an election
procedure to determine the optimal outcome, selecting the result that achieves the highest
classification accuracy. This process resembles an ensemble method, where multiple inputs
are combined to produce a superior result. The generator model is designed as a deep
multi-layer perceptron (MLP) comprising an input layer, an output layer, and four hidden
layers. The initial hidden layer consists of 256 neurons, while an embedded layer is em-
ployed between the hidden layers to effectively map input data from a high-dimensional
space to a lower-dimensional space. The second hidden layer comprises 128 neurons,
followed by a third hidden layer with 64 neurons, and a final hidden layer with 32 neu-
rons. The ReLU activation function is applied to all of these layers, and a regularization
dropout of 20% is included to prevent overfitting. The output layer is activated using the
Softmax activation function, with 14 neurons corresponding to the number of features
in the dataset. Each discriminator within the TDCGAN architecture is implemented as
an MLP model, featuring distinct configurations in terms of hidden layers, number of
neurons, and dropout percentages. The first discriminator consists of three hidden layers,
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with each layer containing 100 neurons and a dropout regularization of 10%. The second
discriminator includes five hidden layers with varying neuron counts—64, 128, 256, 512,
and 1024—for each respective layer. A dropout percentage of 40% is applied in this case.
The last discriminator is composed of four hidden layers with 512, 256, 128, and 64 neurons
per layer, accompanied by a 20% dropout percentage. The LeakyReLU activation function
with an alpha value of 0.2 is employed for the hidden layers in all discriminators. Two
output layers are utilized for each discriminator, with the Softmax activation function
applied to one output layer and the sigmoid activation function to the second output layer.
The model is trained using two loss functions: binary cross entropy for the first output
layer and categorical cross-entropy loss for the second output layer. The output from each
discriminator is extracted and fed into the final layer of the model, where the election
process takes place to determine the best result. The dataset [11] used in this paper to
evaluate and test our model is the UGR’16 dataset. There are many datasets for IDSs, such
as KDD CUP 99-1998, CICIDS2017, DARPA-1998 and more [12]; we chose UGR’16, because
it is built with real traffic and up-to-date attacks.

This paper makes two main contributions. Firstly, it addresses the issue of high-class
imbalance by analyzing the UGR’16 dataset. Secondly, it conducts evaluations on this
dataset using several commonly used machine learning algorithms for data balancing.

The rest of this paper is organized as follows: Section 2 presents some of the relevant
studies in this topic. Section 3 gives an overview about IDS and UGR’16 dataset. Section 4
proposes the TDCGAN model. The design, execution and results are given in Section 5.
Finally, Section 6 gives the conclusion and future works.

2. Related Works

The impact of data resampling on machine learning model performance has been
analyzed in multiple studies, since this issue can result in diminished predictive capabilities
of the model.

The concept of employing GAN models to address the class imbalance problem is
introduced by Lee and Park in reference [13]. In general, GAN is an unsupervised learning
technique rooted in deep learning and generates synthetic data that closely resembles the
existing data. The authors in this work used GAN to effectively tackle fitting issues, class
overlaps, and noise through the process of resampling by explicitly defining the desired
rare class. To evaluate the classifier’s performance, the re-sampled data are trained using
the widely adopted machine learning technique called random forest (RF). The proposed
solution demonstrates superior performance compared to the methods currently utilized.
Hajisalem and Babaie in the study referenced in [14] apply swarm intelligence optimization
heuristics, specifically artificial fish swarm (AFS) and bee colony optimization (BCO), for
the anomaly detection process. The detection approach proposed in that research focuses
on reducing the subset of characteristics.

The study referenced in [15] presents a novel solution that applies an optimum allo-
cation technique to efficiently manage large datasets by selecting the most representative
samples. This approach aims to develop a new network intrusion detection system (NIDS)
based on the least support vector machine (LSVM). The samples are arranged based on
the desired confidence interval and the number of observations. The authors in [16] aimed
to tackle the problem arising from the increasing quantity and diversity of network at-
tacks, which leads to insufficient data during the training phase of machine learning-based
intrusion detection systems (IDSs). The authors addressed this issue by examining a con-
siderable number of network datasets from recent years. Each dataset’s limitations, such
as a shortage of attack instances and other issues, are identified. As a result, Kumar, et
al. proposed a new dataset that aims to resolve, or at least alleviate, the encountered
problem [17].

The authors introduced a new IDS system designed to address five common con-
ventional attacks. In this solution, the author constructs a new dataset that surpasses
the UNSW-NB15 dataset. A misuse-based strategy is employed to create a fresh dataset,
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and a gain information technique is applied to collect features from the original UNSW-
NB15 dataset.

Another IDS solution based on GAN was proposed in [18]. Due to the limited number
of known attack signatures for vehicle networks, the author employ the concept of generat-
ing unknown attacks during the training process to enable the IDS to effectively handle
various types of attacks. In the context of vehicle IDS, accuracy is of the utmost importance
to ensure driver safety, as any false positive error could have serious consequences. Tradi-
tional IDS approaches are inadequate for dealing with numerous new and undiscovered
attacks that may arise. The proposed GAN-based IDS solution successfully detects four
previously unknown attacks. The authors in [19] propose a novel method by combining
ADASYN and RENN techniques. This approach aims to tackle the imbalances between
negative and positive instances in the initial dataset, as well as addressing the issue of
feature redundancy. The RF algorithm and Pearson correlation analysis are employed to
select the most relevant features. In conclusion, the studies presented in this section cover
various approaches and techniques for addressing challenges in machine learning-based
intrusion detection systems (IDSs) and class imbalance problems. The introduction of GAN
models in reference [13] offers a promising solution by generating synthetic data to tackle
class imbalances, resulting in improved model performance. The utilization of swarm
intelligence optimization heuristics, such as artificial fish swarm (AFS) and bee colony opti-
mization (BCO), for anomaly detection as described in reference [14] focuses on reducing
the subset of characteristics to enhance detection accuracy. Another study referenced in [15]
introduced an innovative approach that efficiently manages large datasets for network
intrusion detection systems (NIDS). Addressing the problem of insufficient data during the
training phase of IDS, the study mentioned in [16] examined multiple network datasets
and proposed a new dataset to alleviate the limitations caused by increasing network
attacks. Overall, these studies contribute valuable insights and propose effective solutions
to enhance the performance and capabilities of intrusion detection systems in the face of
various challenges, such as class imbalance, limited data, and emerging attack types.

3. UGR’16 Dataset

In this paper, the UGR’16 dataset [11] is used to test the performance of the proposed
model and achieve data balancing. The data are sourced from multiple netflow v9 collectors
that are strategically positioned within the network of a Spanish ISP. An ISP is an Internet
Service Provider. It provides access to Internet for many different hosts (most of them
inside private networks, like homes or companies). The main aspects of the ISP network
infrastructure are as follows:

*  Netflow probes are set up on the outgoing network interfaces of two redundant border
routers, BR1 and BR2, which enable access to the Internet. This configuration allows
for the collection of all incoming and outgoing connections.

e The ISP has two different subnetworks. One is termed the core network, where the
services that are not protected by a firewall are located. The second is the inner
network, where firewall services are provided to the clients.

* At the highest level, there is a network of attacker machines consisting of five units,
designated as A1-A5.

¢ Within the core network, five victim machines specifically for dataset collection pur-
poses are set up. These machines, named V11-V15, are located alongside genuine
clients in an existing network referred to as victim network V1.

¢ In relation to the inner network, a collective of 15 additional victim machines is
positioned across three separate existing networks, with each network consisting of
5 machines. These networks are designated as victim network V2 (machines V21-V25),
victim network V3 (machines V31-V35), and victim network V4 (machines V41-V45).

The entire dataset comprises two distinct sets: a calibration and a testing set. The
calibration set is used in constructing and adjusting the machine learning models. This
set contains attacks, but they are not controlled, nor labeled, and data that were recorded
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between March and June 2016. it includes inbound and outward ISP network traffic. The
testing set, acquired in July and August of 2016, is used to evaluate the models in the
detection process. For both the calibration and test sets, the collected files are consolidated
into a single file per week for each of the two capture periods. These files are typically
compressed tar files with an average size of approximately 14 GB. The calibration set
consists of 17 files, while the test set comprises 6 files. To anonymize the IP addresses of the
machines in the dataset, the CryptoPan prefix-preserving anonymization technique [20]
was applied. This anonymization process is carried out using the nfanon tool [21]. Table 1
contains the list of different attacks with their corresponding labels in the UGR’16 dataset.

Table 1. List of attacks in UGR’16 dataset.

Attack Label Description
One-to-one DoS (denial of service) attack, where the
DoS11 DoS attacker A1 attacks the victim V21
DoS53s DoS The five attackers A1-A5 .attack three of the victims, each
one at a different network
DoS53a DoS The attacks a.re .exeicuted as 11.1 DoS53s, but now every
victim is sequentially selected
One-to-one scan attack, where the attacker A1l scans the
Scanll Scanll ..
victim V41
Four-to-four scan attack, where the attackers A1, A2, A3
Scan44 Scanl4 and A4 initiate a scan at the same time to the victims V21,
V11, V31 and V41
Botnet Nerisbotnet Mixing botnfet captures Fecorded elsewhere in a Fontrolled
environment with our background traffic
IP in blacklist Blacklist It is an attack of class signature
UDP Scan Anomaly-udpscan Depending on the source port of the connection, each

victim host is scanned through a specific range of 60 ports

SSH Scan

Anomaly-sshscan

An anomaly attack

SPAM

Anomaly-spam

An anomaly attack

The artificial attack traffic was generated in 2h batches, during which all attack variants
were executed. There are two possible scheduling patterns for the execution of the attack
variants within each batch:

1.  Planned scheduling: every attack within the batch is executed at a predetermined and
known time, which is determined by an offset from the initial batch time, denoted
as t0.

2. Random scheduling: the initial time for the execution of each of the attacks is randomly
selected between t0 + 00h00m and t0 + 01h50m, thus restricting the total duration of
the batch to a maximum of 2h.

The UGR’16 is created based on packet and flow data. It contains 16,900,000,000 anony-
mous network traffic flows. The network flow features are derived from actual network
traffic, and these features are detailed in Table 2.

The UGR’16 dataset is divided into 23 compressed files, each of which is assigned
to a particular week. Based on this, 16 of the files are assigned to the calibration class of
datasets, and the remaining 6 to the test class. The size of each file is around 14 GB in the
compressed format, and they can be downloaded in the csv format.
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Table 2. UGR’16 dataset network flow features.

Number Feature Name Type
1 Timestamp date-time
2 Flow duration continuous numeric
3 Source IP address categorical
4 Source IP address categorical
5 Source port number discrete numeric
6 Destination port number discrete numeric
7 Protocol categorical
8 Flag categorical
9 Forwarding status numeric
10 Source type of service discrete numeric
11 Total number of packets Continuous numeric
12 Total number of bytes Continuous numeric
13 Class (Label) categorical

4. Proposed Model
4.1. Data Preparation

The UGR-16 dataset used in this paper contains 16.9 billion records. While the deep
learning algorithms require high hardware resources, such as CPU, memory and GPU
for data processing and training, a subset of data points that cover all types of normal
and anomalous traffic from UGR’16 dataset was selected. The subset selection, which
included all types of attacks, was conducted using specific measures to prevent imbalanced
distributions and bias. The following measures were put in place:

e  Stratified sampling: The subset selection process employed stratified sampling tech-
niques to ensure proportional representation of each type of attack. This approach
helped maintain a balanced distribution of attacks in the subset.

*  (lass balancing: Additional steps were taken to balance the representation of different
attack types in the subset. This might include oversampling the minority classes or
undersampling the majority classes to mitigate the imbalanced distribution.

¢ Randomization: To minimize any potential bias, randomization techniques were
applied during the subset selection process. This ensured that the selection was not
influenced by any specific order or predetermined biases.

By implementing these measures, the subset selection aimed to create a representative
subset of attacks that avoided imbalanced distributions and potential biases, enabling a
more reliable analysis of the dataset.

This subset was then pre-processed, including cleaning it from the missing values and
removing the duplicate instances. The details of the selected subset are shown in Table 3.

Table 3. UGR’16 subset details.

From To Class Label Counts Percentage
27 July 2016 31 July 2016 background 197,185 98.5%
27 July 2016 31 July 2016 dos 1169 0.6%
27 July 2016 31 July 2016 scan44 578 0.3%
27 July 2016 31 July 2016 blacklist 545 0.3%
27 July 2016 31 July 2016 nerisbotnet 227 0.1%
27 July 2016 31 July 2016 anomaly-spam 170 0.1%
27 July 2016 31 July 2016 scanll 126 0.1%

Within the context of network security, normal traffic tends to occur more often than
malicious traffic, leading to imbalanced class proportions and an imbalanced dataset [22].
This poses a challenge for machine learning, as learning from imbalanced data is a common
issue. In order to address this problem, one potential solution is to either undersample the
majority class or oversample the minority classes.
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In this paper, dataset records with class labels equal to the background are major. The
other class labels are oversampled to obtain a balanced subset of the UGR"16 dataset. The
original number of records and classes of the selected subset is given in Table 3.

Since machine learning algorithms work with numerical data, some features in the
dataset need to be encoded: protocol, source IP, destination IP and class label. One-hot
encoded is used to convert these features. The dataset is then scaled using MinMaxScaler
from the Scikit-learn library to scale the values to the interval [0,1].

Random forest classifier is used to explore the features importance based on mean
decrease in impurity (MDI). The calculation for a given feature’s importance involves
summing the number of splits that incorporate the feature across all trees, proportional to
the number of samples that it splits. Figure 1 shows the highest numerical features of the
UGR'’16 dataset based on MDI value. In the proposed model, all the features are included
in the process, being the most important feature is the Source_IP.

0.25000
0.20000
0.15000
0.10000
0.05000 | I
0.00000 n 0 I ] I
\&\0({:9 Q’o“;% Q‘b Q@& L}Q O\Q Q 0 <& Q'b(’ %\‘}z N Qfg?o €

Figure 1. The highest numerical features of the UGR’16 dataset based on the mean decrease in
impurity (MDI).

4.2. Setup of Proposed Model

The generative adversarial network (GAN) is a machine learning-based deep learning
method used to generate new data. It is an unsupervised learning task that involves learn-
ing from input data to produce new samples from the original dataset. GAN is used in the
literature in many applications, such as computer vision [23], time-series applications [24],
health [25] and more, making significant advancement and outperformance in data gen-
eration. As many improvements and versions for the GAN are proposed, in order to fit
it with the application domain and increase the performance and model accuracy [26,27],
this paper proposes a new version of GAN called triple discriminator conditional gener-
ative adversarial networks (TDCGANSs) as an augmentation tool to generate new data
for the UGR’16 dataset with the aim to restore balance in the dataset by increasing minor
attack classes.

In the TDCGAN, the architecture consists of one generator and three discriminators.
The generator takes random noise from a latent space as input and generates raw data
that closely resemble the real data, aiming to avoid detection by discriminators. Each
discriminator is a deep neural network with different architecture and different parameter
settings. Each discriminator’s role is to extract features from the output of the generator and
classify the data with varying levels of accuracy for each them. An election layer is added
to the end of TDCGAN architecture that obtains the output from the three discriminators
and performs an election procedure to achieve the best result with the highest classification
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accuracy in a form of the ensemble method. The model aims to classify data into two
groups: normal flows for the background traffic with 0 representation, and anomaly flows
for the attack data with 1 representation. Additionally, in the case of anomaly flow, the
model classifies it as its specific class type. Figure 2 shows the workflow of the proposed
TDCGAN model. The setting details of generator and each discriminator are given below.

Sample/ / "\

Dataset

Discriminator-1

Noise

|~—b Generator Falze Discriminator-2 e Loss -
Samples |_' Layer Calculation

Discriminator-3

EE—

Training
Discriminators

Training
Generator

Figure 2. Workflow of TDCGAN model.

The model of the generator is a deep multi-layer perceptron (MLP) composed of an
input layer, output layer and four hidden layers. Initially, the generator takes a point from
the latent space to generate new data. The latent space is a multi-dimensional hypersphere
normal distributed points, where each variable is drawn from the distribution of the data
in the dataset. An embedded layer in the generator creates a vector representation for the
generated point. Through training, the generator learns to map points from the latent space
into specific output data, which are different each time the model is trained. Taken a step
further, new data are then generated using random points in the latent space. So, these
points are used to generate specific data. The discriminator distinguishes the new data
generated by the generator from the true data distribution.

GAN is an unsupervised learning method. Both the generator and discriminator
models are trained simultaneously [28]. The generator produces a batch of samples,
which, along with real examples from the domain, are fed to the discriminator. The
discriminator then classifies them as either real or fake. Subsequently, the discriminator
undergoes updates to improve its ability to distinguish between real and fake samples in
the subsequent round. Additionally, the generator receives updates based on its success or
failure in deceiving the discriminator with its generated samples.

In this manner, the two models engage in a competitive relationship, exhibiting
adversarial behavior in the context of game theory. In this scenario, the concept of zero-sum
implies that when the discriminator effectively distinguishes between real and fake samples,
it receives a reward, or no adjustments are made to its model parameters. Simultaneously,
the generator is penalized with significant updates to its model parameters.

Alternatively, when the generator successfully deceives the discriminator, it receives a
reward, or no modifications are made to its model parameters. Whereas, the discriminator
is penalized. This is the generic GAN approach.

In the proposed TDCGAN model, the generator takes as input points from the latent
space and produces data for the data distribution of the real data in the dataset. This is done
through fully connected layers with four hidden layers, one input layer and one output
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layer. The discriminators try to classify the data into their corresponding class, which is
done through a fully connected MLP network.

MLP has gained widespread popularity as a preferred choice among neural net-
works [29,30]. This is primarily attributed to its fast computational speed, straightforward
implementation, and ability to achieve satisfactory performance with relatively smaller
training datasets.

In this paper, the generator model learns how to generate new data similar to the minor
class in the URG’16 dataset, while discriminators try to distinguish between real data from
the dataset and the new one generated by generator. During the training process, both the
generator and discriminator models are conditioned on the class label. This conditioning
enables the generator model, when utilized independently, to generate minor class data
within the domain that corresponds to a specific class label. The TGCGAN model can be
formulated by integrating both the generator and three discriminators’ models into a single,
larger model.

The discriminators undergo separate training, where each of the model weights are
designated as non-trainable within the TDCGAN model. This ensures that solely the
weights of the generator model are updated during the training process. This trainability
modification specifically applies when training the TDCGAN model, not when training the
discriminator independently. So, the TDCGAN model is employed to train the generator’s
model weights by utilizing the output and error computed by the discriminator models.

Thus, a point in the latent space is provided as input to the TDCGAN model. The
generator model creates the data based on this input, which is subsequently fed into the
discriminator model. The discriminator then performs a classification, determining whether
the data are real or fake, and in the case of fake data, the model classifies them to their
corresponding type of attck.

The generator takes a batch of vectors (z), which are randomly drawn from the
Gaussian distribution, and maps them to G(z), which has the same dimension as the
dataset. The discriminators take the output from the generator and try to classify it. The
loss is then evaluated between the observed data and the predicted data and is used to
update the weights of the generator only to ensure that only generator weights are updated.
The difference between the observed data and the predicted data is estimated using the
cross-entropy loss function, which is expressed in the following equation:

N
[LOSS]|cE = —=1/N 'Y _ yilog(p(yi)) + (1 — y;).log[(1 — p(y;)] 1)

n=1

where y; is the true label (1 for malicious traffic and 0 for normal traffic) and p(y;) is the
predicted probability of the observation (i) calculated by the sigmoid activation function.
N is the number of observations in the batch.

The generator model has four hidden layers. The first one is composed of 256 neurons
with a rectified linear unit (ReLU) activation function. An embedded layer is used between
hidden layers to efficiently map input data from a high-dimension to lower-dimension
space. This allows the neural network to learn the data relationship and process it efficiently.
The second hidden layer consists of 128 neurons, the third has 64 neurons and the last one
has 32 neurons, with the ReLU activation function used with them all, and a regularization
dropout of 20% is added to avoid overfitting. The output layer is activated using the
Softmax activation function with 14 neurons as the number of features in the dataset.

After defining the generator, we define the architecture of each discriminator in the
proposed model. Each discriminator is a MLP model with a different number of hidden lay-
ers, different number of neurons and different dropout percentage. The first discriminator
is composed of 3 hidden layers with 100 neurons for each and 10% dropout regulariza-
tion. The second has five hidden layers with 64, 128, 256, 512, and 1024 neurons for each
layer, respectively. The dropout percentage is 40%. The last discriminator has 4 hidden
layers with 512, 256, 128, and 64 neurons for each layer and 20% dropout percentage.
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The LeakyReLU(alpha = 0.2) is used as an activation function for the hidden layers in
the discriminators. Two output layers are used for each discriminator with the Softmax
function as an activation function for one output layer and the Sigmoid activation function
for the second output layer. The model is trained with two loss functions, binary cross
entropy for the first output layer, and categorical cross-entropy loss for the second output
layer. The output is extracted from each discriminator and is then fed to the last layer in
the model, where the election is performed, to obtain the best result.

The TDCGAN model can be defined by combining both the generator model and the
three discriminator models into one larger model. This large model is used to train the
weights in the generator model, using the output and error calculated of the discriminators.
The discriminators are trained separately by taking real input from the dataset.

The model is then trained for 1000 epochs with a batch size of 128. The optimizer is
Adam with a learning rate equal to 0.0001. The proposed model allows the generator to
train until it produces a new set of data samples that resembles the real distribution of the
original dataset.

Nevertheless, this training strategy frequently fails to function effectively in various
application scenarios. This is due to the necessity of preserving the relationships within
the feature sets of the generated dataset by the generator, while the dataset used by the
discriminator may differ from it. This disparity often leads to instability during the training
of the generator.

In numerous instances, the discriminator quickly converges during the initial stages
of training, thereby preventing the generator from reaching its optimal state. To tackle
this challenge in network intrusion detection tasks, we adopt a modified training strategy,
where three discriminators with different architectures are used. This approach helps
preventing the early emergence of an optimal discriminator, ensuring a more balanced
training process between the generator and discriminators.

4.3. Training Phase

The primary objective of the training methodology employed in the GAN framework
is for the generator to generate fake data that closely resemble real data, and for the
discriminator to acquire sufficient knowledge to differentiate between real and fake samples.
Both the generator and discriminator are trained until the discriminator can no longer
distinguish real data from fake data. This mean that the generated network can estimate
the data sample’s distribution and achieve Nash equilibrium.

In order to assess the performance of our model with precision, it is customary to
divide the data into training and test sets to produce accurate predictions on unseen data.
The training set is utilized for model fitting, while the test set is employed to measure
the predictive precision of the trained model. The dataset is split into 70% for training
and validation and 30% for testing. The training set is divided into minor class data and
other class data. The TDCGAN model uses the minor class to generate data. The generator
is trained to model the distribution of the anomaly data (minor class), while fixing the
discriminator. The output from the generator is fed as input to the discriminator to predict it.
The error is estimated, and the generator’s weight is then updated. The training continues
until the discriminator cannot distinguish if the input data come from the generator’s
output or from the real anomaly dataset. In the training process, we make sure that all
architectures undergo an equal number of epochs and that the weights from the final epoch
are selected to generate artificial attack samples.

We begin by adhering to this iterative training procedure and ultimately utilize the
generator to produce attack samples. Eventually, we incorporate the generated attack
samples into the training set.

By this, we oversample minor classes in the dataset during the training phase. The
test dataset is then used to test the model performance.
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5. Experimental Results

Within this section, we methodically plan and execute a sequence of experiments, and
subsequently analyze the obtained results.

5.1. Experimental Setup

Our experiments were carried out on the Python Colab Jupyter notebook that runs in
the browser with the integrated free GPUs and freely installed Python libraries. The system
setup is shown in Table 4.

Table 4. System environment specifications.

Unit Description
Processor Intel® Xeon®
CPU 2.30 GHz with No.CPUs 2
RAM 12 GB
(O]
Packages TensorFlow 2.6.0

5.2. Performance Metrics

To assess the effectiveness of our proposed model, we employ performance metrics,
such as classification accuracy, precision, recall, and F1 score.

We utilize the metric of accuracy (Acc) to quantify the correct classification of data sam-
ples, considering all predictions made by the model as measured by the following equation:

Acc = (TP +TN)/(TP + TN + FP + FN) @)

where TP is the true positive, which represents the number of truly predicted anomalies;
TN is the true negative, which indicates the number of truly predicted normal instances;
FP is the false positive indicator that denotes the number of normal instances that are
incorrectly classified as anomalies; and FN is the false negative indicator that indicates the
number of the number of anomalies that are misclassified as normal.

Precision is employed to assess the accuracy of the correct predictions, calculated as
the ratio of accurately predicted samples to the total number of predicted samples for a
specific class as given in the following equation:

Precision = TP/ (TP + FP) ©)]

Recall, which is known as the true positive rate (T PR), is used to determine the ratio
of correctly predicted samples of a particular class to the total number of instances within
the same class as given by the following equation:

TPR(Recall) = TP/ (TP + FN) (4)
Finally, the F1 score computes the balance between precision and recall, evaluating
the trade-off between the two metrics as given in the following equation:

F1 = 2 x ((Precision x Recall) / (Precision + Recall)) ®)

5.3. Experimental Results and Analysis

The performance of the TDCGAN model is evaluated on the testing dataset. The
previous metrics are used to evaluate and compare the results. The results after training
the TDCGAN model for URG’16 dataset balancing are given in Table 5.
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Table 5. Performance evaluation metrics score for TDCGAN model.

Accuracy Precision F1 Score Recall

0.95 0.94 0.94 0.96

Figure 3 shows the loss function while training the model for different numbers of
epochs: 200, 400, 600, 800 and 1000.

Generator and Discriminators Loss

Loss

0 200 400 600 800 1000
Iterations

Figure 3. The loss function of G: generator, D_A: first discriminator, D_B: second discriminator and

D_C: third discriminator in the TDCGAN model.

We compare the performance of the TDCGAN model for data balancing on the testing
dataset with some resampling methods. The methods are as follows: (1) The synthetic
minority oversampling technique (SMOTE) is a method for oversampling that produces
artificial instances from the minor class. Its purpose is to create a training set that is
either synthetically balanced or close to balance in terms of class distribution, which is
subsequently utilized for classifier training. We use the implementations provided in
the imbalanced-learn Python library, which provides a range of resample techniques that
can be combined for evaluation comparison. (2) Random oversampling is used, which
randomly duplicates the instances from the minor class. (3) Then, we combine SMOTE
with edited nearest neighbor (ENN) SMOTEENN. (4) With Borderline-SMOTE (oversample
technique using Borderline-SMOTE), the minority instances which are near the borderline
are oversampled. (5) SVMSMOTE combines the support vector machine (SVM) with
SMOTE. (6) We oversample using SMOTE-Tomek Links. Tomek Links denotes a technique
used to detect pairs of closest neighbors within a dataset that exhibit dissimilar classes.
Eliminating either one or both instances from these pairs, particularly those from the
majority class, results in a reduction in noise or ambiguity within the decision boundary
of the training dataset. (7) SMOTE_NC (synthetic minority over-sampling technique for
nominal and continuous) is used to oversample data with categorical features. (8) CGAN
(conditional generative adversarial network) is a conditional GAN that generates data under
a conditional generation. Lastly, (9) CTGAN (conditional tabular generative adversarial
networks) models tabular data using CGAN. The results are listed in Table 6 and shown in
Figure 4.
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Table 6. Performance evaluation metrics score for TDCGAN model and other resampling methods.

Model Accuracy Precision F1 Score Recall
SMOTE 0.88 0.86 0.87 0.91
Random Oversampling 0.85 0.89 0.90 0.88
SMOTEENN 0.86 0.89 0.90 0.89
The Borderline SMOTE 0.84 0.87 0.87 0.88
SVMSMOTE 0.89 0.90 091 0.89
SMOTE-Tomek Links 0.90 0.87 0.89 0.87
SMOTE_NC 0.85 0.88 0.86 0.85
CGAN 0.83 0.83 0.83 0.83
CTGAN 0.76 0.76 0.76 0.76
TDCGAN 0.95 0.94 0.94 0.96
1.2
1
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Figure 4. Performance evaluation metrics score for TDCGAN model and other resampling methods.

After conducting extensive experiments on UGR’16 dataset, our proposed model
showcases its remarkable effectiveness in generating synthetic network traffic datasets,
which in turn aids in the identification of anomalous network traffic. Through bench-
marking, our model surpassed other similar generative models, achieving an impressive
accuracy of over 0.95%.

6. Conclusions and Future Works

The imbalanced distribution of attacks in historical network traffic presents a signifi-
cant challenge for intrusion detection systems (IDSs) based on traditional machine learning
methods. These methods often struggle to effectively address the issue of imbalanced
learning. In response, this paper introduces a novel technique called TDCGAN, a tech-
nology based on generative adversarial networks (GANSs), specifically designed to tackle
the problem of imbalanced datasets in IDS. The proposed TDCGAN model consists of a
generator and three discriminators, all implemented using multi-layer perceptron (MLP)
networks. This architecture allows the generator to generate synthetic data closely resem-
bling real network traffic, while the discriminators aim to differentiate between genuine and
attack traffic. To further enhance the TDCGAN framework, an additional layer is added
at the end of the network to select the optimal outcome from the outputs produced by
the three discriminators, enhancing the overall performance of the model. To evaluate the
effectiveness of the proposed approach, the UGR16 dataset, widely used in IDS research,
is utilized for testing and evaluation purposes. A subset of the dataset is extracted and
divided into training and testing sets. The experimental results showcase the outstanding
performance of the proposed TDCGAN model across various evaluation metrics, including
accuracy, precision, F1 score, and recall. Additionally, a comparison is made with other
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oversampling machine learning techniques, highlighting the superiority of the proposed
method. While balancing datasets can be beneficial, it is important to note that it might
not always be necessary or feasible, especially in cases where the class imbalance reflects
the real-world distribution. In many real-world applications, the distribution of classes is
often imbalanced. For instance, fraud detection, disease diagnosis, or rare event prediction
typically involve imbalanced datasets. By balancing the dataset during training, the model
learns to handle these imbalances and becomes more effective in addressing real-world
scenarios. Additionally, balancing the dataset should be performed carefully to avoid
introducing artificial patterns or losing valuable information from the original data.

As for future work, the proposed TDCGAN model shows promise for application in
IDS within a vehicle ad hoc network (VANET) environment to detect unknown attacks.
This opens up avenues for further research and development in leveraging the capabilities
of TDCGAN for enhanced intrusion detection in dynamic vehicular networks.
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