
Citation: Yue, Y.; Tang, X.; Zhang, Z.;

Zhang, X.; Yang, W. Virtual Network

Function Migration Considering

Load Balance and SFC Delay in 6G

Mobile Edge Computing Networks.

Electronics 2023, 12, 2753. https://

doi.org/10.3390/electronics12122753

Academic Editor: Christos J. Bouras

Received: 18 May 2023

Revised: 9 June 2023

Accepted: 18 June 2023

Published: 20 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Virtual Network Function Migration Considering Load Balance
and SFC Delay in 6G Mobile Edge Computing Networks
Yi Yue 1,* , Xiongyan Tang 1, Zhiyan Zhang 1, Xuebei Zhang 1 and Wencong Yang 1,2

1 Future Network Research Department, China Unicom Research Institute, Beijing 100048, China;
tangxy@chinaunicom.cn (X.T.); zhangxb170@chinaunicom.cn (X.Z.); yangwc27@chinaunicom.cn (W.Y.)

2 Electrical Engineering Department, Zhengzhou University, Zhengzhou 450001, China
* Correspondence: yuey80@chinaunicom.cn

Abstract: With the emergence of Network Function Virtualization (NFV) and Software-Defined
Networks (SDN), Service Function Chaining (SFC) has evolved into a popular paradigm for carrying
and fulfilling network services. However, the implementation of Mobile Edge Computing (MEC) in
sixth-generation (6G) mobile networks requires efficient resource allocation mechanisms to migrate
virtual network functions (VNFs). Deep learning is a promising approach to address this problem.
Currently, research on VNF migration mainly focuses on how to migrate a single VNF while ignoring
the VNF sharing and concurrent migration. Moreover, most existing VNF migration algorithms
are complex, unscalable, and time-inefficient. This paper assumes that each placed VNF can serve
multiple SFCs. We focus on selecting the best migration location for concurrently migrating VNF
instances based on actual network conditions. First, we formulate the VNF migration problem
as an optimization model whose goal is to minimize the end-to-end delay of all influenced SFCs
while guaranteeing network load balance after migration. Next, we design a Deep Learning-based
Two-Stage Algorithm (DLTSA) to solve the VNF migration problem. Finally, we combine previous
experimental data to generate realistic VNF traffic patterns and evaluate the algorithm. Simulation
results show that the SFC delay after migration calculated by DLTSA is close to the optimal results
and much lower than the benchmarks. In addition, it effectively guarantees the load balancing of the
network after migration.

Keywords: network function virtualization; service function chain; virtual network function migration;
QoS guarantee

1. Introduction

Unlike traditional networks, future networks need to support multiple services in an
easily scalable and flexible manner. Network Functions Virtualization (NFV) has emerged
as a promising approach to powering future networks. NFV technology can decouple
network functions from specific physical devices through virtualization technology. Net-
work functions are implemented as Virtual Network Functions (VNFs, in software) and
run on commercial-off-the-shelf devices. Therefore, cloud service providers can flexibly
deploy VNFs at appropriate locations in the network and then provide customized services
to users [1]. Generally, network services in NFV-enabled networks are accomplished by
Service Function Chains (SFCs) [2], which consist of a sequence of specified VNFs in a pre-
defined order [3]. We regard a user’s request for SFC service as an SFC request, simplified
as SFCR. Meanwhile, we call the elements in a specific SFCR as VNF requests (VNFRs),
corresponding to the VNFs in an SFC.

However, opportunities and challenges always coexist. The flexible deployment of
network services leads to more frequent dynamic fluctuations in the network load. When
SFC provides services, traffic needs to be steered to traverse through several nodes, which
may cause network nodes and links to be overloaded and violate the delay constraints

Electronics 2023, 12, 2753. https://doi.org/10.3390/electronics12122753 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122753
https://doi.org/10.3390/electronics12122753
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-9710-2198
https://doi.org/10.3390/electronics12122753
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122753?type=check_update&version=1

Electronics 2023, 12, 2753 2 of 18

of services. According to Cisco Visual Network Index [4], mobile data traffic will attain
a compound annual growth rate of 54% annually from 2016 to 2023. However, in the
conventional network structure, network services are provided by dedicated hardware,
which cannot effectively address the exponential increase of various service demands.
Meanwhile, to cope with the development of new services, it is necessary to constantly
install and maintain new dedicated equipment for Cloud Service Providers (CSPs), which
rapidly increases the load and energy consumption of the data center network [5].

It should be noted that the traffic information of network services in the VNF instance
is constantly updated and accumulated. Simple remapping methods cannot effectively
guarantee the continuity of network service traffic and lead to massive reconfiguration
expenses [6]. Therefore, compared to VNF remapping, the VNF migration mechanism is
a more suitable solution. At the same time, related research has also designed a variety
of algorithms to solve the migration problem of VNF in the network supporting NFV.
However, some essential factors still have not been fully considered. First, VNF instance
sharing is a mechanism that is common in NFV-enabled networks. Most previous studies
assume that one VNF instance only provides services for one SFC and ignores the sharing
mechanism. Since only the influence of migration on a single SFC needs to be considered,
the VNF migration solution is relatively uncomplicated. Second, the dynamic characteristics
of services in NFV networks can lead to the simultaneous overloading of multiple nodes
or links, which means that VNF migrations are usually conducted concurrently. But little
literature has paid attention to this issue.

Simultaneously, with significant performance improvements, deep learning has made
remarkable achievements in many fields, such as natural language processing, autonomous
driving, computer vision, etc., [7]. Since VNF migration is related to network conditions,
it is necessary to dig deeply into the hidden rules behind the calculation of the migration
scheme to improve the efficiency of selecting the optimal path during the migration process.
Based on the powerful learning ability and performance optimization of software and
hardware [8], deep learning can effectively discover and characterize the structural features
of complex problems. Furthermore, given the scale of training data and the goal of fine-
grained feature extraction and classification, deep learning is more suitable than traditional
machine learning algorithms to achieve routing path calculation after VNF migration [9].
By considering many network-related factors, parameters, and metrics, deep learning can
design fine-grained migration strategies for VNFs more autonomously and intelligently.
It hopes to seamlessly merge intelligence and network technology by incorporating deep
learning. This would minimize the need for extensive iterations and calculations when
conducting intelligent routing path calculations, potentially surpassing conventional rule-
based routing algorithms.

Figure 1 illustrates the integration of VNF migration and deep learning technologies
to enable intelligent routing path computation for SFCRs. The controller collects network
condition data on time, which is then used to train deep models. These models generate
optimal strategies for efficient network management.

Numerous VNF migration models and algorithms have been studied, but some issues
are yet to be resolved.

• First, in NFV-enabled environments, VNF instances are commonly shared by multiple
SFCs for efficient use of network resources. However, most previous studies on VNF
migration have ignored this aspect and assumed that each VNF instance is only used
by a single SFC. This simplifies the design of VNF migration schemes, as only the
impact on one SFC needs to be considered.

• Another issue with dynamic network services is the possibility of multiple physical
links or nodes overloading simultaneously. VNF instance migration is often performed
concurrently to address this problem. However, there is limited literature on this
particular problem.

• Finally, most solutions for VNF migration in SFCRs operate using rule-based algo-
rithms and cannot execute intelligent migrations. This often results in the need for

Electronics 2023, 12, 2753 3 of 18

complicated strategy development and reduced efficiency when computing rout-
ing paths.

Given these facts, we consider VNF sharing and concurrent migration and introduce
deep learning technology in our study of the VNF migration problem. We focus on the
impact on the network and services after the migration. To ensure a more resilient network
in the face of potential traffic changes, we aim to achieve network resource load balancing
and minimize end-to-end delay for all affected services. The contributions of our work are
listed below:

• The VNF migration problem is formulated as a mathematical model. Since VNF
instance sharing is considered, one VNF may serve multiple SFCs. It means that
migrating one VNF instance may affect all SFCs that use it, making our work different
from most current work. While the problem is more complex, it is more in line with
the requirements of real cloud datacenter networks.

• We propose a Deep-Learning-based Two-Stage Algorithm (DLTSA) to solve the prob-
lem. This algorithm comprises two components: a hybrid genetic evolution algorithm
and a running algorithm. The former generates training data using available resources
and various SFCRs, while the latter handles the migration of VNFs based on the
gathered training data.

• We conduct a detailed analysis of DLTSA and evaluate DLTSA in cloud datacen-
ter networks of different sizes. The performance evaluation results show that our
proposed solution can effectively guarantee the network load balance after VNF mi-
gration. Additionally, it can provide a lower SFC average delay after migration than
the benchmark.

Figure 1. VNF migration with deep learning technology in 6G MEC networks.

Electronics 2023, 12, 2753 4 of 18

We organize the remainder of this paper as follows. Section 2 reviews the related
works. In Section 3, we describe the system model. Section 4 formulates the VNF migration
problem and our solution DLTSA is introduced in Section 5. Afterwards, Section 6 is the
performance evaluation of DLTSA. Finally, we conclude the paper in Section 7.

2. Related Works

This paper focuses on the VNF migration and SFC reconfiguration problem in dynamic
NFV-enabled networks. There have been various algorithms proposed in the literature to
solve this problem. We have reviewed the previous work and highlighted the optimization
brought by our approach. To better demonstrante the contribution of this paper, a detailed
comparison of related works is given in Table 1.

Table 1. The comparison of related works.

Scopes
Literature [10] [11] [12] [13] [14] [9,15] [16] Our

Approach
VNF sharing
consideration X × × × × X × X

Concurrent migration
of multiple VNFs × × X X × × × X

Applying
Deep learning × × × × × X X X

Network load
maintenance X X X × X × × X

SFCR delay guarantee × X × X × X × X

Node resource
consideration X X X X X X X X

Link resource
consideration X X X × × X X X

X indicates that the attribute is provided in the research work, × is the opposite.

The migration and reconfiguration mechanism of NFV involves mapping VNF and
resource allocation. Many studies have also focused on this aspect. For instance, the authors
in [10] aimed to better utilize the network by cherry-picking the relation between VNFI
sharing and link usage. They proposed a chain deployment algorithm to find a better
solution. Similarly, Agarwal et al. [17] designed a queuing-based system model to realize
optimal resource allocation between VNFs. Pham et al. [18] studied the VNF resource
allocation problem with a sampling-based Markov approximation approach and proposed
a matching algorithm based on Markov approximation to solve it in a short convergence
time. The authors in [11] presented a self-adaptive VNF embedding algorithm. This
adaptive algorithm divides SFC requests into different types and solves them by an integer
linear programming formula. Huang et al. [16] introduced an enhanced model for mapping
SFC requests. They utilized the deep deterministic policy gradient (DDPG) approach to
optimize the service cost rate and mapping rate, aiming to find the best mapping strategy
for the network. Additionally, they developed four VNF orchestration strategies to improve
the matching accuracy for various networks based on factors such as the VNF request
rate and mapping rate. In [19], the authors introduced a reconfiguration algorithm for
VNF that saves energy by predicting short-term resource requirements (RP-EDM). They
utilized LSTM to forecast VNF resource needs ahead of time, reducing the delay in dynamic
migration and determining the optimal migration timing. In their study, Tseng et al. [14]
suggested a genetic algorithm that utilizes prediction and considers the CPU and memory
utilization of PM to optimize the use of network resources. The algorithm has a multi-
objective approach. However, the solutions mentioned are based on rules; they need to be

Electronics 2023, 12, 2753 5 of 18

capable of achieving intelligent VNF migration for SFCRs. This migration typically requires
designing complex strategies and computing routing paths with low time efficiency.

In the work of [12,20], the migration problem is addressed to minimize overall en-
ergy consumption. The authors proposed a multi-heuristic approach based on the Viterbi
algorithm to determine when and where to migrate VNFI. Authors in [13,21] focused on im-
plementing migration strategies in edge networks to minimize the end-to-end delay of SFCs.
Cziva et al. [13] primarily concentrated on VNF migration timing, designing a dynamic
rescheduling method based on the theory of optimal stop. Meanwhile, Song et al. [21]
computed the optimal number of clusters in edge networks and used a graph partitioning
algorithm to minimize the number of VNF migrations between groups. While these studies
have their benefits, they all assumed that one VNF is used only by one SFC, and a single
VNF migration is made each time. In [22], the authors’ proposed approaches query the
promising embedded deep reinforcement learning engine in the management layer (e.g.,
orchestrator) to observe the state features of VNFs, apply the action on instantiating and
modifying new/created VNFs, and evaluate the average transmission delays for end-to-end
IoT services. Pei et al. [15] focused on solving the VNF selection and chaining problem in
SDN/NFV-enabled networks. They developed a unique algorithm that uses deep learning
to make VNF selection and chaining for SFCRs to be more intelligent and efficient. In their
study, Prohim et al. [23] introduced a decentralized SDN controller that acts as an agent to
facilitate a software-based system and communicate with the virtualization environment.
The architecture, which includes an agent controller and orchestrator, provides a centralized
view for the placement of virtual network functions. It efficiently maps virtual machines
to carry out edge update procedures and create effective forwarding paths. Our study
focuses on VNF sharing and concurrent migration, both significant and underexplored.
We aim to minimize the end-to-end delay of all affected SFCs while guaranteeing network
load balance.

3. System Model
3.1. Network Model

We represent the physical network as an undirected graph G = (N, L), where N and
L indicate the set of physical nodes and links, respectively. Specifically, we use ni to denote
the i-th physical node and lj to indicate the j-th physical link. The parameters Ccpu

ni and
Cmem

ni
stand for the CPU capacity and memory capacity of node ni. Each physical node can

hold multiple VNF instances to support various VNF request (VNFRs). The bandwidth
capacity of link lj is symbolized as Blj

. We denote Dlj
as the propagation delay on link lj.

3.2. SFC Requests

The parameter R = {ru|u ∈ [1, |R|]} indicates the set of total SFC requests (SFCRs).
A 3-tuple, {Fu, λu, Dmax

u } is used to indicate SFCR ru. The notation Fu = { f u
v |v ∈ [1, |Iu|]}

is the set of VNFRs in SFCR ru, and f u
v is the v-th VNFR. λu represents the arrival rate (in

bits/sec) of SFCR ru. The maximum tolerated delay of SFCR ru is symbolized as Dmax
u .

We define Eu = {eu
h |h ∈ [1, |Iu|]} as the set of logical links in SFCR ru, where eu

h
indicates the h-th logical link between VNFs f u

h and f u
h+1. In addition, to ensure that there

will be no duplicate VNFs in one SFCR, we assume that a specific type of VNF is requested
at most once in each SFCR. To avoid issues such as routing loops and the overload on a
single node in the network, we assume that a VNF instance can only serve one type of
VNFR. Therefore, VNFRs in one SFCR cannot be allocated to the same VNF instance.

3.3. VNF Forward Graph

We use a directed graph Ḡ = (N̄, L̄) to denote VNF forward graph (VNF-FG). Intu-
itively, a VNF-FG is a virtual network abstracted from the physical network and consists of
multiple VNF instances. The parameters N̄ = {n̄i′ |i′ ∈ [1, |N̄|]} and L̄ = {l̄j′ |j′ ∈ [1, |L̄|]}
stand for the set of VNF instances and virtual links, respectively. Likewise, we use n̄i′ ∈ N̄
and l̄j′ ∈ L̄ to indicate the i′-th VNF instance node and j′-th virtual link.

Electronics 2023, 12, 2753 6 of 18

The serving capability (in cycles/sec) of VNF instance n̄i′ is set to Cn̄i′ . Moreover,
considering that the resource requests of different SFCs are independent, we denote the
processing density (in cycles/bit) of a VNF instance serving a SFCR ru as wu

n̄i′
[24]. Therefore,

the processing rate vu
n̄i′

allocated by VNF instance n̄i′ to SFCR ru can be calculated as follows:

vu
n̄i′

=
Cn̄i′ η

u
n̄i′

wu
n̄i′

∀n̄i′ ∈ N̄, (1)

where ηu
n̄i′

is the CPU sharing rate of the VNF instance n̄i′ serving SFCR ru.

4. Problem Formulation

In this section, we formulate the VNF migration problem as a mathematical model.
All the notations and variables are listed in Table 2.

Table 2. Symbols and variables.

Symbols and Variables Description

Physical network

N Set of physical nodes, ni ∈ N is a physical node.
L Set of physical links, lj ∈ L is a physical link.
Ccpu

ni , Cmem
ni

Capacity of CPU and memory in node ni.
Blj

Bandwidth capacity on link lj.
Dlj

Propagation delay on link lj.

SFCR related

R Set of SFCRs, ru ∈ R is an SFCR.
Fu Set of VNFRs in SFCR ru, f u

v ∈ Fu.
Eu Set of logical links in SFCR ru, eu

h ∈ Eu.
λu Traffic arrival rate in SFCR ru.
Ccpu

f u
v

, Cmem
f u
v

CPU and memory requirement of VNF f u
v .

Dmax
u The maximum tolerated delay of SFCR ru.

VNF-FG related

N̄ Set of VNF instance nodes, n̄i′ ∈ N̄.
L̄ Set of virtual links, l̄j′ ∈ L̄.
vu

n̄i′
Processing rate allocated by VNF instance n̄i′ to SFCR ru

Unknown variables

xn̄i′
f u
v

Whether VNFR f u
v is mapped on VNF n̄i′ .

x
l̄j′

eu
h

Whether logical link eu
h is mapped on virtual link l̄j′ .

yni
n̄i′

Whether VNF n̄i′ is host on node ni.

y
lj

l̄i′
Whether virtual link l̄i′ is host on link lj.

First, we define the binary variable xn̄i′
f u
v

to indicate the mapping status of SFCR ru:

xn̄i′
f u
v
=

{
1 VNFR f u

v in SFCR ru is mapped on VNF instance n̄i′ ,
0 otherwise.

(2)

Likewise, the mapping status of logical links in SFCR ru is:

x
l̄j′
eu

h
=

{
1 logical link eu

h in SFCR ru is mapped on virtual link l̄j′ ,
0 otherwise.

(3)

Electronics 2023, 12, 2753 7 of 18

Next, we define Equations (4) and (5) to denote the mapping status of a VNF-FG:

yni
n̄i′

=

{
1 node ni holds VNF instance n̄i′ ,
0 otherwise.

(4)

y
lj

l̄j′
=

{
1 link lj holds virtual link l̄j′ ,
0 otherwise.

(5)

The total delay of an SFCR consists of the processing delay Pu on VNF instance
and the transmission delay Tu on links. We apply the M/M/1 queuing model to each
VNF instance node. The traffic of SFCR follows the Poisson distribution with the arrival
rate of λu bps, while the processing time of the traffic on the VNF instance obeys the
exponential distribution. Based on Little’s law, the processing delay of a single VNF
instance is calculated as:

Pn̄i′
u =

xn̄i′
f u
v

vu
n̄i′
− λu + ε

∀ f u
v ∈ Fu, ∀n̄i′ ∈ N̄, ∀ru ∈ R (6)

and the total processing delay of an SFCR is

Pu = ∑
f u
v ∈Fu

∑
n̄i′∈N̄

Pn̄i′
u , ∀ru ∈ R. (7)

In Equation (6), 0 < ε � is a constant that prevents Pn̄i′
u from being undefined,

and xn̄i′
f u
v
= 0 leads to an invalid value of Pn̄i′

u .
As shown in Equation (8),

Tu = ∑
eu

h∈Eu
∑

l̄j′∈L̄
∑

lj∈L
x

l̄j′
eu

h
y

lj

l̄j′
Dlj

(8)

where Tu represents the delay generated by the traffic of SFCR ru transmitted on physi-
cal links.

For SFCR ru, its total end-to-end delay must meet the constraint of the maximum
tolerated delay as

Du = Pu + Tu 6 Dmax
u . (9)

For an SFCR ru, we can only map its VNFRs and logical links once in the physical
network. Then, we define the following constraints:

∑
n̄i′∈N̄

∑
ni∈N

xn̄i′
f u
v

yni
n̄i′

= 1, ∀ f u
v ∈ Fu, (10a)

∑
l̄j′∈L̄

∑
lj∈L

x
l̄j′
eu

h
y

lj

l̄j′
= 1, ∀eu

h ∈ Eu. (10b)

Next, we should ensure that the consumption of CPU, memory, and bandwidth cannot
exceed the resource capacity on corresponding nodes and links. So, we define the following
constraints:

∑
ru∈R

∑
f u
v ∈Fu

∑
n̄i′∈N̄

xn̄i′
f u
v

yni
n̄i′

Ccpu
f u
v

6 Ccpu
ni , ∀ni ∈ N (11a)

∑
ru∈R

∑
f u
v ∈Fu

∑
n̄i′∈N̄

xn̄i′
f u
v

yni
n̄i′

Cmem
f u
v

6 Cmem
ni

, ∀ni ∈ N (11b)

Electronics 2023, 12, 2753 8 of 18

∑
ru∈R

∑
eu

h∈Eu
∑

l̄j′∈L̄

x
l̄j′
eu

h
y

lj

l̄j′
λu 6 Blj

∀lj ∈ L. (11c)

Considering the characteristics of the M/M/1 queue, the processing rate vu
n̄i′

allocated
on VNF n̄i′ can neither exceed the maximum processing rate on VNF nor be lower than the
traffic arrival rate of SFCR ru, Equation (12) must be satisfied

xn̄i′
f u
v

λu 6 vu
n̄i′

6 xn̄i′
f u
v

Cn̄i′

wu
n̄i′

, ∀ru ∈ R, ∀n̄i′ ∈ N̄. (12)

Then we formulate the load fluctuation in network after VNF migration. We use the
resource variance to reflect the load balance status of the network [25]. That is, the smaller
the resource variance, the stronger the load-balancing capability of the network. In addition,
we calculate the load change as a percentage to guarantee that the optimization objectives
are of the same magnitude.

As shown in Equation (13), we use notation Q∗ni
to indicate the resource consumption

on node
Q∗ni

= ∑
f u
v ∈Fu

∑
n̄i′∈N̄

xn̄i′
f u
v

yni
n̄i′

C∗f u
v

, ∀ni ∈ N, (13)

where ∗ denote the resource type (CPU and memory).
Then, we define Equations (14a) and (14b) to calculate the mean and variance of

node load.

Q∗mean =
∑ni∈N

Q∗ni
C∗ni

|N| (14a)

Q∗var =
∑ni∈N(Q∗ni

−Q∗mean)
2

|N| (14b)

Similarly, we have the following link bandwidth consumption, mean and variance of
link load

Slj
= ∑

eu
h∈Eu

∑
l̄j′∈L̄

x
l̄j′
eu

h
y

lj

l̄j′
λu ∀lj ∈ L (15a)

Smean =
∑lj∈L

Slj
Blj

|L| (15b)

Svar =
∑lj∈L(Slj

− Smean)2

|L| (15c)

So, the total network load L is

L = Qcpu
var + Qmem

var + Svar (16)

We need to find the best migration solution after the migration (at time (t)) based on
the mapping status of the VNFs before migration (at time (t−1)). Equations (17b) and (17a)
indicate the fluctuation in network load and SFCRs delay

∆L(t) = L(t)−L(t− 1) (17a)

∆D(t) = ∑
ru∈R
{Du(t)− Du(t− 1)} (17b)

Electronics 2023, 12, 2753 9 of 18

Our objective function is expressed as

Minimize ω1∆D(t) + ω2∆L(t)
s.t. Equation (2) to Equation (17)

(18)

We aim to minimize the network load and SFC delay variation after the VNF migration
is completed. Considering that there are two optimization objectives, we utilize a weighted
sum approach to normalize the magnitudes of the two objectives while reflecting their
relative importance.

5. Proposed Algorithm

Based on the problem formulation in Sections 3 and 4, we propose a Deep-Learning-
based Two-Stage Algorithm (DLTSA). We first utilize the Hybrid Genetic Evolution Algo-
rithm to derive the training data based on available resources for our problem. Then, we
apply the running algorithm, which can effectively derive the VNF migration schemes.

5.1. Genetic Evolution on VNF Migration

The Genetic Evolution (GE) Algorithm is an evolutionary algorithm that simulates bio-
genetics [26]. They adapt to the environment by employing the mechanisms of population
evolution (inducing operators such as mutation and crossover between individuals) [27].
When a VNFI is migrated, it may influence multiple SFCs. To simplify this problem, we
regard the potential migration states of all VNF instances in the network as an entire
solution. The GE algorithm mainly consists of four essential parts:

5.1.1. Initialization

First, we generate an initial population F(0) = {x1,0, x2,0, ..., xn,0} with n individuals,
where each xi,0 represents a possible migration plan for this network. Then, if there exist
m VNFs to be migrated, a complete solution xi,0 is a vector composed of m elements.
For example, xi,0 = {n2, n4, n5}means that the first, second and third VNFs are migrated
to the physical nodes n2, n4 and n5.

5.1.2. Fitness Calculation

Based on the current population F(t), we calculate the fitness function for each xi,t.
The algorithm employs the fitness function to select the next generation of individuals
and then seeks the optimal solution to the problem. An individual represents a possible
migration scheme for the VNF migration problem. The fitness function of each individual
in current population to fit in with the survival of the fittest. Therefore, the definition of the
fitness function is critical, and it is related to the algorithm’s convergence speed and the
solution’s quality. We exploit the idea of the penalty function to transform the objective
function. Our fitness function is the sum of two parts. The former part is the normalized
value of objective, and the recent past is the penalty function. The specific equation is
as follows:

f (xi,t) = ω1∆D(t) + ω2∆L(t) + δ ∗ S(xi,t) (19a)

S(xi,t) = ∑
ni∈xi,t

max{0, ∑
n̄i−→ni

yni
n̄i′

Q∗n̄i′
− ρ∗ni

} (19b)

Q∗n̄i′
= ∑

ru∈R
∑

f u
v ∈Fu

xn̄i′
f u
v

C∗f u
v

(19c)

where δ is the penalty factor, and S(xi,t) represents the penalty strength for choosing
candidate solution xi,t. The parameter ρ∗ni

in Equation (19b) is the remaining resource on
node ni. Equation (19c) is the total resources required by VNF n̄i′ . For Equation (19b),
if Equation (19c) is greater than ρ∗ni

, the value of S(xi,t) is greater than zero, thus triggering
the penalty. The penalty strength depends on whether the current candidate migration

Electronics 2023, 12, 2753 10 of 18

plan satisfies the node resource constraints. If the node resource limit is satisfied, there
is no penalty. When the node limit is violated, the more the current scheme exceeds the
constraints, the greater the penalty strength. In addition, we assign a large value (δ = 15)
to the penalty factor to filter out feasible solutions more quickly.

5.1.3. Individual Selection

Based on the fitness of individuals in population F(t), we use a roulette to determine
which individuals will be inherited by F(t + 1). The fitness value is proportional to the
probability of individual selection, and the probability P(i) of selecting the i-th individual
is as follows:

P(xi,t) =
f (xi,t)

∑xi,t∈F(t) f (xi,t)
i = (1, 2, ..., n) (20)

5.1.4. Crossover and Mutation

Crossover and mutation are operations that generate new individuals to maintain the
diversity of the population. They cooperate to complete the global search for the solution
space. We use the Partial-Mapped Crossover method to recombine the two individuals.
The probabilities of these two actions are denoted as Equations (21a) and (21b)

Pc =

{ k1(fmax− f)
fmax− favg

f ≥ favg

k2 f < favg
(21a)

Pm =

{ k3(fmax− f ′)
fmax− favg

f ′ ≥ favg

k4 f ′ < favg
(21b)

favg and fmax represent the population’s average fitness and maximum fitness, respec-
tively. The parameter favg (fmax) denotes the higher fitness of the two individuals to be
crossed (mutated).

The procedure of HGE algorithm is given in Algorithm 1. First, based on the size of
resource consumption, we sort the VNF instances that need to be migrated in descending
order and generate individual gene rankings (lines 1–2 in Algorithm 1). Some invalid
individuals may be generated during population initialization and iteration. In these
invalid solutions, the total resource consumption of the VNFs migrated to the target node
exceeds the available resources on the node. To improve the algorithm’s efficiency and
resolution quality, we add the heuristic search algorithm BFD (Best Fit Decreasing) in
Algorithm 1 as a pre-stage. The BFD algorithm is called at line 3 of Algorithm 1, and the
specific content is introduced in the following subsection. Algorithms 1 and 2 together
constitute the DLTSA algorithm.

At line 8 in Algorithm 1, we execute the crossover and mutation operations on the
population, which may probabilistically generate some invalid individuals. This may result
in the violation of delay or resource constraints. To improve population effectiveness, we
need to fix all invalid individuals. In Algorithm 1, line 9 involves a partial update where
the algorithm filters out individuals whose fitness is affected by the penalty factor. These
individuals are decoded to create a set of solutions. If an invalid solution is detected,
the algorithm assigns the incorrect VNF instances in descending order to the nodes in
the adjacent rack where the VNF instance is located. This operation is performed before
migration to meet the SFC delay constraints and ensure sufficient resources are available.
Therefore, we correct the invalid individual and inherit them to a new population F(t + 1),
guaranteeing the validity of the population (lines 9–10 in Algorithm 1).

Electronics 2023, 12, 2753 11 of 18

Algorithm 1 Hybrid genetic evolution algorithm.

Input: Physical network G = (N, L), VNF-FG Ḡ = (N̄, L̄), Set of SFCRs R, k1, k2, k3, k4.
Output: Xbext,tmax = {xbest,1, xbest,2, ..., xbest,M}tmax .

1: t← 0.
2: Obtain set of VNF instances Mmgr that waits for migrating
3: Initialize population F(0) with n individuals using Algorithm 2.
4: while t 6 tmax do
5: Calculate the fitness value f (x) of each individual in the population F(t) exploiting

Equation (19).
6: repeat
7: Select two individuals based on the probability calculated by Equation (20).
8: Execute the crossover and mutation operations using Equation (21).
9: Detect and correct the validity of two individuals.

10: Inherit two individuals to a new population F(t + 1).
11: until |F(t + 1) = n|
12: t← t + 1
13: end while
14: Find the best individual xbest,tmax .
15: return xbest,tmax = {xbest,1, xbest,2, ..., xbest,M}.

Algorithm 2 Best fit decreasing algorithm.

Input: Physical network G = (N, L), VNF-FG Ḡ = (N̄, L̄), Set of VNF instances Mmgr to
be migrated.

Output: Initial population F(0).
1: Sort Mmgr in descending order based on resource size derived by Equation (19c).
2: i← 0.
3: while i < n do
4: while VNF instance m ∈ Mmgr do
5: Choose the set of migration candidate nodes that can hold VNF instance m.
6: Add the node with max available resource to xi,0.
7: Update the available resources of the node.
8: end while
9: Add the individual to population F(0) and reset N̄.

10: i← i + 1.
11: end while
12: return F(0)

5.2. Pre-Stage in Hybrid Genetic Evolution Algorithm

If the fitness value of an individual is unreasonable [28], its corresponding solution
violates the node’s resource constraints. Therefore, Algorithm 2 is designed for reconstruct-
ing individual solutions. Algorithm 2 demonstrates the procedure of generating the initial
population. The parameter Mmgr is the group of VNF instances waiting for migration. We
first arrange the VNF instances that have not been successfully migrated in descending
order (line 1 in Algorithm 2). Then, we select nodes with sufficient resources from the
adjacent nodes of these VNFs as their migration nodes to satisfy the resource and delay
constraints (line 5 in Algorithm 2). Finally, we migrate the VNF to the target node with the
most available resources to satisfy the VNF resource constraints. Meanwhile, to prevent
resource overload, we update the remaining resources of the node (lines 6–7 in Algorithm 2).
By recoding the invalid genes of individuals, we can ensure the efficacy of breeding new
individuals in the iteration procedure.

Electronics 2023, 12, 2753 12 of 18

5.3. Running Algorithm of DLTSA

During the process’s second phase, we obtain the optimal migration node group from
the training data gathered in the first phase. Once we have this group, we select the VNF
instances that will be migrated.

The running process of DLTSA is presented in Algorithm 3 which includes initializing
related parameters and obtaining the optimal VNF instance group in lines 1–3. In lines 4–9,
we compute the optimal target node for migrating VNFs. From there, we obtain the com-
plete migration scheme Ψ in lines 10–17 if Ψ satisfies all the constraints in Equations (9)–(12).
It will be an output to migrate the corresponding VNFs. However, if Ψ does not meet
these constraints, we iterate and check other candidate nodes to recompute Ψ in line 14 of
Algorithm 3. The running process of DLTSA stops once there are no feasible nodes or the
iteration times reach a stopping threshold.

Algorithm 3 Running algorithm of DLTSA.

Input: Training data {xbest,1, xbest,2, ..., xbest,M}, Physical network G = (N, L), VNF-FG
Ḡ = (N̄, L̄), Set of SFCRs R.

Output: Complete migration solution Ψ.
1: Initialize maximum iteration times α, current iteration times β, and migration nodes

Ψ← ∅.
2: Generate the input parameter xr based on Ccpu

f u
v

, Cmem
f u
v

, λu, Dmax
u .

3: Obtain candidate nodes {xbest,1, xbest,2, ..., xbest,M} of SFCR ru
4: for all VNF instances in m ∈ Mmgr do
5: Choose the set of migration candidate nodes that can hold VNF instance m.
6: Add the node with max available resource to xi,0.
7: Update the available resources of the node.
8: Ψ← Obtain the optimal migration node;
9: end for

10: repeat
11: if Ψ satisifies all the constraints then
12: return Ψ;
13: else
14: Ψ← Iterate and recompute Ψ;
15: β← β + 1
16: end if
17: until β > α
18: return Rejected;

6. Performance Evaluation
6.1. Simulation Setup

We perform the evaluation on a computer with Intel(R) Core(TM) i7-10870H CPU
2.20 GHz and 32GB RAM and implement all the algorithms with MATLAB 2016a.

We use a 3-layer fat-tree of k-ary Clos topology [29], and consider two network sizes
(k = 4 and k = 8). These two networks contain 16 and 128 physical nodes, respectively. ω1
and ω2 are two weighted parameters, which can be adjusted to achieve any desired trade-
off. We consider that load balance and SFC delay have equal importance, so we set ω1 = ω2.
Referring to [30,31], the setting of parameters is shown in Table 3. For the training data,
first, we generate a set of SFCRs with the above parameter settings and obtain the optimal
solution for each SFCR one by one by running the Hybrid Genetic Evolution Algorithm
until the network’s available resources are exhausted. Then, repeat the previous steps until
we have collected enough training data. The network simulator generated a training dataset
consisting of approximately 2× 107 items to train the deep belief network. Additionally,
each deep belief network has three hidden layers with 40 hidden neurons each.

Electronics 2023, 12, 2753 13 of 18

Table 3. Simulation parameter settings.

Parameters Value Parameters Value

Ccpu
ni [10, 30] cores Cmem

ni
[32, 64] GB

Blj
[500, 1000] Mbps Dlj

[2, 5] ms

Dmax
u [10, 50] ms λu [1000, 4000] packets/s

SFC length [3, 5] k1, k2 0.4, 0.75

k3, k4 0.091, 0.063 Max generations 500

6.2. Contrastive Benchmarks

With respect to the benchmarks, we introduce the following approaches for comparison.

• To solve small-scale problems, we use Gurobi [32], a mathematical programming
solver with precise algorithms like branch and bound. Gurobi can solve complex
mathematical models efficiently by traversing the solution space. However, for larger
networks, Gurobi’s execution time increases dramatically, and it may crash before
completing the task. Therefore, we only use Gurobi as a small and medium-scale
network baseline.

• To compare the convergence of the DLTSA in the evolution process, we introduce
the unimproved Original Genetic Evolution algorithm (OGE) as the baseline. It is
important to note that the OGE algorithm generates initial individuals randomly and
does not use the best-fit decreasing heuristic for optimization.

• The Backtracking-based Greedy algorithm (BG) [33] determines migration decisions
based on the memory size of the migration service. It employs two variables, allocation
ratio, and backtracking rate, to manage the backtracking process and minimize the
allocation of nodes with limited resources.

6.3. Simulation Results

In the working phase of SFCs, the flow of services constantly changes, which may
lead to an overload of network nodes and links, and induces end-to-end delay conflicts
of services. Load balancing can make the network more tolerant to future traffic changes,
and ensuring the end-to-end delay of SFC after VNF migration can effectively improve QoS.

6.3.1. Fitness Value

Regarding the fitness value, we can see from Figure 2 and 3 that the DLTSA algorithm
outperforms the OGE algorithm. The reason is that numerous invalid individuals flood the
evolution of the OGE algorithm, affecting the population’s effective iteration. In addition,
as the network size increases, the convergence speed of the algorithms decreases. When
the network size is k = 4, the DLTSA and OGE algorithms are steady after about 200
and 250 iterations, respectively. Moreover, in a network with k = 8, these two algorithms
need about 300 and 400 iterations to achieve stability. This is because, with the increase in
network scale, the solution space increases, and the evolutionary algorithm needs to go
through more iterations to find the optimal solution of the solution space.

Our approach always stays at 0 in terms of individuals’ invalid ratio. However,
the OGE algorithm achieves 39% and 43% in two network topologies, resulting in many
invalid solutions. After removing invalid individuals, the solution quality of the GE
algorithm is inferior to that of the DLTSA algorithm. Therefore, the solution quality of
DLTSA is better than that of the original genetic evolution approach.

Electronics 2023, 12, 2753 14 of 18

Figure 2. Fitness value in a 4-ary fat-tree.

Figure 3. Fitness Value in a 8-ary fat-tree.

6.3.2. Network Load Balance

In the initial network mapping, the optimization goal is to minimize the accumulated
SFC delay, which results in VNFs being placed in the same or adjacent pods and poor load
balance in the network. The difference in the initial load of the three networks depends on
the number of SFCs mapped. As shown in Figure 4, the DLTSA algorithm performs the
best in VNF migration compared to other algorithms, including OGE and BG, and is close
to the optimal solution Gurobi. This is because the essence of the BFD-integrated DLTSA
algorithm is a global search. After a complete evolution process, the solution obtained is
better. Although OGE and BG algorithms perform poorly, they are still better than the initial
network state, proving the effectiveness of the VNF migration mechanism. By considering
the sharing of VNF, DLTSA can make more efficient use of network resources.

Electronics 2023, 12, 2753 15 of 18

Figure 4. Comparison of network load balance.

6.3.3. Average SFC Delay

We can see from Figure 5 that the DLTSA algorithm has the most negligible impact on
the post-migration SFC delay. Compared to the benchmarks, the average SFC delay is re-
duced by about 15% to 25% by DLTSA in different network sizes. This is because the DLTSA
algorithm considers the sharing of VNF instances. During the iteration, the population is
polluted due to the large number of invalid solutions produced by the OGE algorithm. This
also leads to poor performance of OGE. In addition, the OGE algorithm does not consider
the significance of simultaneous migration and does not have a rational prioritization
approach. Fewer migration options are available during the later VNF migration phase,
which impacts multiple SFCs. The BG algorithm also overlooks the sharing of VNFs, as a
successful VNF migration for one SFC may cause significant delays for other affected SFCs.
Based on the above analysis, DLTSA can obtain a better SFC delay after VNF migration
than other algorithms. Based on the above analysis, DLTSA can obtain a better SFC delay
after VNF migration than other algorithms.

Figure 5. Comparison of average SFC delay.

Electronics 2023, 12, 2753 16 of 18

6.3.4. Execution Time

According to the data presented in Figure 6, the execution time of four algorithms was
analyzed by 1000 SFCRs. The results reveal that the optimal algorithm (Gurobi) consumes
the longest time of approximately 3200 ms. On the other hand, OGE and BG algorithms
consume around 1600 ms and 2400 ms, respectively. The reason is that OGE and BG
approaches inspect constraints after obtaining VNF migration solutions and re-enter the
iteration process or check other solutions if the solution violates any constraint. Interestingly,
DLTSA performed exceptionally well, eight times faster than OGE and 16 times faster than
the optimal algorithm. Because the DLTSA approach considers all constraints during the
iteration process and employs a penalty function to effectively reduce the solution space,
resulting in an improved algorithm efficiency.

Figure 6. Comparison of time efficiency.

7. Conclusions

This paper focuses on the challenge of VNF migration and SFC reconfiguration in 6G-
MEC networks. We have formulated this problem as a mathematical model that considers
the shared use of VNF instances by multiple SFCs. Although this adds complexity to our
problem, it aligns more with real-world requirements. We propose a Deep-Learning-based
Two-Stage Algorithm (DLTSA) to address it. We also devise a running algorithm to reduce
the computational burden of DLTSA. In DLTSA, we have emphasized the importance of
sharing VNFI and migration concurrency. We aim to minimize the end-to-end delay for all
services and achieve network load balancing after migration. Our simulation results show
that these algorithms, considering VNFI sharing, can guarantee network load balancing
while reducing service delay as much as possible.

However, there are limitations to our work. We have only evaluated our solutions
in a simulation environment, and we plan to implement the migration model and algo-
rithms in a real NFV platform for future work. Furthermore, we recognize that additional
requirements and constraints, such as migration cost and energy consumption, need to
be considered.

Author Contributions: Conceptualization, Y.Y. and X.T.; methodology, Y.Y. and X.T.; software, X.Z.;
validation, Y.Y., W.Y. and X.Z.; formal analysis, Y.Y.; investigation, Z.Z.; resources, Y.Y.; writing—
original draft preparation, Y.Y.; writing—review and editing, Y.Y. and Z.Z.; All authors have read and
agreed to the published version of the manuscript.

Funding: This work is supported by the 2023–2025 Young Elite Scientists Sponsorship Program of
Beijing Association for Science and Technology. No. BYESS2023283.

Data Availability Statement: Not applicable.

Electronics 2023, 12, 2753 17 of 18

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Laghrissi, A.; Taleb, T. A Survey on the Placement of Virtual Resources and Virtual Network Functions. IEEE Commun. Surv.

Tutor. 2019, 21, 1409–1434. [CrossRef]
2. Pei, J.; Hong, P.; Xue, K.; Li, D. Resource Aware Routing for Service Function Chains in SDN and NFV-Enabled Network. IEEE

Trans. Serv. Comput. 2021, 14, 985–997. [CrossRef]
3. Hantouti, H.; Benamar, N.; Taleb, T.; Laghrissi, A. Traffic Steering for Service Function Chaining. IEEE Commun. Surv. Tutor. 2019,

21, 487–507. [CrossRef]
4. Pepper, R. Cisco Visual Networking Index (VNI) Global Mobile Data Traffic Forecast Update; Technical Report; Cisco: Singapore, 2013.
5. Sun, P.; Guo, Z.; Liu, S.; Lan, J.; Wang, J.; Hu, Y. SmartFCT: Improving power-efficiency for data center networks with deep

reinforcement learning. Comput. Netw. 2020, 179, 107255. [CrossRef]
6. Nobach, L.; Rimac, I.; Hilt, V.; Hausheer, D. SliM: Enabling efficient, seamless NFV state migration. In Proceedings of the 24th

IEEE International Conference on Network Protocols, ICNP, Singapore, 8–11 November 2016; IEEE Computer Society; pp. 1–2.
7. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,

V.; Lanctot, M.; et al. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529, 484–489. [CrossRef]
8. Mao, B.; Fadlullah, Z.M.; Tang, F.; Kato, N.; Akashi, O.; Inoue, T.; Mizutani, K. Routing or Computing? The Paradigm Shift

Towards Intelligent Computer Network Packet Transmission Based on Deep Learning. IEEE Trans. Comput. 2017, 66, 1946–1960.
[CrossRef]

9. Pei, J.; Hong, P.; Pan, M.; Liu, J.; Zhou, J. Optimal VNF Placement via Deep Reinforcement Learning in SDN/NFV-Enabled
Networks. IEEE J. Sel. Areas Commun. 2020, 38, 263–278. [CrossRef]

10. Kuo, T.; Liou, B.; Lin, K.C.; Tsai, M. Deploying Chains of Virtual Network Functions: On the Relation Between Link and Server
Usage. IEEE/ACM Trans. Netw. 2018, 26, 1562–1576. [CrossRef]

11. Li, Z.; Lu, Z.; Deng, S.; Gao, X. A Self-Adaptive Virtual Network Embedding Algorithm Based on Software-Defined Networks.
IEEE Trans. Netw. Serv. Manag. 2019, 16, 362–373. [CrossRef]

12. Eramo, V.; Miucci, E.; Ammar, M.H.; Lavacca, F.G. An Approach for Service Function Chain Routing and Virtual Function
Network Instance Migration in Network Function Virtualization Architectures. IEEE/ACM Trans. Netw. 2017, 25, 2008–2025.
[CrossRef]

13. Cziva, R.; Anagnostopoulos, C.; Pezaros, D.P. Dynamic, Latency-Optimal vNF Placement at the Network Edge. In Proceedings of
the 2018 IEEE Conference on Computer Communications, INFOCOM, Honolulu, HI, USA, 16–19 April 2018; pp. 693–701.

14. Tseng, F.; Wang, X.; Chou, L.; Chao, H.; Leung, V.C.M. Dynamic Resource Prediction and Allocation for Cloud Data Center Using
the Multiobjective Genetic Algorithm. IEEE Syst. J. 2018, 12, 1688–1699. [CrossRef]

15. Pei, J.; Hong, P.; Xue, K.; Li, D.; Wei, D.S.L.; Wu, F. Two-Phase Virtual Network Function Selection and Chaining Algorithm Based
on Deep Learning in SDN/NFV-Enabled Networks. IEEE J. Sel. Areas Commun. 2020, 38, 1102–1117. [CrossRef]

16. Huang, W.; Li, S.; Wang, S.; Li, H. An Improved Adaptive Service Function Chain Mapping Method Based on Deep Reinforcement
Learning. Electronics 2023, 12, 1307. [CrossRef]

17. Agarwal, S.; Malandrino, F.; Chiasserini, C.F.; De, S. Joint VNF Placement and CPU Allocation in 5G. In Proceedings of the 2018
IEEE Conference on Computer Communications, INFOCOM, Honolulu, HI, USA, 16–19 April 2018; pp. 1943–1951.

18. Pham, C.; Tran, N.H.; Ren, S.; Saad, W.; Hong, C.S. Traffic-Aware and Energy-Efficient vNF Placement for Service Chaining: Joint
Sampling and Matching Approach. IEEE Trans. Serv. Comput. 2020, 13, 172–185. [CrossRef]

19. Liu, Y.; Ran, J.; Hu, H.; Tang, B. Energy-Efficient Virtual Network Function Reconfiguration Strategy Based on Short-Term
Resources Requirement Prediction. Electronics 2021, 10, 2287. [CrossRef]

20. Eramo, V.; Ammar, M.H.; Lavacca, F.G. Migration Energy Aware Reconfigurations of Virtual Network Function Instances in NFV
Architectures. IEEE Access 2017, 5, 4927–4938. [CrossRef]

21. Song, S.; Lee, C.; Cho, H.; Lim, G.; Chung, J.M. Clustered Virtualized Network Functions Resource Allocation based on
Context-Aware Grouping in 5G Edge Networks. IEEE Trans. Mob. Comput. 2020, 19, 1072–1083. [CrossRef]

22. Tam, P.; Math, S.; Kim, S. Priority-Aware Resource Management for Adaptive Service Function Chaining in Real-Time Intelligent
IoT Services. Electronics 2022, 11, 2976. [CrossRef]

23. Tam, P.; Math, S.; Kim, S. Optimized Multi-Service Tasks Offloading for Federated Learning in Edge Virtualization. IEEE Trans.
Netw. Sci. Eng. 2022, 9, 4363–4378. [CrossRef]

24. Shin, M.; Chong, S.; Rhee, I. Dual-resource TCP/AQM for processing-constrained networks. IEEE/ACM Trans. Netw. 2008,
16, 435–449. [CrossRef]

25. Guo, Y.; Wang, S.; Zhou, A.; Xu, J.; Yuan, J.; Hsu, C. User allocation-aware edge cloud placement in mobile edge computing.
Softw. Pract. Exp. 2020, 50, 489–502. [CrossRef]

26. Mitchell, M. An introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
27. Srinivas, M.; Patnaik, L.M. Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Trans. Syst. Man Cybern.

1994, 24, 656–667. [CrossRef]
28. Liu, X.; Cheng, B.; Wang, S. Availability-Aware and Energy-Efficient Virtual Cluster Allocation Based on Multi-Objective

Optimization in Cloud Datacenters. IEEE Trans. Netw. Serv. Manag. 2020, 17, 972–985. [CrossRef]

http://doi.org/10.1109/COMST.2018.2884835
http://dx.doi.org/10.1109/TSC.2018.2849712
http://dx.doi.org/10.1109/COMST.2018.2862404
http://dx.doi.org/10.1016/j.comnet.2020.107255
http://dx.doi.org/10.1038/nature16961
http://dx.doi.org/10.1109/TC.2017.2709742
http://dx.doi.org/10.1109/JSAC.2019.2959181
http://dx.doi.org/10.1109/TNET.2018.2842798
http://dx.doi.org/10.1109/TNSM.2018.2876789
http://dx.doi.org/10.1109/TNET.2017.2668470
http://dx.doi.org/10.1109/JSYST.2017.2722476
http://dx.doi.org/10.1109/JSAC.2020.2986592
http://dx.doi.org/10.3390/electronics12061307
http://dx.doi.org/10.1109/TSC.2017.2671867
http://dx.doi.org/10.3390/electronics10182287
http://dx.doi.org/10.1109/ACCESS.2017.2685437
http://dx.doi.org/10.1109/TMC.2019.2907593
http://dx.doi.org/10.3390/electronics11192976
http://dx.doi.org/10.1109/TNSE.2022.3200057
http://dx.doi.org/10.1109/TNET.2007.900415
http://dx.doi.org/10.1002/spe.2685
http://dx.doi.org/10.1109/21.286385
http://dx.doi.org/10.1109/TNSM.2020.2975580

Electronics 2023, 12, 2753 18 of 18

29. Al-Fares, M.; Loukissas, A.; Vahdat, A. A scalable, commodity data center network architecture. Acm Sigcomm Comput. Commun.
Rev. 2008, 38, 63–74. [CrossRef]

30. Pei, J.; Hong, P.; Xue, K.; Li, D. Efficiently Embedding Service Function Chains with Dynamic Virtual Network Function Placement
in Geo-Distributed Cloud System. IEEE Trans. Parallel Distrib. Syst. 2019, 30, 2179–2192. [CrossRef]

31. Xu, Z.; Liang, W.; Galis, A.; Ma, Y.; Xia, Q.; Xu, W. Throughput optimization for admitting NFV-enabled requests in cloud
networks. Comput. Netw. 2018, 143, 15–29. [CrossRef]

32. Gurobi Optimizer Reference Manual Version 8.1.1. Available online: https://www.gurobi.com/documentation/quickstart.html
(accessed on 25 March 2023).

33. Xia, J.; Pang, D.; Cai, Z.; Xu, M.; Hu, G. Reasonably Migrating Virtual Machine in NFV-Featured Networks. In Proceedings of the
IEEE International Conference on Computer and Information Technology, CIT, Nadi, Fiji, 8–10 December 2016; pp. 361–366.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1109/TPDS.2018.2880992
http://dx.doi.org/10.1016/j.comnet.2018.06.015
https://www.gurobi.com/documentation/quickstart.html

	Introduction
	Related Works
	System Model
	Network Model
	SFC Requests
	VNF Forward Graph

	Problem Formulation
	Proposed Algorithm
	Genetic Evolution on VNF Migration
	Initialization
	Fitness Calculation
	Individual Selection
	Crossover and Mutation

	Pre-Stage in Hybrid Genetic Evolution Algorithm
	Running Algorithm of DLTSA

	Performance Evaluation
	Simulation Setup
	Contrastive Benchmarks
	Simulation Results
	Fitness Value
	Network Load Balance
	Average SFC Delay
	Execution Time

	Conclusions
	References

