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Abstract: The design and optimization of next-generation indoor wireless communication networks
require detailed and precise descriptions of the indoor environments. Environmental awareness
can serve as a fundamental basis for the dynamic adaptation of the wireless system to channel
conditions and can improve the system’s performance. Methods that combine wireless technology
with machine learning are promising for identifying the properties of the indoor radio environment
(RE) without requiring specialized equipment or manual intervention. In the paper, we propose
an approach for identifying the materials of the surfaces using channel impulse response (CIR)
and RE identification models built with machine learning. To train the models and assess their
performance, we acquired radio propagation data from rooms with different sizes and materials
using ray tracing. We explored tree-based methods, ensemble-based methods, kernel-based methods,
and neural networks for training the models. The performance of the models is evaluated in three
realistic scenarios defined by the location of the radio nodes and the room sizes. The multilayer
perceptron models performed best in most of the evaluation settings. The results show that the
models are capable of accurately predicting the materials in rooms with sizes that were not included
in the training procedure. Including CIRs from a large number of rooms with different sizes and
surface materials estimated with different radio node positions in the training process results in
models with wider practical applicability.

Keywords: environment-aware wireless communications; environmental awareness; intelligent
sensing; channel impulse response (CIR); machine learning; indoor radio environment; digital twin;
indoor characterization; wireless sensing

1. Introduction

The investigation of channel characteristics is crucial for wireless systems to meet the
requirements of the wide range of emerging applications [1]. The radio environment (RE)
significantly affects the performance of wireless communication systems. While the outdoor
propagation environment is well described by digital elevation models and terrain usage
data, accurate and up-to-date information about the indoor propagation environment is not
ubiquitously available. Therefore, automatic and seamless characterization is mandatory
for introducing environment-aware wireless communications [2] and for creating and con-
tinually updating the digital twin of the building [3]. Enhanced environmental awareness
can be applied for the design and optimization of next-generation wireless systems and
the development of methods for dynamic adaptation of a wireless system to the channel
conditions [4], but also in emerging applications related to navigation [5], localization [6],
emergency response [7], and automation in smart buildings [8].

The conventional methods for estimating indoor RE [9] are not adequate for automatic
characterization of the indoor propagation environment because they are implemented
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by means of specialized, complex, and expensive equipment and involve human and/or
robot participation. Additionally, the information about the environment provided by these
methods is limited and does not provide insight into the properties that affect the electro-
magnetic waves propagating between the transmitter and receiver (e.g., the roughness of
the surfaces and the electromagnetic properties of the materials).

Environment characterization with machine learning techniques [10,11] can provide
alternative solutions to the bottlenecks in conventional methods. Advancements in wireless
communications and machine learning offer an unprecedented opportunity for wireless
sensing [12,13] and intelligent environment identification [14]. The received signal conveys
information about the surroundings, and a mapping between the propagation character-
istics and the propagation environment exists. Machine learning techniques have been
shown to have good performance in modeling the correlation between the input and output
features using large training databases [15–17]. Thus, it is envisioned to be appropriate to
learn accurate predictive models to identify the properties of the propagation environment.
The massive number of wireless devices deployed indoors will provide abundant radio
propagation data from various buildings, communication technologies, and frequencies
needed for training the models.

In our previous work, we started research in the joint use of wireless signals and
machine learning models for the characterization of indoor geometry and the materials
of the surfaces, and we published the idea, first concepts, and preliminary results. We
introduced the idea of using radio scanning for three-dimensional characterization of an
indoor environment in [18]. To validate the proposed approach, we specified a basic set
of propagation characteristics of the multipath components (MPCs) as features of the RE
signature, and we formalized an initial framework that enables the identification of the
material of a single wall [19]. In [20], we evaluated the material identification using a
baseline data set. Motivated by the promising results of our early studies, we extended our
research to the identification of multiple properties of the propagation environment.

In this article, we focus on the limitations of the approach proposed in our previous
work, namely, (i) the characterization of a single wall material in a room, while in modern
buildings different materials are used for inner and outer walls, ceilings, and floors, (ii) the
initial model is built and validated for a single room size while in reality the rooms are of
different sizes, and (iii) the assumption of the same set of link positions for training and
testing while in practice the same link position may be impossible to fulfill. In this respect,
we introduce an extended methodology that enables the identification of the properties of
all of the surfaces in the room. The methodology is evaluated for the identification of the
materials in plain rooms. We propose a supervised identification that requires a training
procedure for constructing predictive models using spatially distributed channel impulse
responses (CIRs) labeled with the materials of the surfaces as training data. An individual
predictive model is trained to identify the presence/absence of a material. We investigate
the impact of the locations of the radio nodes and the room sizes considered in the training
procedure on the performance of the models when applied to data from different radio
links and rooms. The main contributions of this study are summarized as follows:

• An extended data-driven methodology for identification of the properties of all sur-
faces in an indoor propagation environment based on CIR;

• Validation of the proposed methodology for identification of all the materials used for
the surfaces in the room;

• Evaluation of the identification performance of the models in three scenarios and
analysis of the impact of the radio nodes’ locations and room sizes considered in the
training phase on the model’s applicability;

• Open access data set containing indoor radio propagation data from a large number
of rooms annotated with the location of the radio node, the room’s geometry, and the
surfaces’ materials.

The remainder of the paper is organized as follows. An overview of the related
work on indoor environment characterization is given in Section 2. We introduce the
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concept of data-driven indoor environment identification and describe the methodology
in detail in Section 3. The procedure for evaluating the proposed methodology for the
identification of the materials is presented in Section 4. This section provides elaboration on
the learning task, learning approach, procedure for CIR acquisition, evaluation scenarios,
and the metrics for assessing performance. Section 5 reports the results and discusses the
identification performance. Finally, we conclude the paper and suggest directions for future
work in Section 6.

2. Related Work

The machine-learning-enabled identification of the indoor environment has only
recently attracted research attention, mainly in the last few years. Therefore, the topic has
scarcely been studied, with just a few studies published in the literature [10]. The methods
for determining the properties of indoor surfaces based on machine learning and CIR have
not been widely studied to the authors’ knowledge. The publications that have studied
the use of machine learning for the identification of the indoor scenario [21,22] consider
the propagation environment as a whole and do not investigate the identification of the
properties of the surfaces that bound the space. The characterization of materials samples
has been researched using various methods, such as the coaxial probe method, free space
measurement, and resonant, to name a few [23]. Several conventional studies have made
on-site measurements of the reflection coefficient and estimated the relative permittivity of
the materials based on the reflection loss [24–26]. Recently, the inverse reflection problem
was combined with the identification of the reflecting surfaces from a point cloud to obtain
a three-dimensional permittivity map of an empty office environment at 60 GHz [27]. Due
to the use of high-quality equipment, the need for manual intervention, and the high cost,
these methods are not best suited for the fast characterization needed for the digital twin.

The state-of-the-art literature on building characterization lacks parsimonious and
data-driven methodologies, simple and elegant, yet accurate, for identification of the
properties of the indoor propagation environment. The need for an accurate description
of the propagation environment and channel-related information for environment-aware
wireless communications is highlighted in [28–30]. Recently, a few early studies have
been published discussing the concept of digital twins and their applications [31–33].
Research in the field of indoor mapping and modeling [34] has been active for years, as
an accurate description of buildings is required for various applications in engineering,
architecture, and construction domains. The use of building drawings [35,36], models [37],
point clouds [38,39], meshes [40,41], and graphs [42] for describing indoor structures are
reported in the literature. Since blueprints of existing buildings are not always available and
are often outdated, while manual surveying and updating of maps requires an unaffordable
cost and effort, automatic environment reconstruction has been investigated. Numerous
studies have been published on reconstructing indoor environments from scans obtained
using various scanning techniques, platforms, and sensors [43].

There is a large body of research in the literature on combined indoor scene estimation
and localization using a moving robot equipped with sensors, an approach known as si-
multaneous localization and mapping (SLAM) [44,45]. The sensor technology [46] applied
plays a key role in the performance of SLAM. Advances in the published methods are
largely based on advances in sensor technologies: photogrammetry [47], laser scanning [48],
robotics [49], massive antennas [50,51], and radar [52]. Vision sensors such as monocular,
depth, event, and stereo cameras [53,54] have been popular due to their ability to capture
rich features of the environment. However, they cannot operate in low-light conditions and
are unsuitable for privacy-sensitive applications. The most widely used sensors, however,
use electromagnetic waves. For years, laser technology has been the most suitable and
commonly used due to the narrow beams [55]. The use of light detection and ranging
(LiDAR) [56] and infrared lasers has been extensively studied in the literature [57]. Infrared
scanners and software tools for processing point clouds are commercially available [58].
The introduction of millimeter-wave [59] and terahertz [60] technologies in wireless com-
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munications, and the ability to implement narrow beams, has led to active research on
radio-based methods [61–66]. The combined use of multiple sensor technologies is studied
in [67,68].

Due to the similarities between sensing and communication systems in terms of un-
derlying phenomena, hardware, signal processing, and working bandwidth, an increasing
number of studies are being published on joint communication and sensing [69,70]. The
introduction of the sensing functionality into communication networks [71,72] will play a
crucial role in fusing the physical and digital worlds. The vision and benefits of integrating
communication and sensing functionalities have been clearly stated in many preliminary
studies [73–76]; however, there are still many open challenges related to the theoretical and
technical foundations as well as practical implementation [77].

The use of machine learning approaches to complement classical approaches in exist-
ing and emerging wireless communication systems has attracted much interest in recent
years [78]. However, the potential of characterizing the indoor environment through the
combined use of wireless technology and machine learning is currently almost untapped.
The focus of the published studies is on the application of machine learning for channel
modeling and wireless scenario identification [10,79]. Previously published work addresses
channel parameter estimation [80], distinguishing line-of-sight (LoS) from non-LoS (NLoS)
wireless scenarios [81], and identifying specific wireless scenarios (e.g., for the outdoor
environment: rural LoS, rural NLoS, urban LoS, urban NLoS [14]; and for the indoor envi-
ronment: highly cluttered (laboratory), medium cluttered (narrow corridor), low cluttered
(lobby), and open space (sports hall) [21,22]). The use of environmental classification for
indoor localization is proposed in [82].

3. Intelligent Indoor Environment Characterization

To provide a comprehensive description of the indoor propagation environment using
predictive models learned from RE signatures, we further extend the approach presented
in our previous work [19]. The methodology for identifying the material of a single wall is
modified to extend its application to the identification of several properties of the propa-
gation environment that affect radio propagation, including (i) the materials of all facets,
(ii) the size and shape of the room, and (iii) the roughness of the surfaces. The extended
methodology provides an important environmental context for developing pioneering
methods for improved indoor radio communications in the era of next-generation commu-
nications and for a detailed digital twin of indoor structures in future cities.

3.1. Concept

The methodology is based on two assumptions: (i) inside buildings, the received
signal conveys a unique RE signature as a result of the interaction of the transmitted waves
with the environment, and (ii) the CIR can be accurately estimated for a wireless link.

The key phases of the proposed approach, shown in Figure 1, are acquisition, learning,
prediction, and application. A large corpus of RE signatures is a prerequisite for training
RE identification models and validating their practical applicability. A large number of
radio devices with sensing capabilities deployed indoors opens the possibility of using
wireless infrastructure to capture RE signatures. It is assumed that a state-of-the-art
machine learning algorithm can learn an RE identification model from the relationship
between the RE signatures and the properties of the propagation environment. This study
focuses on properties with discrete values and can be extended for continuous values. It is
expected that the model can accurately predict the properties of a new indoor propagation
environment for an input RE signature. The properties identified by the RE identification
model could be incorporated into a multilayer description of the building that includes
information about various aspects of the structure obtained using heterogeneous sensing
methods. Improved RE awareness is seen as a necessary prerequisite for the development
of novel methods for environmentally aware wireless communications.
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Figure 1. Phases of the proposed approach.

3.2. Data-Driven Methodology

Indoor environment characterization is tackled using a data-driven methodology that
eliminates the necessity for specialized scanning equipment. The methodology consists
of four modules: (1) domain knowledge, (2) RE acquisition, (3) propagation characteristic
processing and storing, and (4) machine-learning-based modeling. Figure 2 depicts the
components of the methodology.

The incorporation of domain knowledge has a crucial role in the methodology, to
ensure that the predictive model developed is relevant and useful for the intended appli-
cation. The source of the knowledge is a radio communication expert with an in-depth
understanding of indoor radio propagation and methods for estimating channel state infor-
mation (CSI). Specifically, the domain expertise is used to select the indoor environments
for training and evaluating the models, to choose an adequate method for the RE signature
acquisition, to specify the meaningful features from the received signal that convey most
of the environmental information, to formalize the learning task, to define the evaluation
schemes, and to interpret the performance of the models.

The acquisition of RE signatures is of pivotal significance for the training and evalua-
tion of the RE identification models. The collection of RE signatures involves (i) selecting a
set of indoor environments, (ii) setting up the radio acquisition infrastructure, and (iii) se-
lecting the acquisition method. Considering a large set of rooms with different sizes,
materials, and roughness of the surfaces is important to obtain sufficient experience for
the algorithms.

The setup of the radio acquisition infrastructure includes radio technology, carrier
frequency and bandwidth, antenna type and configuration, and location of the radio nodes.
Current and emerging technologies with wide bandwidth and fine time resolution needed
for resolving the signal contributions arriving from different propagation paths can be used.
To capture the unique signature of the environment for different radio node locations, the
radios should be placed on a grid that covers the entire room. Individual or combined use of
simulated and experimental methods, such as ray tracing, specialized radio equipment, off-
the-shelf radio devices, and wireless networks, are appropriate for estimating propagation
characteristics.

The raw propagation data is an input to the processing and storing module which
includes (i) selecting CIR multipath features from CSI, (ii) annotating the formatted RE
signatures with environmental properties, and (iii) storing the data in a format suitable
for further machine learning analysis. The propagation characteristics of the MPCs, which
convey most of the environmental information, are used as features. The environmental
properties are categorical output labels, and a binary value is assigned to the input features
of the RE signature to indicate the presence/absence of a property in the radio link sur-
rounding. The RE signature is labeled with information about the properties of the indoor
environment obtained from the model of the building or the building documentation. The
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data is organized in tabular form and stored in a comma-separated values (CSV) format
compatible with a wide range of tools and libraries for machine learning analysis.

Figure 2. Schematic diagram of the methodology.

The machine-learning-based modeling module includes (i) the formalization of the
problem and (ii) the development of the machine learning workflow. In the problem for-
malization step, the RE identification task is defined, the evaluation scheme and evaluation
metrics are specified, and adequate data is selected from the available database for training,
tuning, and final evaluation of the predictive model. The models are trained, evaluated,
and tuned by adjusting the hyper-parameters. The optimal hyper-parameter values are
found using a 5-fold cross-validation on the training set and an exhaustive search over
all combinations of values in the defined search space. The predictive performance of the
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fine-tuned RE identification model is assessed on a separate test set that has not been used
in the training and tuning phases.

4. Methodology Evaluation Procedure

The proposed methodology is applied to build predictive models for the identification
of all materials in a plain room from CIR. The objective is to learn a predictive model based
on the relation between CIR and the materials. A training set of CIRs associated with a
binary indication of the presence/absence of materials in the room is used.

4.1. Learning Task Formalization

The task is formalized as a multi-label classification (MLC) task [83]. The main property
of MLC is that each sample is annotated with multiple labels simultaneously. The goal is to
learn a predictive model(s) that distinguishes relevant from irrelevant labels for a given
data point. It is a reformulation of the binary classification task, where the goal is to predict
multiple outputs simultaneously instead of one. MLC tasks can be formally defined as
follows [84].

Given:

• input space X , consisting of tuples of continuous values, where ∀Xi ∈ X, Xi =
(xi1, xi2, · · · , xid) is the input description of the sample i and D is the size of the tuple,
i.e., the number of input attributes;

• label space L = {l1, l2, · · · , lL}, which is a set of possible discrete labels, where L = |L|
and L > 1;

• training set D = {(Xi,Yi)|Xi ∈ X ,Yi ⊆ L, 1 ≤ i ≤ N}, where (Xi,Yi) is a multi-
labeled training sample and N = |D| is the number of samples in the training set;

• a quality criterion q, which rewards models with good predictive performance and
low complexity.

Find: a function h, such that h: X → 2L while optimizing q.
The CIR of a wireless link is considered as the input description of the data sample

associated with the particular link. Three propagation characteristics are considered as
input features describing the i-th MPC: received power Pi, phase shift Φi and time of arrival
τi. The i-th input sample is Xi = (Pi,1, Φi,1, τi,1, · · · , Pi,R, Φi,R, τi,R), where R is the number
of propagation paths reaching the receiver. The number of input variables considered in
the experiments is 45 (D = 45), for three MPC characteristics of the 15 strongest MPCs
(R = 15) resolved at the receiver site, considering UWB technology with power above the
receiver sensitivity set to −250 dBm, including the direct component and the first- and
second-order reflected components. In cases where the number of MPCs above the receiver
sensitivity is lower than 15, all of the meaningful components should be considered. The
training set contains CIRs labeled with the materials of the surfaces in the room. The label
space is L = {brick, concrete, glass, plaster, wood} and L = 5. The number of samples is
equal to the product of the number of rooms and the number of radio links.

4.2. Learning Approach

The learning task is approached with a problem transformation method [83]. The
method transforms the task into multiple single-target classification tasks that share the
input space, and applies binary classification algorithms to learn individual predictive
models for each label. In the prediction phase, all binary classifiers are invoked and their
individual predictions are merged to obtain the final prediction. Four different learning
algorithms are considered: decision tree (DT) [85], random forest (RF) [86], support vector
machine (SVM) [87], and multilayer perceptron (MLP) [88], as representatives of tree-
based algorithms, ensemble algorithms, kernel-based algorithms, and neural networks,
respectively.

The DT algorithm constructs tree-like models with a hierarchical structure. A classifier
tree is built using a tree-construction algorithm, known as top-down induction of DTs
(TDIDT) [89]. The TDIDT uses a divide-and-conquer approach for recursively growing
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trees, starting at the root node and descending to the leaves. A univariate splitting criterion
is used. The learner uses the information gain or gini index of diversity [90] to find the
attribute at which to perform the split. Pre-pruning is considered to prevent fully grown
trees and overfitting.

The RF algorithm is used to create multiple independent tree models and integrate
the individual predictions into a final prediction. In this study, the ensemble prediction
is created by averaging the probabilistic prediction of the individual models. Each tree of
the ensemble is constructed using a bootstrap sample of the training set [91]. During the
construction of the tree, the best split is found from a random subset of the input features.
The individual trees are pruned beforehand.

The SVM algorithm constructs a separating hyperplane in a high-dimensional feature
space that results in maximum separation between classes. If the classes are not linearly
separable in the original space, a kernel function is used to map the data in the higher-
dimensional space where linear boundaries exist. The selection of an adequate kernel
function and a value for the regularization parameter is essential for building an optimal
SVM model.

The MLP is a feed-forward neural network [92] that consists of artificial neurons that
compute the weighted inputs and apply a nonlinear activation function [93] to produce an
output. Training of the network includes feed-forward, cost computation, back-propagation,
and weight update.

Implementations of the algorithms from the Scikit-learn Python library are used [94,95].
The literature confirms the reliability of the implementations in various application do-
mains [96]. The hyper-parameters with the most significant impact on the performance of
the models are tuned using the grid-search method. The values of the hyper-parameters
included in the search space are given in Table 1.

Table 1. Hyper-parameter search space.

Algorithm Hyper-Parameters and Their Values

DT
max_depth = [2, 5, 10],
min_samples_leaf = [25, 50, 75],
criterion = [‘gini’, ‘entropy’]

RF
max_depth = [2, 5, 10],
min_samples_leaf = [25, 50, 75],
n_estimators = [50, 100, 200, 300]

MLP

hidden_layer_sizes = [(25), (22, 11), (32, 8), (16, 8)],
activation = [‘logistic’, ‘tanh’, ‘relu’],
solver = [‘sgd’, ‘adam’],
learning_rate = [‘constant’, ‘adaptive’],
max_iter = [4000, 5000, 6000]

SVM
kernel = [‘linear’, ‘rbf’],
C = [0.01, 0.1, 1, 10, 100],
max_iter = [1000, 2000]

4.3. CIR Acquisition

Data for training and evaluation of the models is collected using the ray-tracing
method [97] assuming an ultra-wideband (UWB) system [98] with a fine time resolution
needed for distinguishing the MPCs [99] and a microwave frequency band [100]. The data
that we generated is annotated with labels describing the location of the radio nodes, the
geometry of the room, and the material of the surfaces [101]. The data set can also be used
for other studies that require indoor propagation data.

We consider 3750 room types in terms of the surface materials in three sizes: small
(3 m × 3 m), medium (5 m × 5 m), and large (7 m × 7 m), referred to as S, M, and L,
respectively, for a total of 11,250 rooms. Six smooth facets bound the rooms, the height
between the floor and ceiling is 3 m, and the rooms are plain (i.e., without interacting
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objects). The materials used for the facets in the rooms are shown schematically in Figure 3.
The floors are built of concrete or wood, the ceilings are built of concrete, plaster, or wood,
and the walls are built of brick, concrete, glass, plaster, or wood. The number of different
room types is derived from the materials used for the floors and ceilings, where there
are six floor–ceiling material combinations, and the materials used for walls, which have
625 material combinations. The materials are defined with the relative permittivity and
conductivity [102].

Figure 3. Schematic representation of the materials of floors, ceilings, and walls.

Spatially distributed CIRs are acquired with radio nodes placed in fixed locations
of a predefined topology and a portable node moved over a uniform grid covering the
room. The positioning of fixed nodes shown in Figure 4 is defined by the following
three topologies:

• Center (T1): a single radio node in the center of the room;
• Circle (T2): eight radio nodes spaced π/4 rad apart on a circle with radius 0.5 m;
• Corners (T3): four radio nodes located 0.375 m from the walls, near the corners of the

room.

The topologies are defined to correspond to the most common practices for the wireless
systems in operation: (i) central placement of the node with single or multiple antennas
arranged on a circle, and (ii) access points or base stations near the corners of the room. The
grid indicates the possible positions of the portable node. The grid covers the room with
grid lines spaced 0.25 m apart, resulting in a total of 121, 361, and 729 grid positions in S, M,
and L rooms, respectively. To ensure that the data sets include CIRs from nodes distributed
throughout the room, one grid position is randomly selected from each 1 m × 1 m region
for training and testing.

The links between the fixed nodes in the T1, T2, and T3 topologies and the portable
node at the selected positions (9 positions in S rooms, 25 positions in M rooms, and
49 positions in L rooms) used for collecting the training and test data are referred to as L1-
train and L1-test, L2-train and L2-test, and L3-train and L3-test, respectively. The number
of radio links between the fixed nodes in the different topologies and the portable node
moved across the selected grid positions for training and testing in the different room sizes
is summarized in Table 2.
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Figure 4. Locations of the fixed nodes in the topologies T1, T2, and T3 in rooms with different sizes.

Table 2. Number of links used for CIR estimation for different topologies of the fixed node(s) in an S
room, M room, and L room.

Number of Links

Fixed-Node Topology S Room M Room L Room

T1 9 25 49
T2 72 200 392
T3 36 100 196

Omnidirectional antennas are used, mounted 1.5 m above the floor. The carrier fre-
quency is equal to 3494.4 MHz, and the bandwidth is 466.2 MHz. The input power is set to
0 dBm and the polarization is vertical. A commercially available 3D wireless prediction
software, Remcom Wireless InSite [103], is used, which is capable of adequately estimating
the effects of buildings on the propagation of electromagnetic waves and generating accu-
rate values for specific propagation characteristics [104]. A three-dimensional propagation
model and a shooting and bouncing ray-tracing method with exact path correction are
used [105].

4.4. Evaluation Scenarios

One of the most important aspects of ML-based modeling is the choice of the evalua-
tion scenario that determines the selection of data used in the training and testing phases.
The room sizes and radio links included in the training procedure can affect the gener-
ality of the models and their ability to make correct predictions to new data, and thus
the applicability to different use cases. To investigate the performance of the models in
several realistic use cases, we defined three scenarios that differ in the room sizes where the
CIRs are acquired for training and testing and in the positioning of the radio nodes. The
scenarios are defined as follows:

• Scenario Init: Represents the case where the models are applied to CIR data from rooms
with sizes considered in the training procedure. The same and different locations of
the fixed nodes are used to estimate the CIRs for training and testing;
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• Scenario Diff-RS: Represents the case where the models are applied to CIR data from
rooms with sizes that were not considered in the training procedure. The same
locations of the fixed nodes that were used for estimating the CIRs for training are
used for testing;

• Scenario Diff-RS-Lyt: Represents the case where the models are applied to CIR data
from different radio links in rooms with sizes that were not considered in the training
procedure. Different locations of the fixed nodes are used for estimating the CIRs for
training and testing.

In all scenarios, the portable node is moved to different locations to estimate CIRs for
training and testing over the grid, as described in Section 4.3. The room sizes and node
topologies included in the training and test sets for the different scenarios are summarized
in Table 3.

Table 3. Room sizes and node topologies used for training and testing in the different evaluation scenarios.

Scenario Room Sizes in Train/Test Set Node Topology in Train/Test Set

Init SML/SML (a): T1/T1, T2/T2, or T3/T3
(b): T1/T2, T1/T3, T2/T1, T2/T3, T3/T1, or T3/T2

Diff-RS (a): S/ML, M/SL, or L/SM All/All *(b): SM/L, ML/S, or SL/M

Diff-RS-Lyt (a): S/ML or L/SM T1/T2, T1/T3, T2/T1, T2/T3, T3/T1, or T3/T2(b): SM/L or SL/M
* All refers to T1+T2+T3.

The scenario Init represents an initial case where data are available in the training
phase from all room sizes to which the model is to be applied. In more advanced use cases,
including data from all room sizes and link locations in the training set may be unfeasible
if the range of room sizes is large, some room sizes are rare, CIR estimation is expensive,
or CIR estimates from some link locations are not available. Thus, in scenario Diff-RS and
scenario Diff-RS-Lyt, the performances of models trained with data from a single room size
and models trained with data from two room sizes are assessed when applied to a room
with different sizes. The impact of merging data from two room sizes and the impact of the
room size used for testing relative to the room sizes used for training is studied.

To quantitatively measure the performance of models in predicting outcomes, the F1
score is used [83,90]. It is the harmonic mean of precision and recall. In the case of MLC,
the F1 score represents the per-label metric calculated based on the true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) as

F1 =
2

precision−1 + recall−1 =
2TP

2TP + FP + FN
. (1)

The macro-averaged F1 score is calculated as the unweighted mean of the metric
across all labels. We adhere to the approaches recommended in [106] for calculating the
metric. In this work, the models with a predictive performance in terms of the F1 score
above 0.5 are considered usable, i.e., applicable for the material identification task. Higher
values of the F1 score indicate better predictive performance. In the future, the threshold
for acceptable model performance will be specified with the requirements of the use cases.

5. Results and Discussion

We examined the impact of the room sizes and positioning of the radio nodes used in
the training phase on the ability of the predictive models to accurately identify the materials
in the different scenarios.

The identification of materials in rooms that are the same size as the rooms used to
obtain the training data is discussed based on the results of the scenario Init, presented in
Figure 5. The results confirm the applicability of the models to rooms with sizes considered
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in the training phase. The high predictive performance of the models is achieved due to
the following: (i) a strong relation exists between CIR and the surface materials in a room
due to the reflection coefficient’s dependence on the materials’ EM properties, and (ii) the
same room sizes were used in the training and testing phases.

In the basic case, where the positioning of the fixed nodes in the testing phase is the
same as in the training phase, the models have F1 scores above 0.7. From Figure 5a, it
can be seen that when data from radio links with fixed nodes in topology T3 are used for
training and testing, the models have slightly lower performance than when topology T1
or T2 is used. This is due to the location of the fixed nodes relative to the walls: the fixed
nodes in topologies T1 and T2 are placed centrally in the room and have approximately the
same distance to all walls, while the fixed nodes in topology T3 are placed near the corners
and the distance to some walls is smaller than to others. Namely, when the fixed nodes
are not placed symmetrically with respect to the room geometry, they are closer to some
walls and the information about the material loaded in CIR is richer; thus, the models can
identify the material of these walls more accurately.

T1/T1 T2/T2 T3/T3
Node topology in train/test set
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(a) Same topology in train/test set

DT
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SVM

T1/T2 T1/T3 T2/T1 T2/T3 T3/T1 T3/T2
Node topology in train/test set
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(b) Different topology in train/test set

DT
RF

MLP
SVM

Figure 5. Performance of the predictive models in scenario Init. Room sizes in train/test set:
SML/SML. (a) The same fixed-node topology is used to acquire CIR data for training and testing.
(b) Different fixed-node topologies are used to acquire CIR data for training and testing.

In the case where different topologies of the fixed nodes are used in the training and
testing phases, the ability of the model to accurately identify the materials is affected by
the distance between the nodes used and their position relative to the room geometry, as
shown in Figure 5b. Due to the similar location (central) of the nodes in topologies T1 and
T2, the models trained with data from one of the topologies make predictions on data from
the other topology with similar performance as when making predictions on data from
the same topology that is used for training. A drop in performance is observed when the
models are tested with data from topology T3. The models trained with data from topology
T3 have similar performance when making predictions using data from T1 or T2.

The results show that the identification of the materials is possible when the CIRs
are estimated with fixed nodes at locations that were not considered when training the
models. The change in the location of the fixed node used for training and testing is small,
resulting in a change in the CIR that is not significant, and thus the models can correctly
predict the materials from the CIRs included in the test set. This finding confirms that the
proposed approach is promising in scenarios where the locations of the fixed nodes used in
the training phase are not known or the nodes cannot be placed at the same locations in the
environment that has to be characterized. Due to the different amounts of environmental
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information in the CIRs and the slight change in the CIR estimated with different radio
links, the identification is slightly less accurate when the locations of the fixed nodes are
not included in the training process.

The ability of the models to make accurate predictions when applied in rooms with
sizes that were not considered in the training phase using locations of the fixed node that
were included in the training set is analyzed using the results of the scenario Diff-RS, shown
in Figure 6. These results confirm that most of the models can be applied in scenarios
where the size of the room being characterized was not represented in the training process.
The use of CIRs from radio links covering the room for training the models, and thus
considering the RE signatures from CIRs uniformly distributed over the room, explains the
predictive performance of the models.

The size of the room being characterized relative to the size of the rooms used to train
the model affects the predictive performance of the models. From Figure 6a, it is evident
that the models trained with the MLP or DT algorithms are usable for the task even when
the size of the rooms used for training the model are smaller than the size of the room
in which the model is applied (train: S, test: M and L). Training the models with data
from rooms that are larger compared to the rooms where the models are applied (train: L,
test: S and M) results in better identification of the materials. Using larger rooms in the
training phase results in models with wider practical applicability due to a large number of
positions of the portable node and, thus, a large number of radio links. A large number
of links in the training phase means that the algorithm can learn from a large corpus of
spatially diverse RE signatures. Furthermore, the model in the large rooms learns also the
propagation path-loss, while in small rooms the paths are much shorter, thus the path-loss
is not so significant.
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Figure 6. Performance of predictive models in scenario Diff-RS. Fixed-node topologies in the
train/test set: All/All. (a) Performance of predictive models trained with a single room size.
(b) Performance of predictive models trained with two room sizes.

According to the results shown in Figure 6b, the models trained with data from rooms
with two room sizes can accurately identify the materials in larger rooms, smaller rooms,
and rooms whose sizes are between the sizes of the rooms used for training. When the
models are applied to larger rooms (train: S and M, test: L), the prediction performance is
slightly lower compared to the other two cases (train: M and L, test: S or train: S and L,
test: M). The room sizes that need to be included in the training set should be determined
according to the size of the rooms where the model will be used. In scenarios where the
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intended use of the model is not specified before training, including many room sizes in
the training set—selected according to the most common sizes in office and residential
buildings—can result in accurate models with good predictive capabilities.

The results of scenario Diff-RS-LYT for the case where a single room size is used to
train the models are shown in Figure 7. Applying the models to CIRs estimated with a
fixed-node topology, which was not considered in the acquisition of the training CIRs,
highlights the impact of the room size used for training the models on their capability to
make accurate predictions. The models trained with data from rooms larger than the rooms
in which they are applied (train: L, test: S and M) have better F1 scores than the models
trained with data from smaller rooms (train: S, test: M and L).
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Figure 7. Performance of the predictive models trained with a single room size in scenario Diff-RS-
LYT. (a) The models trained with CIRs from S rooms are tested on CIRs from M and L rooms (S/ML).
(b) The models trained with CIRs from L rooms are tested on CIRs from S and M rooms (L/SM).

When data from L rooms is used for training, different algorithms lead to the best
models for different topologies of fixed nodes used to collect the training and testing data.
With a training set estimated with topology T1, the algorithms DT and RF learn the models
with the best performance when tested with data from topologies T2 or T3. The models
learned with the MLP and RF algorithms with training data estimated with topology T2
perform best when tested with data from topologies T1 or T3. The models learned with
the MLP algorithm on the training data from topology T3 have the highest F1 scores when
tested with data from topologies T1 or T2.

The performance of the models trained with data from two room sizes in scenario Diff-
RS-LYT are shown in Figure 8. These results confirm the conclusions drawn for scenario
Diff-RS for the case where the fixed-node topology used in the train and test phases is
different. In particular, training with data from smaller and larger rooms compared to
the size of the rooms where the model is applied (train: S and L, test: M) leads to better
performance than training with data from smaller rooms compared to the size of the
rooms where the model is applied (train: S and M, test: L), which is due to the path-loss
information included in the training phase.
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Figure 8. Performance of the predictive models trained with two room sizes in scenario Diff-RS-LYT.
(a) The models trained with CIRs from S and M rooms are tested on CIRs from L rooms (SM/L).
(b) The models trained with CIRs from S and L rooms are tested on CIRs from M rooms (SL/M).

Analysis of the predictive performance of the models confirmed that the materials of
the surfaces can be accurately identified. The models are able to accurately identify the
materials in rooms with new sizes from CIRs estimated with different topologies of fixed
nodes. In most evaluation scenarios, the MLP models show superior performance. In most
cases, the tree-based models show slightly lower performance. Ensembles of trees tend to
score higher than single-tree models, reflecting the advantages of combining multiple trees.
SVM models show the lowest performance and sensitivity to the fixed-node topology used
for CIR estimation.

6. Conclusions and Future Work

This paper presents the methodology and performance evaluation of a CIR-based
identification of all materials used for surfaces in an indoor environment. The proposed
methodology has great potential in environmentally aware wireless communications. It
can also be useful for enriching the digital twin of the room with information about the
materials used for the surfaces.

The problem of material identification is investigated using machine learning ap-
proaches. The locations of the radio nodes for CIR acquisition were specified. A large
amount of UWB data was collected for numerous rooms built of different materials and
models were developed using the DT, RF, MLP, and SVM algorithms. Different evaluation
scenarios were defined to assess the predictive performance of the models, to evaluate
the applicability of the proposed method to different realistic use cases, and to investigate
how the radio node locations and room sizes affect the generality of the models and the
material identification. The results confirm that the materials of all surfaces in a room can
be accurately identified using RE identification models. The MLP models have the best
performance on most test sets. It is shown that the proposed method can be generalized
to different scenarios defined in terms of the location of the radio nodes and the sizes of
the rooms and the trained models are applicable for the identification of the materials
based on CIR from rooms and radio links that were not used during the training process.
However, using the same locations of the fixed nodes as in the training phase results in a
more accurate identification of the materials.

The presented work can be extended to comprehensively explore the potential of the
proposed approach and its accuracy, applicability, and usefulness for various system con-
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figurations in environments with a mixture of materials and interacting objects becoming
relevant as the frequency increases. Building on the presented findings, future work will
focus on (1) leveraging cutting-edge machine learning approaches to model the relation
between the RE signature and the indoor RE properties, and (2) exploiting the potential of
state-of-the-art approaches from wireless communications. In particular, a higher-frequency
band with larger bandwidth, leading to better time resolution of CIR, and multiple an-
tenna systems that allow accurate estimation of the angle of arrival, will be utilized. This
would provide a more accurate estimation of the RE signature, allowing the approach to be
extended to characterize surfaces with multiple materials in realistic environments with
many scatters. Due to the lack of publicly available indoor propagation data, further data
collection campaigns are needed to validate the models in real indoor environments and for
different configurations of the wireless system. We started an extensive CIR measurement
campaign in versatile indoor environments by UWB transceivers compliant with the IEEE
802.15.4-2011 standard and antenna arrays for angle of arrival estimation.
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Abbreviations
The following abbreviations are used in this manuscript:

All Center+Circle+Corners
All/All Train: Center+Circle+Corners, test: Center+Circle+Corners
CIR Channel impulse response
CSV Comma-separated-values
DT Decision tree
FN False negatives
FP False positives
L Large
LoS Line-of-sight
L/SM Train: large, test: small+medium
L1-test Links with a fixed node in topology Center for testing
L1-train Links with a fixed node in topology Center for training
L2-test Links with a fixed node in topology Circle for testing
L2-train Links with a fixed node in topology Circle for training
L3-test Links with fixed nodes in topology Corners for testing
L3-train Links with fixed nodes in topology Corners for training
M Medium
M/SL Train: medium, test: small+large
ML Medium+large
ML/S Train: medium+large, test: small
MLC Multi-label classification
MLP Multilayer perceptron
MPC Multipath component
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NLoS Non-line-of-sight
RF Random forest
RGB Red–green–blue
S Small
S/ML Train: small, test: medium+large
SL Small+large
SL/M Train: small+large, test: medium
SLAM Simultaneous localization and mapping
SM Small+medium
SM/L Train: small+medium, test: large
SML/SML Train: small+medium+large, test: small+medium+large
SVM Support vector machine
T1 Fixed-node topology Center
T1/T1 Train: Center, test: Center
T1/T2 Train: Center, test: Circle
T1/T3 Train: Center, test: Corners
T2 Fixed-node topology Circle
T2/T1 Train: Circle, test: Center
T2/T2 Train: Circle, test: Circle
T2/T3 Train: Circle, test: Corners
T3 Fixed-node topology Corners
T3/T1 Train: Corners, test: Center
T3/T2 Train: Corners, test: Circle
T3/T3 Train: Corners, test: Corners
TN True negatives
TP True positives
UWB Ultra-wideband
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