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Abstract: Hardware-in-the-loop testing is usually a part of the design cycle of control systems.
Efficient and fast models can be created in a Hardware Description Language (HDL), which is
implemented in a Field-Programmable Gate Array (FPGA). Control engineers are more skilled in
higher-level approaches. HDL models derived automatically from schematics have noticeably lower
performance, while HDL models derived from their equations are faster and smaller. However,
even models translated automatically into HDL using the equations might be worse than manually
coded models. A design workflow is proposed to achieve manual-like performance with automatic
tools. It consists of the identification of similar operations, forcing signal signedness, and adjusting to
multiplier input sizes. A detailed comparison was performed between three workflows: (1) translation
of high-level MATLAB code, (2) translation of a Simulink model, and (3) working directly in the
HDL. Sources of inefficiency were shown in a buck converter, and the process was validated in a
full-bridge with electrical losses using a Runge–Kutta method. The results showed that the proposed
approach delivered code that performed very close to a reference VHDL implementation, even for
complex designs. Finally, the model was implemented in an off-the-shelf FPGA board suitable for a
hardware-in-the-loop test setup.

Keywords: hardware-in-the-loop; MATLAB; Simulink; field-programmable gate array; power converters

1. Introduction

Hardware-In-the-Loop (HIL) techniques contribute greatly to the testing stages of
complex systems because they minimize the risk of injuries or equipment breakdown [1,2].
In these techniques, an element of the real system is replaced by a real-time model. A
model of a plant provides the same feedback to the controller as the real element. In power
electronics, a HIL model enables safe testing without using live parts until the design is
sufficiently tested [3]. It also enables the testing of controllers using a virtual plant before
constructing the converter.

The models operate in real-time and must calculate their states with high precision.
Either commercial systems can be used (such as Opal-RT, dSPACE, and Typhoon HIL)
or Field Programmable Gate Array (FPGA) devices [4–6] programmed in a Hardware
Description Language (HDL), such as Verilog or VHDL.

The use of HIL elements is one step in the V-shaped development cycle of complex
systems, as shown in [1]. A power engineer typically builds the model in a high-level
language. Manual translation into a HIL implementation requires HDL skills, which means
additional effort or using automatic tools.

Several works have shown the use of commercial tools for generating high-performance
HIL models in FPGAs: electrical and mechanical components of a wind energy conversion
system in [7], in a photovoltaic system in [8], or in electrical networks in [9].

In these cases, the processing elements are generated using automated workflows,
but the authors do not analyze how far away they are from the best possible performance,
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typically obtained by manual HDL design. In [10,11], the authors state that automatic gener-
ation is faster and less error-prone for power electronic designers, although no comparison
was made against a model generated manually. In [12–14], this comparison was made, and
the authors showed that the automated model uses more resources than the manual model;
however, they did not analyze the source of the disparity. In [15], the authors showed that
the model generated automatically requires more than double the number of multiplier
elements, without giving any explanation. Some workflows have been proposed, such
as [16]; however, they are oriented toward FPGA experts, and they did not check if the
VHDL code generated was optimum. In the VHDL code generation step (Figure 2 in [16]),
after automatic translation, no verification of the quality of the translation was made.

Until now, the choice for the designer was either to obtain a very efficient model
through manual design or a worse one with automatic translation. The first choice requires
high effort and HDL skills. The second choice requires less effort and time, but may lead
to suboptimal models. This might not be apparent, since extra resource usage can be
offset by using more powerful hardware. However, in the end, this means that either HIL
models overspecify the hardware requirements or that a larger-than-necessary portion of
the existing hardware is used, taking up resources that could be dedicated, for example,
to making the simulation more precise. The ultimate consequence is a higher cost of the
simulation, a loss of precision, or even both.

This paper proposes a design workflow for automatic model generation that aims
to achieve the best of automatic and manual approaches: high efficiency, low effort, easy
addition of interfaces, no need to program in a low-level HDL, and compatibility with
complex models and different numerical methods.

As shown in Figure 1, to build an efficient HIL model, the first choice is between
a commercial system or an ad hoc one. Ad hoc systems offer the best performance and
flexibility. In these, the model is characterized either at the schematic level or the state
equation level. The MATLAB/Simulink Simscape library allows for modeling at the
schematic level. This is less demanding, but offers less control to the designer.

High-Level Synthesis and G/LabView require less effort, but as Table 7 in [17] showed,
their results were not satisfactory. High-Level Synthesis causes high resource utilization [18],
and G/LabView delivers worse results. Therefore, the candidate approaches use Simscape
to derive the equations from schematics or calculating the equations, either manually or
starting from the MATLAB or Simulink models.

The buck and full-bridge schematics were modeled into the HDL using Simscape,
with an acceptable maximum speed, but much higher resource utilization compared to
other approaches. Simscape always considers first-order losses, which exacerbates the
resource utilization issue. Table 1 presents the implementation results, including the VHDL
and MATLAB code from [17]. The table shows the utilization of Look-Up Tables (LUTs),
Flip-Flops (FFs), Digital Signal Processors (DSPs) and a minimum simulation step using
the Forward Euler numerical method and floating-point arithmetic. The conclusion was
that direct translation from a Simscape schematic always leads to inefficient results, both
in resources and speed, while translation from MATLAB code may also lead to such
inefficiencies. Therefore, the possible causes of inefficiency were explored in this work.

Table 1. Resource utilization and speed with floating-point models generated from manual VHDL
and translation from MATLAB code, both from Table 7 in [17] and from Simscape.

Circuit Modeling Approach LUTs FFs DSPs Speed (ns)

Buck VHDL 2003 126 9 51
wo/ losses MATLAB 2575 64 2 72

Simscape 10,244 397 32 100

Full-bridge VHDL 3646 158 15 70
w/ losses MATLAB code 16,301 100 7 159

Simscape 17,144 360 32 155



Electronics 2023, 12, 2786 3 of 18

The poor results of the C++, High-Level Synthesis, and G/LabView approaches,
together with the lack of control over the internals of the Simscape model and its high
resource utilization led to the choice of MATLAB/Simulink high-level approaches for this
work, as detailed in Section 2.

HIL model
Commercial HIL

Ad-hoc HIL
Schematics

State equations

C++
High-Level
Synthesis
G/LabView

MATLAB

Simulink

Manual VHDL

Figure 1. Decision tree for implementation of a HIL model.

The rest of the paper is structured as follows: Section 2 shows the proposed design
workflow. Section 3 compares the automatic and manual design approaches and identifies
the sources of inefficiencies with a simple model. Once the proposed design workflow
has been analyzed with a simple model, Section 4 validates the proposal in a complex
model, a full-bridge converter with losses and pipelined operation. Section 5 shows its
implementation in an FPGA. Finally, Section 6 summarizes the results, and Section 7
provides the conclusions.

2. Proposed Design Workflow

In the classical process, which led to a HIL model, the MATLAB or Simulink model
was used as the input to the automatic-code-generation tool (Figure 2). Here, additional
intermediate steps are proposed (Figure 3). These steps will ensure that the inputs to the
automatic-code-generation tool are optimized.

Start

Determine mathematical model

Derive MATLAB/Simulink model

Run automatic code generation

End

Figure 2. Typical design workflow for automatic code generation.

These steps will be familiar to expert HDL designers. However, the objective of this
work was to propose a method that does not require knowledge of HDL design processes
and is powerful enough to ensure an efficient HIL model.

The following requirements were considered:

1. It must be compatible with existing automatic workflows;
2. It must not change the initial mathematical model;
3. It must not require knowledge of hardware description languages by the power engineer;
4. Any modifications to the algorithm design must be understandable to the power engineer;
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5. It must not require knowledge of the inner structure of the target device;
6. It must not require knowledge of HDL design and optimization processes;
7. It must be simple enough to make it worth using so that the performance improvement

in the final model is obtained at the price of a small additional effort;
8. It must be compatible with different numerical methods;
9. It must be compatible with complex architectures, such as pipelined operation;
10. It must achieve similar occupation figures in the target device compared to manual design;
11. It must achieve a similar speed to that achieved by manual design.

Start

Determine mathematical model

Derive MATLAB/Simulink model

List all calculation blocks

Are there similar structures
involving multiplications?

Create intermediate vari-
ables using conditional logic

Assign new input
terms to multiplications

Rewrite calculation blocks

Count the number of multiplications

Force all variables and sig-
nals to signed arithmetic

Limit the size of mul-
tiplication inputs

Verify the size of mul-
tiplication outputs

Do the outputs align
with the target device?

Run automatic code generation

Count the number of DSP elements

Is the number of synthesized
DSP elements greater than the

number of multiplications?

The model is optimized

End

yes

no

yes

no

no

yes

Figure 3. Proposed design workflow to achieve an efficient model with automatic code generation.

The process can be divided into four major stages: code rewriting, signal forcing,
adjustment to the multiplier size, and verification.
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In the code rewriting step, the designer must make a list of all the calculation blocks,
compare them side-by-side, and determine if they have similar structures. For those that
are similar, the designer must create intermediate variables or signals that take their value
depending on some conditions. The objective is to replace several multiplications with
only one, having all inputs activated or not depending on the model conditions. Once this
optimization is performed, the designer must count the number of multiplications. This
will be used in a later stage.

After that, all variables and signals are forced to signed arithmetic to avoid uncon-
trolled addition of bits. Then, in the third stage, the sizes of the variables or signals used
at the multiplications must be listed and trimmed to adjust to the device multiplication
elements. This is the only step where some knowledge of the target device is required,
namely the input and output signal sizes of the multiplication elements. However, this
information is present in any datasheet and does not require deep knowledge.

The output size of the multiplication signals must be then checked. If they are greater
than the device size, the previous step must be repeated iteratively until the outputs are in
line with the device multiplier outputs.

An additional step serves to verify that the translation has delivered an optimized
model. This was achieved by comparing the number of multipliers needed by the target
device against the number of multiplications counted after optimization of the calculation
structures. In the case of Xilinx devices, the multiplier elements are DSP structures. If the
number of multiplier elements is the same as the number of multiplications, this means
that the automatic code generation did not create overhead and the model is optimized.
Then, the automatic code generation can be launched.

The workflow as presented complies with Requirements 1 to 6 stated above. The
modifications are easy to follow and are performed on the very same MATLAB or Simulink
model created by the designer, and not at the HDL level. They do not change the model
and require only knowledge of the multiplier elements of the target device. The rest of the
requirements were validated by the results shown in Sections 4 and 5.

3. Characterization in a Buck Converter

The initial study was performed with the synchronous buck converter shown in
Figure 4. The topology is simple enough to allow manual inspection and comparison of the
HDL code generated in the different approaches. Once the methodology has been analyzed
and understood, it is applied to a more complex converter in Section 4.

−
+Vin

S1
S1

L iL L

R

+

−

vout

R

S2 C

+

−

vC

Figure 4. Synchronous buck circuit chosen for HIL implementation.

The synchronous buck converter operates by alternately closing Switches S1 and S2,
with the duty cycle determined by the vout/vin relation. To avoid short-circuiting the source,
dead times were introduced between opening one switch and closing the other, during
which Diodes D1 and D2 provide a path for the inductor to discharge.

Three operating modes can be identified in the circuit:
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• Mode 1: S1 is closed and S2 open or S1 and S2 are open (dead time), and the inductor
current (iL) is negative (D1 in the conduction state).

• Mode 2: S1 is open and S2 closed and during a dead time in which iL > 0 (D2 in the
conduction state).

• Mode 3: if the inductor becomes discharged during a dead time, there is no current
flow through the inductor.

The circuit equations were derived from the behavior of the inductor and the capacitor
and the converter’s operating modes. Solving for the state variables vC and iL, three sets of
ordinary differential equations were obtained. Table 2 shows the equations that apply to
each case.

Table 2. Buck circuit equations for each operation mode.

Mode 1 Mode 2 Mode 3

dvC
dt

=
iL
C
− vC

R× C
diL
dt

=
vin
L
− vC

L

dvC
dt

=
iL
C
− vC

R× C
diL
dt

= − vC
L

dvC
dt

= − vC
R× C

diL
dt

= 0

To avoid miscalculations during a change from Mode 1 or 2 to Mode 3 during a
dead time, Reference [19] suggested different techniques, including saturating the inductor
current to zero amperes. This is a simple and effective solution when using the Forward
Euler method, as in this case.

The model calculates in real-time the solution of these equations. The Forward Euler
method is commonly used since its implementation is straightforward. Methods such as the
second- or fourth-order Runge–Kutta method are more accurate, but more complex [4,9].
The fixed-step Forward Euler method makes the following approximation, for small values
of ∆t:

dvC
dt
≈ ∆vC

∆t
(1)

diL
dt
≈ ∆iL

∆t
(2)

Substituting (1) and (2) for each mode, the changes in the state variables iL and vC
during one step dt are calculated numerically with the pseudocode shown in Algorithm 1.

Parameters 1/R, dt/C, and dt/L are constants. The divisions are performed only once
by the user before the simulation. This pseudocode will be the basis for each of the design
flows analyzed. The parameters of the proposed buck converter are summarized in Table 3.

Table 3. Parameters of the proposed buck converter.

Vin Vout C L P fsw dt

25 V 10 V 35 µF 850 µH 3.5 W 10 kHz 1 µs
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Algorithm 1 Calculation of the following value of vC and iL with the Euler method using a
simple iL saturation method.

1: Constant declaration
2: dtC ← dt/C
3: dtL← dt/L
4: invR← 1/R
5: function CALCULATESTEP(iL, vC, dtC, dtL, invR, S1, S2, vin)
6: if S1 = closed OR (S1 = open AND S2 = open AND iL < 0) then . Mode 1
7: ∆vC ← (iL− vC× invR)× dtC
8: ∆iL← (vin − vC)× dtL
9: else if S2 = closed OR (S1 = open AND S2 = open AND iL > 0) then . Mode 2

10: ∆vC ← (iL− vC× invR)× dtC
11: ∆iL← −vC× dtL
12: else if iL = 0 then . Mode 3: iL = 0 during a dead time
13: ∆vC ← −vC× invR× dtC
14: ∆iL← 0
15: end if
16: vCnext ← vC + ∆vC
17: iLnext ← iL + ∆iL
18: if sign(iLnext) 6= sign(iL) AND S1 = open AND S2 = open then . iL crosses zero during a dead time
19: iLnext ← 0
20: end if
21: end function

3.1. HDL Model Design Workflows

The three HIL workflows start from the same model (Algorithm 1) and have each
a different initial implementation: (1) MATLAB code, (2) Simulink block design, and
(3) manual VHDL code. This implementation was simulated with floating point. Then, it
was converted into fixed point to optimize the performance. Although commercial HIL
systems usually use floating point and some ad hoc HIL systems also use them [20,21],
most ad hoc systems use fixed point.

3.1.1. Conversion of MATLAB Code into VHDL

A MATLAB function implements the state equations and calculates the values of the
state variables vC and iL one step at a time, with persistent variables to keep their values.
Another function served as a test bench, providing stimuli and recording the output. The
code is then converted into a fixed-point version using the fixed-point conversion of the HDL
Code Generation Workflow, with the user adjusting the size until the required precision is
achieved. The HDL Coder then transforms the fixed-point code into synthesizable VHDL
code. The initial MATLAB function resembles Algorithm 1, with an if–then–else block
calculating ∆vC and ∆iL, detecting if iL crosses zero during a dead time and setting it to
zero if so, then storing variables for the next calculation cycle.

3.1.2. Model-Based Design with Simulink

Simulink is a modeling and simulation environment for model-based engineering. It
allows for the graphical design of systems by connecting blocks. The HDL Coder Simulink
library must be used to ensure blocks can be translated into the HDL. The Simulink model
shown in Figure 5 consists of four subsystems: the mode selector, Euler calculation blocks
for vC and iL, and the iL saturation detector during a dead time. The parameters 1/R, dt/C,
and dt/L are input constants, and the state of the switches S1 and S2 and the input voltage
vin are the input signals. The mode selector block takes the inputs of the states of the switches
S1, S2, and iL and produces an output (1, 2, 3), which represents the operation mode. This
output is used as the input by other calculation blocks.
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iL saturation
detection

mode selector

vC Euler
calculation

iL Euler
calculation

vC

iL

mode

iLiLnext

S1
S2

vin dtL invRdtC

Figure 5. Overview of the buck converter Simulink model.

The block that calculates vC using the Forward Euler method (see Figure 6) consists
of an element that calculates ∆vC, according to the operation mode, which is added to the
value of vC obtained via a feedback loop through a unit delay. In this case, the function f
calculates ∆vC as follows: f (vC, iL, . . . ) = (iL2 − vCn−1 × invR)× dtC, with iL2 taking the
value of iLn−1 or zero depending on the mode signal. The Euler solver block available in
Simulink was not used because it did not allow for easy assignment of dt as an external
signal. By proceeding as explained, dt can be set externally by assigning the corresponding
values to the signals dtC and dtL.

f (vC, iL, . . . ) z−1

+

z−1

∆vC

vCn−1

vCn

iLniLn−1

constants

mode

Figure 6. Close-up view of the vC Euler calculation block of Figure 5.

A similar structure is used to calculate an intermediate value for the inductor current,
iLnext. This signal is then fed into the iL saturation detector block. The detector checks if
iLnext changes sign within a dead time, and if so, it sets the output iL to zero until one of
the switches is activated again. Otherwise, the output keeps the value of iLnext.

The steps for obtaining the HDL code are similar to those of the MATLAB approach
from Section 3.1.1. The Simulink model is converted into fixed point, and the HDL Coder
automatically generates the HDL code.

3.1.3. Reference Implementation in VHDL

The VHDL code followed the approach proposed in [22]. This procedure yielded
results similar to the assisted translation by the MATLAB tools described in Sections 3.1.1
and 3.1.2, but it required more manual work. A unified set of sizes (see Table 4) was used
for the three workflows for a fair comparison.
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Table 4. Size of variables and constants used for the buck model.

Variable or Constant Sign Integer Bits Fractional Bits Total Bits

iL yes 7 24 32
iLnext yes 7 24 32

vC yes 10 21 32
∆iL yes −5 36 32
∆vC yes −3 33 32
invR no −4 36 32
dtC no −5 37 32
dtL no −9 41 32
Vin no 5 27 32

3.2. Implementation
3.2.1. Generation of VHDL Code from MATLAB

Following the process explained in Section 3.1.1, the MATLAB code equivalent to
Algorithm 1 was translated into fixed point and then into VHDL code for the FPGA—
a Xilinx Zynq xc7z020clg400-1 in this case. This is a low-cost FPGA that includes an
embedded Advanced RISC Machine (ARM) processor, although it is not used by the model.
The sizes of the variables and constants are shown in Table 4. Negative values for integers
mean that the leftmost bit stored lies at the right of the decimal point. The first row in
Table 5 contains the results of the implementation using Xilinx Vivado.

Table 5. Resource usage and maximum speed for the buck converter.

Code Type LUTs FFs DSPs Speed (ns)

VHDL from MATLAB 521 68 20 24
VHDL from Simulink 363 64 12 23

3.2.2. Generation of VHDL Code from Simulink

The proposed workflow for the Simulink model described in Section 3.1.2 was fol-
lowed, and the VHDL code was created. The signal sizes also followed Table 4. The second
row in Table 5 shows the implementation results. The maximum speed was similar in both
cases; the MATLAB-originated code had a higher usage of DSPs.

3.2.3. Initial Comparison

The maximum speed was similar, but there was a significant difference in resource
utilization, especially the DSPs. The resource usage was influenced by the variable sizes
and the number of operations in the FPGA; multiplication operations are usually assigned
to DSP slices. The VHDL code was analyzed in both cases to determine the number of
operations implemented and their origin in the high-level model.

In the first case (MATLAB-generated code), the VHDL architecture was equivalent
to the original high-level code, while in the second case (Simulink-generated code), each
block in the model was translated into VHDL code. A direct comparison between the two
types of VHDL code is not possible, but there was a correlation between the number of
arithmetic operations and DSP usage. Table 6 compares the number of operations in each
model and the resulting VHDL code.

Further examination of the generated VHDL code revealed that certain lines of
Algorithm 1 (e.g., Lines 7 and 10) were translated into separate signals, which required
separate computing resources on the FPGA. Additionally, Line 13 has a structure similar to
the previously mentioned lines, except for the variable iL, which is absent and produces a
different signal. This implied that the additional signals and calculations were responsible
for the increased resource usage.
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Table 6. Operations in the MATLAB and Simulink models and their VHDL code, before optimization
of the MATLAB code.

Code Type Additions and Subtractions Multiplications

MATLAB code 5 6
VHDL from MATLAB 5 6

Simulink schematic 4 3
VHDL from Simulink 4 3

3.2.4. Revised Algorithmic Model

To optimize Algorithm 1, algebraic operations should be avoided. One way is to limit
the if–then–else block to only assignments, with the circuit operation mode (1, 2, or 3)
as the output. Intermediate variables are then used to store values that depend on the
operating mode, and the algebraic operations that calculate ∆iL and ∆vC should appear
only once. Algorithm 2 illustrates this optimized approach.

This alternative made the architecture similar to the Simulink-based approach: the
if–then–else block resembles the mode selector block, whose output drives the switching
of signals, which in turn are used to calculate ∆iL and ∆vC.

Algorithm 2 Optimized version of Algorithm 1, taking the multiplications out of the if–then
blocks. Changes in red.

1: Constant declaration
2: dtC ← dt/C
3: dtL← dt/L
4: invR← 1/R
5: function CALCULATESTEP(iL, vC, dtC, dtL, invR, S1, S2, vin)
6: iCtemp ← vC× invR
7: if S1 = closed OR (S1 = open AND S2 = open AND iL < 0) then
8: mode← 1
9: else if S2 = closed OR (S1 = open AND S2 = open AND iL > 0) then

10: mode← 2
11: else if iL = 0 then
12: mode← 3
13: end if
14: if mode = 1 OR mode = 2 then
15: iLtemp ← iL
16: else
17: iLtemp ← 0
18: end if
19: ∆vC ← (iLtemp − iCtemp)× dtC
20: if mode = 1 then
21: v2temp ← vin − vC
22: else if mode = 2 then
23: v2temp ← −vC
24: else
25: v2temp ← 0
26: end if
27: ∆iL← v2temp × dtL
28: vCnext ← vC + ∆vC
29: iLnext ← iL + ∆iL
30: if sign(iLnext) 6= sign(iL) AND S1 = open AND S2 = open then . iL crosses zero during a dead time
31: iLnext ← 0
32: end if
33: end function

The revised pseudocode contains only three multiplication operations, four additions
or subtractions, and one sign change. As a result, it generates optimal VHDL code, yielding
similar occupation and speed results as the Simulink-based approach, as shown in Table 7.
While there were negligible differences in the maximum achievable speed, the overhead
was due to the generation of extra signals in parallel calculation paths, which caused
additional resource usage. However, this had no timing influence as the logic performed
these calculations in parallel, and the calculation path had the same length.
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3.2.5. Reference Implementation in VHDL

The VHDL implementation followed the structure presented in Section 3.1.3, consid-
ering the signal sizes of Table 4. The results are shown in the fourth row of Table 7. This
workflow generates the least use of resources, as the VHDL designer only uses what is
necessary for directly implementing the algorithm in the low-level language. Despite this,
the maximum speed achieved was similar to other methods, indicating that automatic
tools can translate arithmetic operations into high-performing HDL code with an efficient
computation path.

Table 7. Resource usage and maximum speed for the buck model.

Code Type LUTs FFs DSPs Speed (ns)

VHDL from MATLAB 521 68 20 24
VHDL from Simulink 363 64 12 23

VHDL from revised MATLAB 400 67 12 23
Manual VHDL 287 64 9 25

3.3. Code Metrics and Resource Usage

Metrics can be used to compare the VHDL code complexity and overhead generated
by the automatic translation. The number of lines of code is frequently used in software [23]
and can be applied to VHDL code. It serves to give an idea of the overhead added by
the translation, but this overhead does not necessarily lead to additional logic usage. The
other proposal (additions/subtractions, multiplications, if–then–else blocks, number of
signals and variables) has a direct relation with resource usage. A higher number in any of
them will imply more resource usage. These metrics, shown in Table 8, allow for a detailed
analysis of the VHDL code complexity.

Table 8. VHDL code metrics of the three design flows.

Characteristic MATLAB MATLAB Simulink Manual
(Initial) (Optimized) VHDL

Lines of code 306 284 1007 107
Add/subtract 5 4 4 4

Multiplications 6 3 3 3
If–then–else blocks 13 13 14 5

Signals and variables 102 89 95 13
Processes 6 6 7 2

These code metrics alone do not explain why the MATLAB and Simulink models
create a higher usage of resources. The number of signals and variables can be assumed to
be correlated with the higher LUTs and FFs usage. However, there are three multiplications
in the code, and they translate into 12 DSPs instead of 9, as in the case of the manual
VHDL code.

The inspection of the generated code showed that the signals grew in intermediate
calculations and the inputs to the multipliers were not optimized. Unsigned signals may
grow by one bit if they intervene in calculations with signed signals. Thus, with the
automated tools, the user cannot determine the exact size of the multiplier inputs unless an
intermediate variable is created or a conversion block is placed before the multiplication.

The embedded DSP blocks in the target FPGA include multipliers with one input of
25 bits and the other one of 18 bits. Both are signed inputs. If more bits are used in any
multiplication, the synthesis tool will use two or more DSP blocks for a single multiplication.
This will not only increase the necessary resources (DSP blocks), but also the delay because
it will include the delay of both DSP blocks.
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4. Validation in a More Complex Circuit

This section presents a more complex model to validate the proposed design workflow.
Specifically, a more complex design was used both to verify Requirements 7 to 11 and to test
if just following the proposed workflow from Figure 3 is enough to achieve a HIL model
with a performance similar to that of a model created manually, that is if the proposed
workflow is sufficient to ensure an optimized real-time model without knowledge of HDL
design. A full-bridge converter with first-order electrical losses, shown in Figure 7, was
chosen, using the second-order Runge–Kutta method. This method provides high accuracy
even with higher simulation steps. It requires two calculations during each computation
cycle, instead of one, so it is a candidate for pipelined implementation. As it is more
complex, an automated workflow would surely be preferred.
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Figure 7. Full-bridge converter with losses chosen for the verification of the proposed workflow.

4.1. Full-Bridge Converter Equations

The initial equations describing the circuit behavior [13] were rewritten to apply the
second-order Runge–Kutta method:

diL
dt

= M1 × iL + M2 × vC + M3 (3)

dvC
dt

= N1 × iL + N2 × vC (4)

The values for the Mi and Ni terms are:

M1 =
−RESR

L× (1 + GO × RESR)
− KR

L
(5)

M2 =
RESR × GO

L× (1 + GO × RESR)
− 1

L
(6)

M3 =
−KV1 ×Vin − KV2

L
(7)

N1 =
1

C× (1 + GO × RESR)
(8)

N2 = − GO
C× (1 + GO × RESR)

(9)

The terms RL, RD, RDSON, and RESR are the series resistance of the inductor, diode,
metal–oxide–semiconductor field-effect transistor (MOSFET), and capacitor, respectively, and
GO = 1/RO. The forward voltage of the diode is VD. The terms KR, KV1, and KV2 vary
depending on the operating conditions of the circuit. Their values are driven by the state of
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the switches Q1 to Q4 and the sign of inductor current iL according to Table 9. The rest of the
terms remain constant during circuit operation. The equation for vO can be written as follows:

vO = P1 × iL + P2 × vC (10)

P1 =
RESR

1 + GO × RESR
(11)

P2 = 1− RESR × GO
1 + GO × RESR

(12)

Table 9. Parameters KR, KV1, and KV2 according to switches’ states and inductor current sign.

Q1, Q2, Q3, Q4 iL KR KV1 KV2

ON, OFF, ON, OFF any Vin 0 2RDSON + RL
OFF, ON, OFF, ON any −Vin 0 2RDSON + RL
OFF, OFF, OFF, OFF >0 −Vin 2VD 2RD + RL
OFF, OFF, OFF, OFF >0 Vin −2VD 2RD + RL
ON, OFF, OFF, OFF >0 0 VD RDSON + RD + RL
OFF, OFF, ON, OFF >0 0 VD RDSON + RD + RL
ON, OFF, OFF, OFF >0 Vin −VD RDSON + RD + RL
OFF, OFF, ON, OFF >0 Vin −VD RDSON + RD + RL
OFF, ON, OFF, OFF >0 Vin VD RDSON + RD + RL
OFF, OFF, OFF, ON >0 Vin VD RDSON + RD + RL
OFF, ON, OFF, OFF >0 0 −VD RDSON + RD + RL
OFF, OFF, OFF, ON >0 0 −VD RDSON + RD + RL

4.2. Second-Order Runge–Kutta Model with K-Calculator

The second-order Runge–Kutta method uses a two-step approximation for the calcula-
tion of the state variables. For the proposed full-bridge, the terms are calculated as follows:

K1L = M1 × iL + M2 × vC + M3 (13)

K1C = N1 × iL + N2 × vC (14)

K2L = M1 × (iL + dt× K1L)+

+ M2 × (vC + dt× K1C) + M3 (15)

K2C = N1 × (iL + dt× K1L)+

+ N2 × (vC + dt× K1C) (16)

The values of the state variables at the next time step are then given by:

iLn+1 = iLn + dt× (K1C + K2C)/2 (17)

vCn+1 = vCn + dt× (K1C + K2C)/2 (18)

The implementation of the full-bridge uses a K-calculator similar to the one proposed
in [19]. The K-calculator is a computing block that produces the different Ki terms of the
Runge–Kutta method—K1 terms when the inputs are zero and K2 when the inputs are the
K1 terms. This allows for calculating these terms iteratively reusing hardware elements.
The K-calculator implements these equations:

KoutL = M1 × (iL + dt× KinL)+

+ M2 × (vC + dt× KinC) + M3 (19)

KoutC = N1 × (iL + dt× KinL)+

+ N2 × (vC + dt× KinC) (20)



Electronics 2023, 12, 2786 14 of 18

4.3. Full-Bridge MATLAB Model

The MATLAB code was based on the initial code for the Forward Euler method used
in [13], moving the multiplications out of the if–then blocks to avoid hardware duplication.
The procedural code with two calls to a K-calculator function was rewritten to implement a
pipelined operation with a state machine:

• State 0: Calculates M1 and M3.
• State 1: The K-calculator computes K1C and K1L (13) and (14). In parallel, vO is

calculated based on the stored values of vC and iL.
• State 2: The K-calculator computes K2C and K2L (15) and (16).
• State 3: The new values of iL and vC are calculated.

The K-calculator function is called once outside the if–then blocks for hardware reuse.
States 1 and 2 have a maximum latency due to two sequential multiplications. Fixed-point
conversion was performed using the HDL Code Generation Workflow advisor. The input
signal sizes were limited to 25 or 18 bits with the sign bit to avoid extra DSP synthesis, as
proposed in Section 2.

4.4. Full-Bridge Simulink Model

The Simulink model uses a pipelined configuration with four states, similar to the
MATLAB model. Figure 8 shows a simplified version of the model with four blocks, one for
each state. These perform the M1 and M3 calculation, the K-calculation, the accumulation
of Ki parameters, and the assignment of values to the state variables iL and vC. Conversion
blocks are used at the inputs to ensure proper variable sizes and adapt variables before
multiplication. For instance, iL and vC are adjusted to 25 bits before being multiplied to
calculate vO when (10) is implemented. This ensures the minimum number of DSPs.
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∆iL

∆vC
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Figure 8. Overview of the Simulink model of the full-bridge rectifier with losses. Enabling ports of
unit delays are controlled by the state counter (not shown).

4.5. Full-Bridge Native VHDL Model

The native VHDL model of the full bridge converter contains one procedure, two
processes, and the K-calculator in combinatorial logic. The procedure calculates variables
M1 and M3. The first process contains the state machine operations. It calls the procedure
to calculate M1 and M3 in the first state of each iteration. It sets the correct inputs to the
K-calculator (either zero or the K1 values from the first cycle) and calculates the update
of the state variables in the last state of the iteration. The second process updates the
registered outputs.

4.6. Summary of the Full-Bridge Model Results

The three approaches showed similar results in terms of maximum speed and device
usage, with all requiring 12 DSPs. Regarding the LUTs, the VHDL offered significantly
better results. The maximum clock speed ranged from 19 to 21.2 ns. Using the four-stage
pipelining, a real-time result would be produced every 80 ns with the Runge–Kutta method,
which is about five-times slower than the initial Euler method. However, since the results
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were more accurate, the overall system performance would be better. Table 10 summarizes
the results of the three approaches and shows a comparison with the method proposed
in [17], Table 6. The model required more resources because the numerical method was
more complex, but there was little variation between automatic and manual designs, as
opposed to the two comparable models created in [17].

Table 10. Resource usage and maximum speed for the full-bridge model (Rows 1 to 3) and comparison
with the method proposed in [17] (Rows 4 and 5).

Code Type LUTs FFs DSPs Speed (ns) Numerical Method

VHDL from MATLAB 603 299 12 21.2 Second-order Runge–Kutta
VHDL from Simulink 602 513 12 19.0 Second-order Runge–Kutta

Manual VHDL 397 326 12 21.0 Second-order Runge–Kutta

VHDL from MATLAB 837 97 10 19.8 Forward Euler
Manual VHDL 759 77 7 19.3 Forward Euler

Table 11 compares the metrics of the three design flows of the full-bridge model. The
semi-automatically generated VHDL code was more complex. However, the parameters
with a direct influence on hardware occupation and performance were similar to those of
manually written VHDL code. The manual VHDL code had 14 multiplications, instead of
12, but it finally used 12 DSPs. This was because the K-calculator in the VHDL code was
written following Equations (19) and (20), which allowed the synthesis tool to generate the
correct optimization and produce only 2 DSPs for the 4 multiplication terms.

Table 11. Metrics’ comparison for the full-bridge model with losses.

Characteristic MATLAB Simulink Manual VHDL

Lines of code 928 1288 147
Add/subtract 13 13 14

Multiplications 12 12 14
If–then–else blocks 22 59 5

Signals and variables 338 230 16
Processes 12 29 2

These results showed that the proposed workflow effectively achieved a translation
into an efficient model. Even when handling a more complex model that typically is
designed by HDL experts, the iterative optimizations of the MATLAB and Simulink code
resulted in very efficient HDL models, totally comparable to the manual model in terms of
speed and resource usage. This is remarkable because the manual model was generated
with more effort and required knowledge of the VHDL. This was spared for the case of the
MATLAB and Simulink models.

5. Experimental Results

The final step was implementing the system in hardware. As explained in Section 3.2.1,
a Zynq device was used. In the implemented design, the programmable logic was used to
run the model in real-time, and the processor communicated with an external computer for
configuration.

The Simulink block design (Section 4.4) was modified by adding Advanced eXtensible
Interface (AXI) ports for the initial configuration, and the VHDL code was automatically
generated again to produce an Intellectual Property (IP) core. A block design was created in
Vivado to integrate the generated IP core into the Zynq processing system. The full-bridge
converter model (parameters shown in Table 12) ran in real-time with a clock speed of
22 ns. As Table 13 shows, the FPGA usage and clock speed were higher than the theoretical
minimum (Table 10) due to the addition of the AXI interfaces and the integration with
the processor.
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Table 12. Parameters of the proposed full-bridge converter.

Vin C L R RESR RD RDSON RL VD fsw dt

200 V 100 µF 900 µH 200 Ω 360 mΩ 800 mΩ 100 mΩ 5 mΩ 0.7 V 200 kHz 116 ns

Table 13. Resource usage of the bare and complete full-bridge model.

Code Type LUTs FFs DSPs Speed (ns)

Bare model 602 513 12 19
Model with AXI and microprocessor 1567 1773 12 22

The results were extracted with an Integrated Logic Analyzer. Figure 9 shows a
transient from a duty cycle of 50% to 75%. Only one point per switching cycle was extracted
to remove the switching ripple, although smaller steps were calculated internally. The
model can calculate values properly and can be used for hardware-in-the-loop design and
testing workflows as proposed in Section 1.
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Figure 9. Transition from 50% duty cycle to 75% duty cycle calculated in real-time.

6. Discussion

This paper focused on implementing models using their equations rather than di-
rectly translating schematics to HDL code, which can have low performance and high
hardware usage. The results showed that semi-automatically generated models achieve
high efficiency if the proposed method is followed.

The maximum speed was similar in all cases. DSP usage is critical in HIL applications,
and an unoptimized algorithm could double the number of DSPs used, but the achievable
speed of the non-optimized approach was still similar to the optimized one. The best
results came from the HDL code generation approach, but it was also the most-complex
and required manual conversion into fixed point. Besides, the inclusion of AXI interfaces
required knowledge of the protocols and their implementation. Finally, pipelined designs
increase the complexity, increasing the risk of incorrect implementation. All this makes the
proposed workflow very attractive for designers who are not experts in HDL, since the
effort of low-level HDL tasks with little added value is eliminated. At the same time, the
designer can rest assured that the model obtained automatically has optimum performance.
The price for this is careful work with the MATLAB or Simulink model. However, such a
model is well known by the designer, so it requires little effort and creates low risk.

The recommended workflow proved to be compatible with complex models with
pipelined architectures and several numerical methods. The power electronics designer
can generate an efficient real-time model by following simple changes to the MATLAB or
Simulink implementation. No knowledge of the target device is necessary, except for the
multiplier input and output signal sizes. Modifications take place in a scope well known to
the designer, the MATLAB or Simulink model: inspection of the calculation blocks, creation
of new signals based on logical conditions, which depend on the circuit operation modes
well known to him/her, adjustment of the variable sizes to those required by the device,
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and verification that the number of multiplier elements is in line with the calculations in
the MATLAB/Simulink design.

The proposed steps were enough to ensure optimum code translation. They can
be added to an existing design workflow, and the overhead due to the extra work and
iterations is outweighed by the security that a very efficient model is generated.

Further work should be dedicated to validating the workflow in other disciplines
using HIL. It can also be extended to other fields such as digital control systems, where
engineers do not necessarily know an HDL, but know very well the equations that model
the behavior of the system. It has to be determined if the proposed steps are enough also
in other model types to produce efficient HDL code, that is to check if FPGA parameters
other than multipliers impact the real-time model performance. In addition, the proposed
method could be a candidate itself for automatic implementation, reducing even more effort
for designers. For this, deeper formalization and generalization of the steps are needed.

7. Conclusions

A modification to the design workflow of HIL models is proposed, which leads to the
automatic generation of very efficient models. It eliminates the need for designing at the
HDL level and delivers results very close to those of manual designs. It was analyzed in a
simple design and validated in a more complex one.

The proposal presented here eliminates the need to choose between either having an
efficient model or producing it in an automated way.

For a typical power designer, who has little or no knowledge of an HDL, applying the
proposal to MATLAB- and Simulink-based approaches delivers well-performing code, with
additional use of resources, but with the same maximum speed. This is a promising path
because it allows circuit designers to generate models with very good real-time behavior in
automated workflows.
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