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Abstract: Copious evidence shows that impaired visual–motor integration (VMI) is intrinsically
linked to the core deficits of autism spectrum disorder (ASD) and associated with an anomalous
social capability. Therefore, an effective evaluation method of visual–motor behaviour can provide
meaningful insight into the evaluation of VMI towards social capability. The current pilot study aims
to explore the appropriate quantified metrics for evaluating VMI ability based on a hand-drawn
imitation protocol. First, a simple and interesting hand-drawn protocol was designed, and six healthy
participants were recruited to perform the task. Then, based on the collected hand–eye behaviour data,
several metrics were applied to infer the participant’s social capability and VMI in engagement and
visual–motor complexity based on hand–eye properties with Hausdorff distance and cross-recurrence
quantification analysis (CRQA). Finally, those quantified metrics were verified through statistical
significance. This study proposed a set of quantitative metrics to construct a comprehensive VMI
evaluation, including outcome and progress measures. The results revealed the proposed method as
a directly interpretable indicator providing a promising computational framework and biomarker for
VMI evaluation, paving the way for its future use in ASD diagnosis and guiding intervention.

Keywords: VMI; social capability; hand-drawn imitation; CRQA; metrics

1. Introduction

Visual–motor integration(VMI) or perception–action coupling is the synchrony of
visual perception and fine motor control. It is the ability of the vision system to coordinate
the information received through the eyes to control, guide, and direct the hands in the
accomplishment of a given task [1,2]. A considerable amount of studies in the literature
have demonstrated the presence of motor difficulties in individuals with autism spectrum
disorder (ASD), with recent estimates indicating that 87 percent of individuals with ASD
experience motor difficulties [3,4]. The abnormalities in gross and fine motor skills, gait,
balance, motor planning, and motor coordination have been identified [5–9]. Recent meta-
analyses have demonstrated that motor skills are poorer in very young children with ASD
than in typically developing (TD) children. The groups become increasingly divergent
with age [10–12]. Notably, the group differences in motor skills appeared far earlier than
ASD is typically detected, suggesting the potential for motor analysis in early screening
and intervention for ASD. Meanwhile, numerous studies show children with ASD are
particularly impaired on tasks requiring efficient VMI and significantly associated with
impairment in social–communicative skills [13–15].

Therefore, evaluating the VMI ability is critical to understanding heterogeneity in the
social and communicative deficits at the core of ASD [15,16]. VMI impairment commonly
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contributes to impaired motor imitation and also affects social–communicative skill de-
velopment. Thus, assessing the VMI through imitation behaviour has been considered
as a critical interaction protocol for understanding the VMI and social–communicative
deficits of ASD. Recently, Lidstong et al. [17] proposed a Computerised Assessment of
Motor Imitation (CAMI) focusing on analysing VMI through a dance imitation protocol.
Andrius et al. [18] through an imitate simple hand movements protocol investigated the
discrimination between autistic and non-autistic individuals. As a simple, interesting and
highly acceptable interactive protocol for children, hand-drawn imitation tasks have been
used as one of the standardised assessment tools in manual behaviour observation, i.e., the
Beery VMI test [19]. However, a computer-assisted VMI method based on hand-drawn
imitation protocol is still absent. Due to the hand-drawn imitation highly involving visual
perception to receive and guild hand movement and hand fine motor control to precisely
copy the geometric shapes, the key challenge is how to model the hand and eye behaviour.

Fortunately, in the last five years, computer technology has facilitated an explosion
of computer-aided methods for studying hand and eye behaviour. Many effective meth-
ods and frameworks have been proposed for handwriting explainable approaches in
many applications. Daniela Mazzolini et al. [20] presented an easy-to-explain yet ef-
fective framework to support semi-automatic signature verification in forensic settings.
Paul Whitten et al. [21] introduced a partitioning approach to construct an explainable
architecture that recognised handwritten characters. Noemi Gozzi et al. [22] adapted XAI
algorithms to EMG hand gesture classification to understand the outcome of machine
learning models with respect to physiological processes, evaluating the contribution of each
input feature to the prediction. Moreover, there are a growing number of new markers or
techniques for assessing hand and eye behaviours. Those metrics can be divided into out-
come and process measures. Considering the potentially high failure rates in children with
ASD, the outcome and process measures are all vital for a comprehensive VMI evaluation.
The outcome measures focus on a certain level of involvement in hand–eye behaviour as
well as the completion of the experimental task, such as the correlation of end-points, game
score, shapes’ spatial accuracy, total distance, time delay, and duration based on different
task properties [23–29]. Under our task properties, a combination of parameters is used to
describe the engagement as the outcome measure, where the engagement refers to social
capability and indicates the result of participants engaging in drawing imitation, including
gaze fixation on the area of interest (AOI), hand-drawing and hand-drawn performance
from drawing similarity estimated by Hausdorff distance. Moreover, for process measures,
we investigate the synchrony between eye and hand behaviours during the task. We applied
cross-recurrence quantification analysis (CRQA) [30] for the first time in VMI measurement.
CRQA has become a prominent tool to assess correlation or coupling by comparing the
co-evolution of two signals. Nowadays, applications of CRQA are very prominent in joint
action research investigating the coupling of behaviours. Particularly, CRQA has been used
to investigate the correlation of parent–child interaction [31], hand movement and speech
properties development [32], social interaction [33], or gaze behaviour analysis [34,35].

Therefore, this study aims to explore effective indicators for a comprehensive evalua-
tion of VMI through a hand-drawn imitation protocol, paving the way for future applica-
tions in ASD diagnosis and guided intervention. Specifically, in this paper, we focus on
framework feasibility validation, and therefore, we describe the motion protocol, the data
collection system, and the proposed metrics of VMI capacity by recruiting healthy subjects.
The proposed method includes outcome and process measures corresponding to participant
engagement and visual–motor complexity estimated by CRQA for a comprehensive VMI
evaluation. Furthermore, the proposed quantitative indicators were verified through the
statistical significance of different difficulty level results. The main contributions of this
study can be summarised as follows:

• A VMI evaluation framework was proposed based on a computer-assisted hand-
drawn imitation task.
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• C-RQA was first introduced to measure the VMI from the complexity of the hand
and eye behaviour synchrony. It fills the gap without a computational framework for
visual–motor behaviour.

• We conducted a pilot study of the proposed VMI evaluation tool and verified the
validity of the proposed method by a statistical significance test, providing promising
VMI indicators.

The rest of this paper is organised as follows: Section 2 details the participants, motion
protocol, and experiment setup. Section 3 introduces the proposed engagement and visual–
motor assessment methods. Section 4 illustrates the experiment results with discussions.
Finally, the conclusion and future work are given in Section 5.

2. Experiment Design
2.1. Participants

This study recruited 11 participants, including 10 healthy adults (4 male, 6 female,
average age = 28.2, STD = 4.49) and 1 healthy child (female, age = 5.5), including both
right-handed and left-handed participants. All participants met the following criteria:
(1) normal or corrected visual acuity, (2) no severe cognitive deficit, and (3) did not have a
history of motor difficulties. The study followed the declaration of Helsinki guidelines and
was approved by the University of Portsmouth Ethics Commit (TECH2022-D.Z-02).

2.2. Drawing Imitation Task

Following our previous research [36], and based on the fact that children with ASD
generally perform worse on geometry shape copying tests than typical development (TD)
children [37–39], we design this task to assess the participant’s VMI ability through hand-
drawing imitation protocol. The goal of this task is to evaluate VMI ability by having
the participant use their finger to imitate a hand-drawn image on a touchscreen device
(tablet) following a given demonstration video on the screen in front of them. The hand-
drawn imitation task mainly involves visual perception (head, eye) and fine motor (hand,
fingers, and upper arm) behaviours in real-time. During the task, the reference hand-drawn
trajectory video will appear and play on screen as soon as data collection starts for 60 s.
All participants will be asked to imitate each reference hand-drawn 10 times under data
collection. The reference hand-drawn demo trajectory videos are hand-drawn and recorded
by fine artists using an iPad.

In order to evaluate the validation of the proposed method, we design those two
hand-drawn examples with visible differences in difficulty, which are easy level (T-shirt)
Figure 1a and hard level (cat) Figure 1b.

Figure 1. The two-level hand-drawn imitation references: (a) Easy level (T-shirt), (b) Hard level (Cat).

2.3. Experiment Setup

The data acquisition system consisted of a touchscreen device (ASUS), two 27-inch
monitors (DELL), a screen-mounted eye-tracking system (Tobii Pro, Tobii), two RGB-D
cameras (Realsense, Intel), and a Desktop (Intel i7, 32 G RAM). All cameras are fixed on
custom frames with fixed geometric relationships. The touchscreen device is used as a
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visualised tool to display drawing trajectories in real time. During the experiment, the two
cameras and eye-tracker will capture the participant’s hand motion and gaze data by a
tailor-made Python script (python3.6). The hand skeleton data were estimated using the
media-pipe hand (Google) [40]. For each video frame, the x–y pixel coordinates of data
from the following 21 joints in Figure 2 were exported.

Figure 2. (a) Skeleton estimate result from top-mounted camera view. (b) Mediapipe Hand 21 joint
model; 0. wrist, 1. thumb base, 2. thumb first joint, 3. thumb second joint, 4. thumb tip, 5. index
base, 6. index first joint, 7. index second joint, 8. index tip, 9. middle base, 10. middle first joint,
11. middle second joint, 12. middle tip, 13. ring base, 14. ring first joint, 15. ring second joint, 16. ring
tip, 17. pinky base, 18. pinky first joint, 19. pinky second joint, 20. pinky tip.

The data acquisition system is synchronised by the lab-streaming-layer software
package (LSL) at a frame rate of 30 Hz for cameras and an eye-tracker. For each frame of
the acquisition process, the system will store hand RGB, hand depth map, face RGB, face
depth map, gaze position, and hand skeletons.

2.4. Procedures

The study was carried out in our lab with no other interference. Participants were
seated on a fixed-position chair, approximately 75 cm from the monitor, with their eyes at
the same height as the centre of the screen. We calibrated the eye tracker for each participant
to ensure an accurate recording of gaze coordinates. Verbal instructions, a demonstration,
and a practice trial were provided to each participant before the task commenced, allowing
them to become familiar with the task.

The protocol for the experiment includes three steps. First, the participant will be
greeted and seated. The chair height will be adjusted to ensure the eye centre is aligned
with the camera. The Tobii eye-tracker calibration procedure will then be initiated, which is
followed by an introduction of the task to the participant. The second step involves the
participant undergoing a trial round to familiarize themselves with the device, specifically
drawing on the tablet following the demo video. After this, we will confirm if the participant
is ready and remind them to look at the screen throughout. The drawing video will then be
played, and the participant will be asked to draw on the tablet simultaneously for 60 s. In
the third step, we will repeat step 2 for each of the 10 complexity levels. After each drawing
session, there will be a break before proceeding to the next drawing. After completing each
complexity level, the participant will take a break of 2 to 3 min.

3. Methodology

The overall workflow of VMI evaluation is shown in Figure 3. First, the synchronised
gaze and skeleton data of participants were captured by the camera and eye-tracker during
the task. Then, after reconstruction of the hand and gaze behaviour to a categorical time-
series sequence, we utilised CRQA to measure the system’s complexity of visual–motor
behaviour. Moreover, the engagement was estimated based on drawing performance and
hand–eye behaviour together.
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Figure 3. Workflow of the proposed VMI evaluation method.

3.1. Complexity of Visual–Motor Synchrony

During the participants’ hand drawing, their hand–eye coordination was measured
based on the two-dimensional coordinates data collected by the eye tracker and camera.
Based on the data, we apply cross-recurrence quantification analysis (CRQA) to quantify the
assessment participant’s visual–motor system’s interaction complexity. CRQA is an analysis
using a cross-recurrent plot (C-RP). It determines how often two systems demonstrate
similar patterns of behaviour over time by taking as input two different sequences and
testing the ’closeness’ of all points of the first sequence against all points of the second
sequence. Firstly, we represent the 2D gaze and skeleton sequence to categorical time series
based on customised hand and eye behaviour filters; then, we construct C-RP based on
those hand and eye categorical time series. Finally, we apply CRQA measurements for the
c-RP. The process was implemented using the pyRQA [41] toolbox in Python.

3.1.1. Categorisation of Visual–Motor Behaviour

Our aim is utilising CRQA to estimate the VMI ability through analysis of the syn-
chrony between hand and eye behaviours. Under our task setup, the visual–motor be-
haviour can be decoupled to a series of hand and eye behaviour states/categories. Based
on the collected skeleton and gaze data in 2D coordinates, to analyse visual–motor data in
CRQA, each set of coordinates was subsequently translated into a categorical time series
indicating the hand and eye behaviour state (e.g., gaze fixation, hand drawing).

For gaze behaviour, we implement a customised fixation filter with the threshold
minimum during (thr1 = 100 ms) and maximum distance (th2 = 64 pixels) to determine
the fixation behaviour. AOI is defined as the reference trajectory playing area on the screen
with the threshold (AOIthr = 0.2). Following Algorithm 1, there are three different gaze
behaviour states estimated, which include fixation not on AOI, fixation within AOI and no
gaze behaviour on screen.

In our experiment, the hand behaviour is represented in the skeleton in Algorithm 2;
after applying data normalisation, the skeleton sequences are filtered with two dimensionless
distance thresholds (thmin = 0.01) and thmax = 0.05) correspondingly to the hand-moving
distance per frame (speed) and relevant distance with a hand-drawn reference. That threshold
is optimised by a one-dimensional clustering method and Jenks natural breaks (classes = 3)
based on the collected hand movement data. Through this distance filter, three different hand
behaviour states are estimated, which are hand-drawing, hand-moving and stop.
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Algorithm 1 Categorical Gaze Behaviour Sequence.

Input: gn: The set of gaze sequence in 2D pixel coordinate.
fn: The set of fixation sequence in 2D pixel coordinate.
rn: The set of reference hand-drawn trajectory in 2D pixel coordinate.
AOIthr: The distance threshold for determining AOI.

Output: G: Categorical Gaze Behaviour Sequence
for i = 0; i < length(gn); i ++ do

if all(Fn[i]) is notnull then
if distance(Fn[i], rn[i]) < thr then

G append(1)
else

G append(0)
end if

else
G append(2)

end if
end for
return G;

Algorithm 2 Categorical Hand Behaviour Sequence.

Input: hn: The set of hand skeleton sequence in 2D pixel coordinate for the drawing finger.
thmax: The maximum distance threshold.
thmin: The minimum distance threshold.

Output: H: Categorical Hand Behaviour Sequence
for i = 1; i < length(hn); i ++ do

dis = distance(hn[i], hn[i− 1])
if thmin < dis <= thmax then

H append(1)
else if dis > thmax then

H append(2)
else

H append(3)
end if

end for
return H;

Then, the hand and eye behaviour state is estimated from hand and eye data formed
in a corresponding categorical time series, which is:

G = (g1, g2, g3, . . . gn), n ∈ (0, 1, 2, 3, . . . N) (1)

H = (h1, h2, h3, . . . hn), n ∈ (0, 1, 2, 3, . . . N) (2)

N is the maximum length of the categorical sequence. Then, C-RP was built based on those
time series to measure the visual–motor synchrony.

3.1.2. Cross Recurrent Plot

C-RP is a matrix that visualises the time coupling between two time series. In defini-
tion, it requires that the data have the same unit and phase reconstruction for the states of
the two time series to be compared. The phase reconstruction is calculated through the:

V = (u1, u2, . . . ui, . . . , un−(D−1)τ) (3)
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where u(i) is the time series, D is the embedding dimensional and τ is the time-delay,
especially for categorical time-series D = 1 and τ = 1 after the phase reconstruction of
gaze sequence G and hand sequence H. Then, the C-RP is calculated through the:

RPij = Θ(T −
∥∥Gi − Hj

∥∥) (4)

where Θ is the Heaviside step function with threshold parameter T. The Heaviside step
function converts pairs of coordinates whose distance is greater than T into 0 (non-recurrent
values) and pairs of coordinates whose distance is less than T into 1 (dark dots in the C-RP
plot). For the categorical time series, T is set to 0. The block structures in the C-RP reflect
two different hand and eye joint behaviour states:

• Fixation on AOI with hand drawing: refers to the nature of visual–motor behaviour:
that is, the eye is guiding the hand movement following the reference video.

• Hand moving with no fixation on screen: refers to the state in which the hand and
eye are relocated (saccade, move), indicating the hand and gaze are preparing for the
oncoming task properties.

3.1.3. Visual–Motor Complexity Score

We applied diagonal-wise CRQA to measure the visual–motor temporal coupling
(synchrony) between different hand and eye behaviour states. In particular, we measured
the complexity of the visual–motor synchrony between the hand and eye sequence using
the Shannon entropy of the probability distribution of the diagonal line on the C-RP.

The Shannon entropy of frequency distribution of the size of diagonal lines of the
block structures in the C-RP reflects the complexity of the deterministic structure in the
system. The complexity (Shannon entropy) of the C-RP plot is:

Com = −∑N
lmin

p(l) ln p(l) (5)

where P(l) is the probability of the diagonal lines reflex of the hand and eye repetitive
properties and patterns of dynamic systems. Therefore, the visual–motor complexity score
Com is the result of the hand and eye system reacting to the hand-drawn task during the
task. For the result, Com is low if the diagonal lines tend to all have the same length,
signifying that the hand and eye synchrony behaviour is more regular; otherwise, Com is
high if the hand–eye behaviour is more complex.

3.2. Engagement Score

In the hand-drawn task, engagement is defined as the level of participants engaging
in drawing imitation, including the rate of gaze fixation on the area of interest (AOI)
R f , hand-drawing ratio Rd and hand-drawn performance estimated from hand-drawn
similarity Sim.

• Gaze fixation ratio R f : was defined as the ratio of the time the participant’s gaze was
fixed on the AOI (reference video) to the total time spent in the experiment.

• Hand-drawing ratio Rd: was defined as the ratio of the time the participant’s hand
was in the drawing state to the total time spent in the experiment.

• Hand-drawn similarity Sim: The drawing performance score estimated from drawing
similarity, as VMI had been operationally defined as the ability to copy geometric
shapes. From recent research by Lewis et al. [42], they proved the log Hausdorff
distance was moderately positively correlated with human judgements of visual
dissimilarity. In definition, the Hausdorff distance measures how far two subsets of a
metric space are from each other.

h(A, B) = maxdist(A, B), dist(B, A) (6)

where h(A, B) is the Hausdorff distance between two points: set A and B. dis() rep-
resents the Euclidean distance functions. Then, the hand-drawn similarity Sim is de-
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fined as the log Hausdorff distance between query trajectory and reference trajectory
Sim = h(query, re f erence). Trajectory coordinates have been normalised to [0, 1] for
both axes.

Furthermore, as the outcome measure, the engagement score Eng is described as the
average value of fixation ratio, hand-drawn ratio and hand-drawn, where:

Eng = average(R f , Rd, Sim) (7)

3.3. Statistical Analysis

The engagement is measured through how gaze behaviour, hand movement and
drawing outcome engaged with the task properties. In this state, as we only involve
healthy participants, healthy adults are supposed to show high engagement. Therefore,
our hypothesis is: firstly, there should not be a significant difference between different
difficult-level tasks on the obtained drawing outcome score. Secondly, as the task level
increased, it naturally needs more gaze and hand behaviour to succeed, so we expect an
increase in both gaze and hand ratio.

The visual–motor complexity score uses CRQA to measure the repetitive properties
and patterns that arise as a result of the interaction of the two information streams of the
hand and eye over time. Hence, the visual–motor score is the reaction of task properties.
Our hypothesis is that the easy task property visual–motor system will show lower com-
plexity to finish the task. However, for the hard task, the visual–motor system should
increase complexity to adapt to the task property. In other words, as hand–eye coordina-
tion adapts to different task demands, we expect a statistically significant difference in
visual–motor complexity under different difficulty levels.

The statistical significance for task level differences in visual–motor complexity scores
was examined using independent sample t-tests, using the SciPy [43] package. With the
significant test alpha = 0.05, only those t-tests whose p-values were lower than the adjusted
alpha level were considered significant.

4. Result and Discussion
4.1. Result Comparison of Visual–Motor Complexity Score

With the hand and eye data collected from the hand-drawn task, based on CRQA,
the average complexity from 10 adult participants of easy-level drawing is 1.86, and the
average complexity is 2.43 for hard-level drawing. Notably, in Figure 4, the trend over two
difficulty groups is clearly illustrated by the box plot, which indicates that the estimated
visual–motor complexity result for the hard task is clearly higher than that for the easy
one. This also confirms our hypothesis: the interaction task becomes difficult, and the
visual–motor complexity will also trend to become more complex to adapt to the interaction
environment.

Figure 4. Box-plot for visual–motor complexity over two level hand-drawn tasks.

Furthermore, an independent samples t-test was performed to check for statistical
significance in the two difficulty groups of visual–motor complexity. As a result, a statistical
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significance has been found [t-statistic = 28.16, p-value < 0.001] between those two levels
of complexity result.

This statistical significance verified the validity of the proposed visual–motor complex-
ity indicator. It suggests that the visual–motor behaviours will trend to more complexity
when the interaction task or environment is causing visual–motor behaviours to react
more randomly. In contrast, when the task is trending more regularly, the complexity
will decrease because the categorised hand–eye sequence is also trending more regularly,
resulting in more regular dotted structures in C-PR. Compared with the C-RP result from
two levels of drawing (easy level: Figure 5) (hard level: Figure 6), intuitively, the result
from the hard level is more complex because it includes more dotted structures, where
each dot refers to a coupling that occurs alongside the hand and eye categorical time series.
Regarding the result from easy-level drawing, the significant difference is that it has more
blank structures, indicating the visual–motor behaviour state in which the gaze does not
guide the hand that is drawing. Blank structures may refer to memory; i.e., when partic-
ipants perform repeat drawing, it is very likely the shape has already been memorised,
particularly for a simple task. As a result, we observed the correlated change with the
interaction environment change and estimated complexity increase in hard level. That
also refers to adaption ability; i.e., to be effective, the system must match (or exceed) the
complexity of the environmental behaviours to which it must react with [44]. This means a
potential use is when participants fail to perform a correlated change when changing the
task demand; it may relate to difficulty with visual–motor skills. To prove that will need a
redesigned motion protocol focus on refined task levels and involve hand–eye coordination
participants and ASD participants.

Figure 5. Easy-level hand-drawn task C-RP visualisation from three participants. (a) Participant 1.
(b) Participant 2. (c) Participant 3.

Figure 6. Hard-level hand-drawn task C-RP visualisation from three participants. (a) Participant 1.
(b) Participant 2. (c) Participant 3.
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4.2. Result Comparison of Engagement Score

The estimated engagement scores of 10 adult participants are shown in Figure 7; the
average value for the easy level is 0.49 and that for the hard level is 0.42. From the statistical
t-test result over 10 healthy adults (t-statistic = 13.46 p-value < 0.001), this difference is
considered to be statistically significant. Engagement is measured through gaze behaviour,
hand movement, and drawing similarity. The drawing similarity negatively correlates
with similarity, which measures the maximum difference between two sets of coordinates.
The results in terms of engagement showed that the data for adults had higher results
in the easy group than in the difficult group, and the distribution of the data showed a
greater concentration of scores under the easy task. In contrast, when comparing only the
similarity of the drawing results (t-statistic = −0.26, p-value > 0.05), the results were not
significantly different between the two groups at different levels of difficulty. Therefore, a
certain amount of hand–eye interaction is required to complete the drawing in the actual
drawing. Under extreme conditions, fixation at the screen throughout the task indicates
abnormal hand–eye interaction and low engagement; the opposite is true. Hence, healthy
participants’ engagement should be in the similarity range.

Figure 7. Box plot for visual–motor engagement over two level hand-drawn tasks.

4.3. VMI Evaluation

Based on the result from engagement and complexity, Figure 8 shows our
11 participants’ VMI scores for engagement and complexity from both levels of hand-
drawn tasks. Our results show that the healthy adult participants’ scores were concentrated
in the upper right region. A healthy child was recruited specifically to serve as a control
group for the adult results of the VMI proficiency test. It is clear from the graph that
the data from the child group have a lower complexity score than normal adults on both
difficulty levels, and the same results can be observed on the engagement score. At the
same time, there was no significant difference in the complexity scores on the two tasks
for the children’s data compared to the adult data. We believe this is due to the different
neurodevelopmental levels of children and adults and that simple tasks for healthy adults
are too difficult for child participants. In terms of engagement, the child data showed higher
scores on the simple task compared to the difficult task, which is in line with expectations
for engagement ratings.

Thus, by comparing the healthy adult data with the healthy child data, our VMI
evaluation approach allows for a division between the two groups of participants in terms
of score intervals, which supports the feasibility of applying our evaluation metric to
autism screening.
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Figure 8. VMI evaluation based on engagement and complexity.

5. Conclusions

This study aimed to provide a framework for computer-assisted VMI evaluation based
on a drawing imitation protocol. The proposed metrics showed promising results for use
as a supplementary explanation for visual–motor ability, which not only helps provide
a further understanding of the nature of visual–motor behaviour and social capabilities
but also provides a potential biomarker for ASD diagnosis and interventions. Based on
the study participants, we utilised statistical significance (t-test) to verify the validity of
the proposed visual–motor evaluation method, which paved the way for future use in
ASD children. Moreover, combined with different task protocols, this description indicator
for visual–motor can provide a more comprehensive analysis of individual VMI ability
by coupling social capability and hand and eye synchrony, potentially further revealing
adaption ability.

While our study provides some essential considerations regarding motion protocol
design, experiment setup, and quantified assessment method, it is important to note certain
limitations. The first is the limited number and group of participants. Further studies with
larger sample sizes include VMI-deficient participants, children, and ASD participants.
Second, the gaze is obtained by a screen-mounted eye-tracker. It shows on-screen gaze
behaviour only. Using a wearable eye-tracker or including head pose retrieval from images
will improve the representation of categorical time series, which may reflex hand and
eye synchrony behaviours more precisely. Finally, the drawing imitation task involves
cognition, visual perception, fine motor control, and memory. As this study has only
analysed one aspect of hand–eye behaviour synchrony, many other valuable biomarkers
are waiting to be discovered.
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