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Abstract: Sign language recognition (SLR) aims to bridge speech-impaired and general communities
by recognizing signs from given videos. However, due to the complex background, light illumination,
and subject structures in videos, researchers still face challenges in developing effective SLR systems.
Many researchers have recently sought to develop skeleton-based sign language recognition systems
to overcome the subject and background variation in hand gesture sign videos. However, skeleton-
based SLR is still under exploration, mainly due to a lack of information and hand key point
annotations. More recently, researchers have included body and face information along with hand
gesture information for SLR; however, the obtained performance accuracy and generalizability
properties remain unsatisfactory. In this paper, we propose a multi-stream graph-based deep neural
network (SL-GDN) for a skeleton-based SLR system in order to overcome the above-mentioned
problems. The main purpose of the proposed SL-GDN approach is to improve the generalizability
and performance accuracy of the SLR system while maintaining a low computational cost based on
the human body pose in the form of 2D landmark locations. We first construct a skeleton graph based
on 27 whole-body key points selected among 67 key points to address the high computational cost
problem. Then, we utilize the multi-stream SL-GDN to extract features from the whole-body skeleton
graph considering four streams. Finally, we concatenate the four different features and apply a
classification module to refine the features and recognize corresponding sign classes. Our data-driven
graph construction method increases the system’s flexibility and brings high generalizability, allowing
it to adapt to varied data. We use two large-scale benchmark SLR data sets to evaluate the proposed
model: The Turkish Sign Language data set (AUTSL) and Chinese Sign Language (CSL). The reported
performance accuracy results demonstrate the outstanding ability of the proposed model, and we
believe that it will be considered a great innovation in the SLR domain.

Keywords: sign language recognition (SLR); large scale dataset; American Sign Language; Turkish
Sign Language; Chinese Sign Language; AUTSL; CSL

1. Introduction

Sign language is a spatial type of visual language based on dynamic gesture movement,
including hand, body, and facial gestures [1–7]. It is the language used by those communi-
ties who do not speak or hear anything spatially, including the deaf and speech-impaired
people. Due to the difficulties and complexity of sign language, such as the considerable
time required to understand and utilize it, the non-deaf community is generally not eager
to learn this language to establish communication with those specialized disabled people.
In addition, teaching this language to the non-deaf community to communicate with the
minor community is not practical or feasible. Moreover, there are no common interna-
tional versions of sign language, and it differs with respect to several languages, such as
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Bangla [3], Turkish [8], Chinese [9], and English [10], as well as culture [1,4,11]. To establish
effective communication between the non-deaf community and the deaf community, a sign
language translator is needed; however, it is rare to find expert sign language interpreters.
In this context, researchers believe that automatic sign language recognition (SLR) can
effectively address these problems [3–6].

Researchers have worked to develop SLR systems with the help of computer vi-
sion [3,4,12], sensor-based methods [5,6,12–19], and artificial intelligence, in order to facili-
tate communication for deaf and hearing impaired people. Many researchers have recently
proposed skeleton-based SLR systems that mainly use specific skeleton points instead of
the pixels of images and/or sensors [20–24]. The main advantage of skeleton-based SLR
systems is that they can increase the attention paid to signs and have strong adaptability
to complicated backgrounds and dynamic circumstances. However, there are still some
deficiencies in extracting the skeleton points for SLR, for example, due to the high computa-
tional complexity of ground truth skeleton annotation. Many motion capture systems (e.g.,
Microsoft Kinetic, Microsoft Oak-D, and Intel RealSense, among other systems) provide
the main body coordinates and their skeleton annotations; however, it is difficult to obtain
skeleton annotations for various gestures [25]. Shin et al. extracted 21 hand key points
from an American sign language data set using the MediaPipe system. After extracting
the distance and angular features, they applied an SVM for recognition [26]. The use of
hand skeleton information alone is sometimes insufficient to correctly represent the exact
meaning of a sign due to a lack of emotion and bodily expression. As such, researchers
have recently considered that the use of a full-body skeleton may be more effective for SLR
systems [27].

Xia et al. extracted the hand skeleton and body skeleton with different approaches and
achieved good performance using an RNN-based model [28]. Their main problems were
the unreliability of hand key points and that the RNN did not perform well with respect to
the dynamics of the skeleton. Perez et al. extracted 67 key points, including those related to
the face, body, and hand gestures, using an OpenCV AI Kit with Depth (OAK-D) camera.
They recorded 3000 skeleton samples for Mexican sign language (MSL) by considering
30 different signs, where each sample was constructed using the spatial coordinates of
the body, face, and hands in 3D. They mainly calculated the motion from the extracted
skeleton key points, and, finally, they reported the performance accuracy obtained by an
LSTM with gated recurrent units (GRUs) [29]. Jiang et al. applied a different approach to a
multimodal data set including full-body skeleton points, and achieved good performance
accuracy [8,30]. They also considered reducing the number of skeleton points to decrease
the computational complexity of the model. The main problem is that this method did not
seem capable of achieving good performance and generalization for the SLR task when
compared to existing systems.

In addition, researchers have focused on skeleton-based SLR due to the high com-
plexity of pixel-based systems. For example, 67 landmark points have been considered,
including those related to body, face, and hand gestures, which led to computational com-
plexity problems when forming a graph. Furthermore, although the use of a full-body
skeleton including 133 points may decrease the performance accuracy compared to when
using a pixel-based approach, the computational complexity should be further lowered
by selecting effective skeleton points from these 133 key points. To overcome the above-
mentioned challenges, in this paper, we propose the multi-stream graph-based deep neural
networks (SL-GDN) approach to recognize sign language using fewer skeleton points
selected to represent whole-body information more effectively.

For this study, we designed a new skeleton graph for SLR, including spatial and
temporal features, using a graph and a neural network to model the embedded dynamics.

The major contributions of the work are detailed below:

• We construct a skeleton graph for large-scale SLR using 27 key points selected among
the whole-body key points. The main purpose of this graph is to construct a unified
graph to dynamically optimize the nodes and edges based on different actions due
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to the minimum number of the skeleton key points being selected among the whole-
body points, and extract features from four streams that can be solved to increase the
model’s performance accuracy and generalizability.

• We extract hybrid features from the multiple streams, including joints, joint motion,
bones, and bone motion of the skeleton by combining the graph-based SL-GDN
and general neural network features. After concatenating the features, we use a
classification module to refine the concatenated features for prediction.

• We use two large-scale data sets with four modalities (i.e., joint, joint motion, bone,
and bone motion) to evaluate the model, and our model presents superior performance
when compared to an existing system.
The remainder of this paper is organized as follows: Section 2 summarizes the exist-

ing research work and problems related to the presented work. Section 3 describes the
benchmark and proposed Korean sign language data sets, and Section 4 describes the
architecture of the proposed system. Section 5 details the evaluation performed, including
a comparison with a state-of-the-art approach. In Section 6, our conclusions and directions
for future work are discussed.

2. Related Work

Many researchers have worked to develop automatic sign language recognition sys-
tems using various approaches, including segmentation, semantic detection, feature extrac-
tion, and classification [9,31–37]. Some studies have considered the use of scale-invariant
feature transform (SIFT) [34] or histogram of oriented gradients (HOG), ref. [35] for hand-
crafted feature extraction, followed by machine learning approaches such as support vector
machine (SVM) or k-nearest neighbors (kNN) [9,36,37] for classification. The main draw-
back of segmentation–semantic detection methods is that they may face difficulties in
producing a good performance for video or large-scale data sets. To overcome the chal-
lenges, researchers have recently focused on the various deep-learning-based approaches
to improve the potential features and SLR classification accuracy from video and large-scale
data sets [1–4,31,32,38–43]. Existing SLR systems still face many difficulties in achieving
good performance, due to the high computational cost of the potential information, con-
siderable gestures for SLR, and potential features. One of the most common challenges is
capturing the global body motion skeleton at the same time as local arm, hand, and facial
expressions. Neverova et al. employed a ModDrop framework to initialize individual and
gradual fusion modalities for capturing spatial information [38]. They achieved good per-
formance in terms of spatial and temporal information for multiple modalities. However,
one of the drawbacks of their approach is that they applied data augmented with audio,
which is not effective at all times.

Pu et al. employed connectionist temporal classification (CTC) for sequence modeling
and a 3D convolutional residual network (3D-ResNet) for feature learning [39]. The em-
ployed LSTM and CTC decoder were jointly trained with a soft dynamic time warping
(soft-DTW) alignment constraint. Finally, they employed 3D-ResNet for training labels
with loss and validated the developed model on the RWTHPHOENIX-Weather and CSL
data sets, obtaining a word error rate (WER) of 36.7% and 32.7%, respectively. Koller et al.
employed a hybrid CNN-HMM model to combine the two kinds of features; namely,
the discriminative features of the CNN with the sequence features of the hidden Markov
model (HMM) [31]. They claimed that they achieved good recognition accuracy for three
benchmark sign language data sets, reducing the WER by 20%. Huang et al. proposed an
attention-based 3D-convolutional neural network (3D-CNN) for SLR, in order to extract the
spatio-temporal features, and selected highlighted information using an attention mech-
anism [44]. Finally, they evaluated their model on the CSL and ChaLearn 14 benchmark
data sets, and achieved 95.30% accuracy on the ChaLearn data set.

Pigou et al. proposed a simple temporal feature pooling-based method and showed
that temporal information is more important for deriving discriminative features for video
classification-related research [45]. They also focused on the recurrence information with
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temporal convolution, which can improve the significance of the video classification task.
SINCAN et al. proposed a hybrid method combining an LSTM, feature pooling, and a
CNN method to recognize isolated sign language [46]. They included the VGG-16 pre-
trained model with the CNN part and two parallel architectures for learning RGB and
depth information. Finally, they achieved 93.15% accuracy on the Montalbano Italian sign
language data set. Huang et al. applied a continuous sign language recognition approach to
eliminate temporal segmentation in pre-processing, which they called hierarchical attention
network with latent space (LS-HAN) [47]. They mainly included a two-stream CNN,
LS, and a HAN for video feature extraction, semantic gap bridging, and latent space-
based recognition, respectively. The main drawback of their work is that they mainly
extracted pure visual features, which are not effective for capturing hand gestures and
body movements. Zhou et al. proposed a holistic visual appearance-based approach and a
2D human pose-based method to improve the performance of large-scale sign language
recognition [48]. They also applied a pose-based temporal graph convolution network
(Pose-TGCN) to extract the temporal dependencies of pose trajectories and achieved 66%
accuracy on 2000-word glosses. Liu et al. applied a feature extraction approach based
on a deep CNN with stack temporal fusion layers with a sequence learning model (i.e.,
Bidirectional RNN) [49].

Guo et al. employed a hierarchical LSTM approach with word embedding, including
visual content for SLR [50]. First, spatio-temporal information is extracted using a 3D
CNN, which is then compacted into visemes with the help of an online key based on
the adaptive variable length. However, their approach is may not good for capturing
motion information. The main drawback of image and video pixel-based work is the high
computational complexity. To overcome these drawbacks, researchers have considered
the joint points, instead of pixels of full images, for hand gesture and action recogni-
tion [51–53]. Various models have been proposed for skeleton-based gesture recognition,
including LSTMs [24] and RNNs [54]. Yan et al. applied a graph-based method—namely,
ST-GCN—to construct a dynamics pattern for skeleton-based action recognition using a
graph convolutional network (GCN) [24]. Following the previous task, many researchers
have employed modified versions of the ST-GCN to improve the performance accuracy
for hand gestures and human activity recognition. Li et al. employed an encoder and
decoder for extracting action-specific latent information [53]. They included two links
for this purpose, and finally employed a GCN-based approach (action-structured GCN)
to learn temporal and spatial information. Shi et al. have employed a two-stream-based
GCN for action recognition [55] and a multi-stream GCN for action recognition [21]. In the
multi-stream GCN, they integrated the GCN with a spatio-temporal network to extract
the more important joints and features from all of the features. Zhang et al. proposed a
decoupling GCN for skeleton-based action recognition [20].

Song et al. proposed ResGCN integrated with part-wise attention (PartAtt) to improve
the performance and computational cost of skeleton-based action recognition [22]. However,
the main drawback was that their performance was not significantly higher than that of
the existing ResNet. Amorin et al. proposed a human skeleton movement-based sign
language recognition using ST-GCN, where they proposed to select potential key points
from the whole-body key points. Finally, they achieved 85.0% accuracy on their data set
(named ASLLVD) [56]. The disadvantage of this work was that they considered only one
hand with the body key points. Perez et al. extracted 67 key points, including face, body,
and hand gestures, using a special camera. Finally, they achieved good performance with
an LSTM [29]. In the same way, many researchers have considered 133 points from the
whole body to recognize sign language [8]. Jiang et al. applied a different approach with a
multimodal data set including full-body skeleton points and achieved good performance
accuracy [8]. To improve upon the performance and decrease the computational cost of
these models, we propose the multi-stream graph-based deep neural network (SL-GDN) to
recognize sign language using potential skeleton points from whole-body information.
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3. Data Sets

We use two large-scale data sets in this study, which are detailed in Table 1. In Section 3.1,
the AUTSL data set is described, whereas Section 3.2 describes the CSL data set.

Table 1. Data sets utilized in this study.

Data Set Language Year Signs Subjects Total Sample Each Sign Word

AUTSL [57] Turkish 2020 226 43 38,336 169 (on average)
CSL [48,58] Chinese 2019 500 50 125,000 250

3.1. AUTSL Data Set

One of the sign language data sets considered in this paper is the Turkish Sign Lan-
guage data set (AUTSL), which was collected from diverse, challenging backgrounds
including real-life scenarios. To record the data set, a Microsoft Kinect V2 was used, includ-
ing RGB, depth, and skeleton modalities [57]. This data set was collected from 43 people
considering 226 signs. They recorded 38,336 video clips in total for the 226 signs at 30 frames
per second, collected with 20 different challenging backgrounds. In the background, they
considered the camera’s field-of-view, increasing or decreasing the appearance by adding a
new object or removing an object in the background. In addition, moving trees, various
lighting conditions, sunlight, artificial light, people passing behind the signer, and some
bright, dark, or shadowed areas. For the selected signs, they considered the most-used
words in the Turkish language, including push, wait, shoe, face, wait, help, danger, doctor,
hospitals, building, and signs. Figure 1 shows sample signs from the AUTSL data set.

Figure 1. Samples from AUTSL data set.

3.2. CSL Data Set

CSL, in the context of a large-scale data set, refers to a collection of videos depicting
Chinese Sign Language, along with their corresponding transcriptions and annotations.
There are 50 subjects, with the data having Depth, RGB, and Skeleton modalities. The videos
were recorded at 30 FPS with 1280 × 720 RGB resolution, having a duration of 2–4 s [48,58].
They selected 500 different words for the labels and recorded 2–4 videos for each word.
In total, 125,000 videos were recorded from 50 people. These data sets are often used for
training and evaluating machine learning models for sign language recognition, translation,
and other tasks, and is an important resource for research and development in sign language
processing, including sign language recognition, translation, and other tasks. The large-
scale CSL data set typically includes many sign language samples recorded from a diverse
group of signers, covering a wide range of signs and variations in signing styles. This
diversity ensures that machine learning models trained on the data set can generalize to
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real-world signing scenarios. The annotations in the CSL data set include information such
as the signs being performed, each sign’s start and end times, and the signing posture and
movement patterns. This information can be used to train and evaluate machine learning
models that aim to recognize and transcribe sign language. Such large-scale data sets are
crucial in advancing sign language processing technology and making it more accessible
to the deaf and hard-of-hearing communities. These data sets provide a foundation for
building more accurate and effective sign language recognition and translation systems,
which can help to bridge the communication gap between the hearing and non-hearing
worlds. Figure 2 shows a sample sign from the CSL data set.

Figure 2. Sample from CSL data set.

4. Proposed Methodology

For this study, we developed the multi-stream graph-based deep neural network
(SL-GDN) approach to recognize sign language using potential skeleton points from whole-
body information. This idea was inspired by the concept of Jiang [8], and we extracted joint
motion, bone, and bone motion information from the joint skeleton data. The key idea is
applying a neural network (NN) with a fully connected layer to construct a fully connected
graph from the selected whole-body key points. The objective is to dynamically learn
edge and node features through the use of a sequential graph a and general convolutional
network, which is performed using both spatial and temporal information. The graph is
mainly constructed as a spatiotemporal model for recognizing hand gestures based on
dynamic human body skeleton information. We also adopted a multi-stream approach
considering various information, in order to further improve the performance of the model.
Although researchers have developed an SLR system with 21 key points extracted using
a MediaPipe-based approach [26]. It was found that the use of only hand information
cannot fully express a sign’s exact meaning and emotion. Therefore, researchers have come
to believe that the use of full-body skeleton data is more impactful for SLR systems [27].
For this purpose, some researchers have considered both the body and the hand, with the
aim of localizing the key points or joints in the human body from a single image or
video. Besides traditional approaches—such as pictorial structures [59] and probabilistic
models [29]—for estimating single-person poses, many researchers have developed systems
using the ground truth skeleton derived from motion capture devices such as the Kinect
version 2 [60].

At present, many deep-learning-based techniques can extract the key points for the
whole body. Although these deep-learning-based pose estimation approaches generate key
body points, they may be insufficient due to their spatial dependencies on the extracted
key points. One researcher [8] extracted 133 key points for the whole body, including for
the body and face, whereas others have followed a different approach [12], taking 42 key
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points from the left and right hands and the rest of the key points from the upper body [8,9].
Among the 133 key points for the whole body, we selected the 27 most effective key points
using the graph reduction approach, considering 20 key points from the left and right hands
and 7 from the upper body. Figure 3 shows the detailed workflow for the architecture of
the proposed model. We first took the 27 whole-body joint key points, then extracted joint
motion, bone, and bone motion key points from them based on a previously described
formula [8].

In each of the skeleton streams, we applied an NN with a fully connected layer, in or-
der to form a fully connected graph in which the node and edge features learn through
graph convolution in the deep neural network. We then extracted spatial features using
the graph convolutional network and fed them to the convolutional, batch normalization,
ReLU, and dropout layers of the neural network to produce a feature vector. In the same
way, we extracted features from the four streams and concatenated them to produce the
final feature vector. We fed the final feature vector into the classification module to refine
the final features and, after converting the feature matrix into a vector, we used a classifi-
cation layer. Figure 3 shows the workflow of the proposed study, where JM denotes joint
motion and BM denotes bone motion. Figure 4 depicts the NN, SL-GDN, and classification
modules separately. Figure 4a includes a fully connected (FC) layer, a ReLU activation
layer, a normalization layer, and a dropout layer. Figure 4b includes a convolutional graph
layer, a batch normalization (BN) layer, two ReLU activation layers, a convolutional layer,
and a dropout layer. Figure 4c includes a ReLU activation layer, a neural network (NN)
module, an averaging layer, and a fully connected (FC) layer. Figure 4d shows the channel
attention layer in detail.

Figure 3. Workflow of the proposed architecture.

Figure 4. Details of: (a) neural network (NN); (b) SL-GDN; (c) classification module; and (d) channel
attention module.

4.1. Key Point Selection and Graph Construction

A sequence of vectors is derived from each frame, which is considered a raw skeleton
with the individual vectors representing the 2D coordinates of the individual human joints.
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Moreover, a full hand gesture sign consists of a certain amount of frames, based on the
number of frames and samples. We constructed a spatio-temporal graph by considering
the natural connections among the adjacent skeleton points. First, we constructed a node
set V = v(i, t) | i = 1, . . . , N, t = 1, . . . , T, consisting of body, face, and hand pose skeleton
points. To construct the adjacency matrix for the graph, we used the following formula
(Equation (1)):

f (x) =

{
1 if the nodes are adjacent
0 if they are not adjacent.

(1)

Here, the adjacency condition is defined in terms of the minimum distance or shortest
path calculated between two nodes. As mentioned, there were 133 key points in our
pose, including body, face, and hand points. Due to the large number of nodes and
edges, unnecessary noise may be introduced. In addition, in any case, if two nodes are
far from each other, then it is not easy to extract the relation between them. Due to this
complexity, and as all key points produce noise, it is difficult to improve the performance
accuracy [8,61]. Therefore, based on the visualization of the spatiotemporal graph, we
selected 27 nodes based on graph reduction algorithms. These 27 nodes included ten nodes
for each hand and seven key points from the upper body (shown in Figure 1) as an SLR
graph. With this reduction, the performance is increased with the low computational cost.

4.2. Neural Network (NN)

We constructed a graph from the whole-body skeleton and then extracted features
from the skeleton-based graph using graph convolution and a general neural network.
To increase the ability to modify the unified graph dynamically, based on the different
actions, we employed an NN for the skeleton. The main purpose of this NN is to achieve
generalizability in constructing skeleton graphs, in a manner not dependent on the number
of skeleton points. We employed the NN to produce the initial feature from the skeleton
points, in which we first employed a fully connected layer along with the ReLU function,
followed by normalizing with a normalization layer and a dropout layer to reduce over-
fitting, finally producing the initial feature F1 [1].

4.3. Graph Convolution

We consider the spatiotemporal graph based on the strategy of spatially partitioning
the dynamic skeleton model in order to extract the potential patterns embedded in the
whole-body skeleton graph [8,24]. To construct the spatial graph for the whole-body points,
we use Equation (2) as follows:

Gout = D−(1/2)(A + I)D−(1/2) ×W, (2)

where A, I, D, and W denote the intra-body connection, self-connection (or identity matrix),
the diagonal matrix is (A + I),

and trainable weight matrix for convolution, respectively. For the implementation of
graph convolution, we performed 2D convolution and multiplied it with DD−(1/2)(A +
I)D−(1/2), which can be considered as a spatial graph convolution. We also conducted a
2D convolution with a kernel of size kt × 1 to implement the temporal graph convolution.
We adopted a neural network (NN) architecture consisting of a fully connected network to
boost the network’s capacity. The fully connected output of the NN is fed to the SL-GDN
network to produce the final features.

4.4. SL-GDN Architecture Block

The proposed SL-GDN takes the output of the NN as an input, then performs a
kt × 1 convolution on the N × T × C initial feature map, where N, T, and C denote the
number of vertices, temporal length, and the number of channels, respectively. The SL-
GDN architecture is mainly constructed with a graph convolution layer, and the batch
normalization (BN) layer, and relies on a convolutional layer, ReLU layer, and dropout
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layer. After that, this temporal feature is concatenated with the initial feature to produce
the final feature.

Figure 5 depicts the backbone [53] of the proposed SL-GDN method. Notably, we
stacked 13 SL-GDN modules as a backbone network, providing a powerful backbone.

Figure 5. The backbone of the proposed SL-GDN network, including 13 SL-GDN blocks.

Finally, we employed a classification module, including the NN to refine the final
feature. After averaging the refined features, the feature matrix is converted into a vector
and a fully connected layer is employed, based on the number of classes, which is denoted
by C in Figure 4c.

4.5. Four-Stream Approach

To overcome the problems related to the irrelevant features in skeleton-based SLR sys-
tems, we employed first- and second-order representations of the skeleton points, namely,
joint coordinates and bone coordinates, as well as their respective motion vectors [11,52,53].
Figure 3 depicts the multi-four stream SL-GDN, using joint, joint motion, bone, and bone
motion data. From the joint data (in vector form), bone data are indicated from source to tar-
get joints based on the natural connections in the human body. Here, we consider the nose
a zero-number joint—known as a root joint of the human body—and the bone data for the
nose is 0. Assume that the source and target joints can be expressed as vJ

p,t = (xp,t, yp,t, Sp,t)

and vJ
q,t = (xq,t, yq,t, Sq,t), where the x− y score and confidence score are represented by

x, y, and S. The bone vectors can be calculated by subtracting the source joint and target
joint, as vB

p,t = (xp,t − xq,t, yp,t − yq,t, Sp,t). Here, (p, q) denotes the set of key point joints
with respect to face, body, and hand pose. The difference between adjacent frames is used
to obtain the motion data for both joints and bones [8]. Based on the mentioned formula,
we can calculate the joint motion as follows: vJ,M

p,t = (xp,t − xp,t+1, yp,t − yp,t+1, Sp,t). In the

same way, bone motion can be calculated as vB,M
p,t = vB

p,t − vB
p,t+1. We trained each stream

with individual data to produce relevant features and, finally, we concatenated all four
features to produce the final feature vector [20,21]

4.6. Classification Module

After concatenating the four stream features, we constructed a final feature vector
and applied a classification module for prediction. The classification module consists of
two parts. The first part includes a channel attention module [62] to refine the temporal
features, as demonstrated in detail in Figure 4d. In the second part, a fully connected layer
with ReLU and dropout layers is applied, including averaging of the matrix into a vector,
and a fully connected layer with several classes for classification is employed.

5. Experimental Results

We conducted sign language classification experiments on two large-scale data sets,
in order to investigate the superiority and effectiveness of the proposed model. We detail
its performance accuracy first, then provide a comparison with a state-of-the-art model.

5.1. Experimental Setting

We used two large-scale data sets, CSL and AUTSL, to evaluate the proposed model.
To divide the data into training and testing sets, we followed the strategy detailed in a
recent study [8]. For the AUTSL data set, we used 28,146 videos as a training set and
3742 videos for the testing set, where each video contained 150 frames. For the CSL
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data set, we used 100,000 videos for training and 25,000 videos for testing, where each
video contained 160 frames. Each data set provided four streams: joint, bone, joint motion,
and bone motion. Each stream was used to produce individual features through the SL-
GDN model, following which the four features were concatenated. Finally, we refined and
classified the final feature using the classification module. To implement the proposed
system, we used the Google Colab environment and the Python programming language.
For the framework, we used the Pytorch [63] library for Python in the Google Colab Pro
edition environment, which provided us with a Tesla 100 machine (Tesla, Inc., Austin,
TX, USA) having 25 GB of GPU processing power [64]. Pytorch is an open-source library
that effectively provides attention, transformer, and deep learning models, requiring low
computational cost while maintaining high compatibility and adaptability properties with
minimum resources. In addition, we used the OpenCV, open pose, pickle, and csv packages
for the initial processing [65,66]. The main goal of the pickle package is to convert a data
set into a byte stream for portable storage. We used the Numpy and Pandas packages as
they provide increased flexibility regarding matrix multiplication and other operations
facilitating statistical and mathematical procedures. We used initial learning to reduce the
high fluctuation rate and sped up the convergence of the training and testing processes
using the Adam optimizer [66]. We set 1000 epochs for tuning the model, considering
various parameter tuning operations for the learning rate and optimization with respect to
the multiple classes considered in this study.

5.2. Performance Accuracy of SL-GDN on Benchmark Data Set

Table 2 details the classification accuracy of the proposed model, including its perfor-
mance on the AUTSL and CSL data sets. We tested the performance under the individual
four streams and the multi-stream of the proposed model. Table 2 reports 96.00% testing
accuracy for the AUTSL data with joint information and 95.00%, 94.00%, 93.00%, and 96.00%
testing accuracy when using the joint motion, bone, bone motion, and multi-stream key
point data, respectively. In the same way, on CSL, 88.70%, 87.00%, 86.00%, and 89.45% test-
ing accuracy was achieved with the joint, joint motion, bone, bone motion, and multi-stream
key points, respectively.

Table 2. Performance of the proposed model on the two data sets.

Stream Testing Accuracy on AUTSL [%] Testing Accuracy on CSL [%]

Joint 96.00 88.70
Joint Motion 95.00 87.00

Bone 94.00 86.00
Bone Motion 93.00 86.50
Multi-Stream 96.00 89.45

5.3. Ablation Study

Our proposed model is composed of three main modules with four stream structures,
including a neural network module, an SL-GDN module, and a classification module.
In the SL-GDN module, we used many SL-GDN blocks (as shown in Figure 5), and there
were various stages in the channel attention block of the classification module (as shown
in Figure 4c). From the table below, it can be seen that optimizing the number of SL-GDN
and channel module attention blocks could be beneficial for sign language recognition
accuracy, whereas other configurations may have a detrimental effect on performance.
Table 3 details the average performance obtained on both data sets in the ablation study.
We focused the ablation study by following the concept of the two existing skeleton-based
GCN architecture [8,55] methods and a combination of channel attention method [67]. The
author in [55] applied GCN with nine series blocks of the spatial-temporal architecture,
and the author in [8] applied GCN with ten series blocks of the spatial-temporal architecture.
They did not include an attention model in their architecture. On the other hand, we
achieved maximum accuracy with 13 series of spatial-temporal GDN blocks with two-
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channel attention modules. The performance table proves that our proposed combination
reported high performance compared to the existing module.

Table 3. Validation accuracy when tuning the number of SL-GDN and channel attention blocks
in series.

Method Name
No. of

SL-GDN in
Series

No.of Channel
Attention

Newly Added
Datasets Performance

Accuracy [%]

Two Stream [55] 9 1 AUTSL 94.00
Two Stream [55] 9 1 CSL 88.00
Four Stream [8] 10 2 AUTSL 96.00
Four Stream [8] 10 2 CSL 88.50

Proposed Four Stream 13 2 AUTSL 96.45
Proposed Four Stream 13 2 CSL 89.45

5.4. Comparison of the Proposed Model with State-of-the-Art on the AUTSL Data Set

Table 4 compares the proposed model with the state-of-the-art model proposed by
Jiang [8]. The proposed model obtained 96.00% accuracy under the multi-stream modality,
whereas the state-of-the-art model obtained 95.54% accuracy. Jiang et al. have proposed
various models with various criteria and key points based on the one method detailed in [8].
They tested these various models, one of which achieved 95.02%, 94.70%, 93.10%, 92.49%,
and 95.45% accuracy with the use of joint, joint motion, bone, bone motion, and multi-
stream key points, respectively.

Table 4. Comparison with a state-of-the-art approach on the AUTSL data set.

Data Set Type Method Name Sign Recognition Accuracy [%]

RGB+Depth CNN+FPM+LSTM+Attention [57] 83.93
Skeleton Two Stream CNN [55] 93.70

Skeleton Joint Jiang [8] 95.02
Skeleton Joint Motion Jiang [8] 94.70

Skeleton Bone Jiang [8] 93.10
Skeleton Bone Motion Jiang [8] 92.49
Skeleton Multi-Stream Jiang [8] 95.45

Skeleton Joint Proposed Model 96.00
Skeleton Joint Motion Proposed Model 95.00

Skeleton Bone Proposed Model 94.00
Skeleton Bone Motion Proposed Model 93.00
Skeleton Multi-Stream Proposed Model 96.45

5.5. Comparison of the Proposed Model with State-of-the-Art on the CSL Data Set

Table 5 provides a comparison of the proposed model with a state-of-the-art model
on the CSL dataset, where the reported performance accuracy for our proposed model
was 89.45%, whereas that for the existing 3D-CNN [44] model was 88.70%. According to
Tables 2, 4 and 5, we can conclude that our approach seems to establish new baselines for
state-of-the-art sign recognition performance on the AUTSL and CSL data sets.

Table 5. Comparison with a state-of-the-art approach on the CSL data set.

Data Set Name Data Set Type Methodology Sign Recognition Accuracy [%]

CSL RGB-D+Skeleton 3D-CNN [44] 88.70
Proposed Model Skeleton SL-GDN 89.45

6. Conclusions

In this study, we proposed a multi-stream graph-based deep neural network (MSL-
GDN) for a skeleton-based SLR system, in which we consider four modalities derived from
a skeleton-based sign language data set. Specifically, we constructed a graph—known as a
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skeleton graph—for the whole-body pose key points, then applied MSL-GDN to compute
the spatial and temporal features. We extracted individual features from each stream
and, finally, concatenated the features and applied the classification module to refine the
feature vector and carry out classification. The performance testing results demonstrated
the superiority and generalizability of the proposed model, considering its high accuracy
on the large-scale AUTSL and CSL data sets. The reason for the high generalizability of
the proposed model is that we selected 27 whole-body key points among the 133 body
pose key points and extracted features from bone data and joint and bone motion streams.
The main limitation of this study is that we only used four streams of the network to
improve the effectiveness of the features and performance accuracy. We plan to combine
the skeleton’s final features with other modalities present in the data sets, including RGB
and depth data. In addition, we intend to work towards calculating the inverse dynamics
from videos with different pose models, allowing us to apply the MSL-GDN model to the
inverse dynamic features.
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