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Abstract: Dynamic economic dispatch (DED) plays an important role in the operation and control of
power systems. The integration of DED with space and time makes it a complex and challenging
problem in optimal decision making. By connecting plug-in electric vehicles (PEVs) to the grid
(V2G), the fluctuations in the grid can be mitigated, and the benefits of balancing peaks and filling
valleys can be realized. However, the complexity of DED has increased with the emergence of the
penetration of plug-in electric vehicles. This paper proposes a model that takes into account the
day-ahead, hourly-based scheduling of power systems and the impact of PEVs. To solve the model,
an improved chaos moth flame optimization algorithm (CMFO) is introduced. This algorithm has a
faster convergence rate and better global optimization capabilities due to the incorporation of chaotic
mapping. The feasibility of the proposed CMFO is validated through numerical experiments on
benchmark functions and various generation units of different sizes. The results demonstrate the
superiority of CMFO compared with other commonly used swarm intelligence algorithms.

Keywords: chaos moth flame algorithm; dynamic economic dispatch; grid fluctuation; plug-in
electric vehicles; global optimization; chaotic map

1. Introduction

In the stage of power system planning and operation, economic dispatch (ED) plays a
critical role in maintaining financial benefits due to the high value of fossil fuels used in
power plants. A minor improvement in ED may result in significant cost savings. Moreover,
it is imperative to address the problem of power grid fluctuations, as fluctuations in power
generation can cause significant damage to electrical equipment and result in substantial
economic losses. However, in practice, precisely modeling ED is difficult as it encompasses
various factors such as the valve point effects and transmission losses, making it non-convex,
non-smooth, non-linear, and non-differentiable. Therefore, evolutionary computation
techniques are usually chosen to solve such problems, including genetic algorithms (GA),
particle swarm optimization (PSO), ant colony optimization (ACO), and others.

Especially in recent years, many meta-heuristic algorithms have been applied to
ED problems, including many new and improved algorithms that have gained some
achievements. For example, the cogeneration is introduced into an ED problem that can
achieve energy saving and improve environmental quality, which is solved by the cuckoo
search algorithm (CSA) with penalty function. However, only low-dimensional cases have
been studied, and experiments and analyses of high-dimensional cases are lacking [1]. A
new parallel hybrid meta-heuristic method, combining the hybrid topology binary particle
swarm optimization algorithm, adaptive differential evolution algorithm, and lambda
iterative method, is proposed to solve the ED problem; however, no smart demand side
management is achieved [2]. A chaotic local search-based bee optimization algorithm is
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utilized for the ED problem, which has the advantages of fast convergence and strong local
search ability [3]. A short-term load ED problem combines the ED problem with machine
learning-based short-term load forecasting (STLF), where a new energy dispatch model
is proposed and solved by a new dynamic genetic algorithm; however, experiments were
conducted on only three test systems and no other new energy generation methods were
introduced [4]. Due to the uncertainty of wind power, the wind speed model is considered
in the ED problem, which is conducive to exploring a more balanced low-carbon power
dispatching strategy for wind power integrated systems, and is investigated by the flower
pollination algorithm to solve this class of economic dispatching problems [5,6]. The chaotic
map is utilized to improve the performance of the bat algorithm, which is presented to
solve the static economic dispatch problem [7]. The cuckoo search algorithm (CSA) is
applied to ED problems where wind turbines and fuel cells are considered, and a cuckoo
search algorithm for microgrid power dispatch problems has also been proposed with
some prospect [8]. The fuzzy dominance is used to select Pareto optimal front (POF) and
the multi-objective fuzzy dominance-based bacterial foraging algorithm is proposed to
solve the economic emission dispatch problem; however, it was not compared with other
multi-objective algorithms, and it was difficult to reflect the superiority of the improved
algorithm [9]. A multi-objective optimization algorithm based on time-varying accelerated
particle swarm optimization has been introduced to the cogeneration problem with a high
convergence rate and solving the uncertainty of energy demand and supply for intermittent
renewable energy sources, but the method has only been applied to a 7-unit test system and
there is a lack of research on other scale test systems [10]. Additionally, an improved large-
scale symbiotic organism search algorithm has been proposed to address ED problems with
valve point effects, demonstrating an increased ability to identify stable and high-quality
solutions in a reasonable amount of time [11]. By combining stochastic exploratory search
and learning strategies, an improved gray wolf optimization (GWO) algorithm is designed
to solve the ED problem in different dimensions and effectively reduces the generation
cost compared with other algorithms [12,13]. In order to consider the impact of wind
power generation, a novel chaotic quantum genetic algorithm was developed to solve the
ED problem of wind power generation with good results [14]. An improved competitive
group optimization algorithm has been proposed to handle both static and dynamic ED
problems and minimize the total fuel cost by determining the intra-regional generation
and inter-regional power exchange, and has advantages in terms of solution accuracy
and reliability compared with other algorithms [15]. Furthermore, an improved fireworks
algorithm has been applied to multi-regional ED problems, featuring a new constraint-
handling scheme that corrects potential solutions within the feasible search space [16,17].
To address multi-regional ED problems, a chaotic artificial bee colony algorithm has been
introduced. This algorithm employs the modified sub-gradient method (MSG) to convert
the constrained problem into an unconstrained one, and a resulting improved harmony
search algorithm (HSA) has been designed for ED problems [18–20].

Economic dispatch includes static economic dispatch and dynamic economic dispatch.
Static economic dispatch assumes constant load, which is difficult to adapt to the dynamic
changes of actual power load. Dynamic economic dispatch generally divides a day into 24 h
and optimizes daily economic dispatch according to daily load forecast, which is more in
line with the actual power system operation. The mainstream of current research is dynamic
economic dispatch. The integration of plug-in electric vehicles (PEVs) into DED problems
has gained attention with the rise of new energy vehicles [21–26]. Connecting PEVs to
the grid (V2G) can help mitigate the fluctuations of the grid and achieve peak clipping
and valley filling. For large-scale PEVs, a distributed access and central management
approach is generally adopted. The PEVs dispatching center can exchange energy and
information directly with the power grid, and then the PEVs dispatching center directs
the energy exchange of each vehicle according to the actual situation of the serviceable
PEVs, so that orderly charging and discharging coordinated management can be realized.
In addition, the conversion speed of PEVs charging and discharging is very fast, so it can
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be seen as a distributed energy storage device that can be charged and discharged, and the
real-time power flow between PEVs and the grid can be realized through bi-directional
power conversion technology, which is also known as electric vehicle to grid (V2G). By
accurately transmitting information in both directions between the dispatch center and the
PEVs, it is possible to achieve bi-directional, real-time, and controllable energy conversion.
Of course, this involves the integration of various technologies such as power electronics,
communication, power scheduling, and load forecasting. Therefore, it is possible to control
the PEVs for orderly discharging when in the peak period of electricity consumption
and control the PEVs for orderly charging when in the low peak period of electricity
consumption, so as to reduce the burden of the power grid to a certain extent, improve the
safety of the power grid, and achieve the purpose of coordinated charging and discharging.

Compared with the ordinary large-scale energy storage, the use of PEVs as a buffer
for the grid is due to the fact that electricity can flow in both directions between the grid
and PEVs. Moreover, as the number of PEVs increases, it is necessary to rationalize their
management, otherwise the grid will be overloaded when the number of PEVs reaches
a certain scale. Despite its potential benefits, the DED problem with PEVs has received
limited attention in the literature. The moth flame optimization (MFO) algorithm was
introduced by Seyedali Mirjalili in 2015 [27]. It is a swarm intelligence optimization
algorithm inspired by the flight patterns of moths, and has been widely used for its simple
structure, few parameters, and high efficiency. In recent years, various meta-heuristic
algorithms, such as the dragonfly algorithm (DA) [28], multi-verse optimizer (MVO) [29],
sine cosine algorithm (SCA) [30], ant line optimizer (ALO) [31], grasshopper optimization
algorithm (GOA) [32], salp swarm algorithm (SSA) [33], whale optimization algorithm
(WOA) [34], marine predator algorithm (MPA) [35], grey wolf optimizer (GWO) [36], binary
bat algorithm (BBA) [37], teaching-learning based optimization (TLBO) [38], have been
proposed and applied to the DED problem. However, the application of the MFO algorithm
to solve the DED problem with PEVs remains limited.

The remainder of this paper is organized as follows. The DED problem integrating with
PEVs formulation is presented in Section 2. The proposed CMFO algorithm is described in
detail in Section 3. The performance of CMFO is validated on benchmark problems [39,40],
as well as DED cases with PEVs in Section 4. The experimental results are analyzed in
Section 5. Finally, the summary of the paper and future work directions are given in
Section 6.

2. Problem Formulation

The target of DED integrating with PEVs is to determine the optimal generation levels
of all online units and PEVs during a specified period of time [41,42], so as to minimize
both the fuel cost of thermal power plants and grid fluctuation simultaneously for a given
load demand while satisfying various constraints [43,44].

2.1. Objective Function

Considering that the steam valve of the steam turbine is suddenly open and it would
have a certain impact on the energy consumption of the units, which is the so-called valve
point loading effect, the objective function of total fuel cost is given by:

min f1(P) =
T

∑
t=1

N

∑
i=1

ai + biPt,i + ciP2
t,i + |ei sin[ fi(Pmin

i − Pt,i)]| (1)

where f1(P) is the total fuel cost of the thermal power units, T is the number of periods
in a scheduling cycle, N is the total number of generator units, ai, bi, ci, ei and fi are cost
coefficients of ith the unit, Pt,i is the output power of the ith unit at time t, and Pmin

i is the
minimum output power of the ith unit.
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Furthermore, the large fluctuation in power generation could cause damaging im-
pacts on the power grid. So, V2G is introduced to fill the valley and clip peak, which is
formulated as:

min f2(P, PPEV) =
T

∑
t=1

[
N

∑
i=1

(Pt+1,i + PPEV,t+1 − PL,t+1)−
N

∑
i=1

(Pt,i + PPEV,t − PL,t)]
2 (2)

where f2(P, PPEV) is to minimize grid fluctuations, PPEV,t is the exchange power between
the electric vehicle and the grid at time t, and PL,t is transmission loss at time t.

Here, the objective functions f1 and f2 are combined into f using a weighting factor ω,
which can be expressed by:

f = f1 + ω f2 (3)

2.2. Constraints
2.2.1. Power Capacity Constraint

The power outputs of generation units are determined by the physical characteristics
of the unit, which should be within the capacity of each specific generation unit:

Pmin
i ≤ Pt,i ≤ Pmax

i (4)

where Pmin
i and Pmax

i are the lower and upper power limits of the ith generator, respectively.

2.2.2. Ramp-Rate Limits Constraint

Due to the inertia of thermal power units, the power outputs cannot dramatically
change between two adjacent intervals and are subject to the ramp rate limits, which is
useful for extending the service life of the units and given as:{

Pt,i − Pt−1,i ≤ URi
Pt−1,i − Pt,i ≤ DRi

(5)

where URi is the ramp-up rate limit and ramp-down rate limit of the ith unit, respectively.

2.2.3. Electric Vehicle Constraint

Electric vehicle battery state of charge constraint is described as:

SOCmin ≤ SOCt ≤ SOCmax (6)

where SOCmin is the lower limit of battery capacity, SOCmax is the upper limit of battery
capacity, and SOCt is the capacity of the battery at time t.

The remaining battery power constraint [21,22] is given by:

SOCt = SOCt−1 + ηPEV PPEVI,t∆t− 1
ηPEVO

PPEVO,t − SOCUsed,t (7)

where SOCt is the remaining capacity of the battery at time t, ηPEV and ηPEVO are the
charging efficiency and discharge efficiency of the electric vehicle [23], and SOCUsed,t is the
amount of electricity that the electric vehicle has used at time t.

Electric vehicle charging and discharging power constraints [24] follow the expression:
Pmax

PEV,disc ≤ PPEV,t ≤ Pmax
PEV,char

T
∑

t=1
PPEV,t ≤ PPEV,total

(8)

where Pmax
PEV,disc is the maximum discharge power of the electric vehicle, Pmax

PEV,char is the
maximum charging power of the electric vehicle, and PPEV,total is the total power of the
electric vehicle.
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2.2.4. Power Balance Constraint

In order to maintain power balance [25,26], the output power of all units must be equal
to the sum of various demands and the transmission loss at each time interval t, which is
defined as:

T

∑
t=1

Pt,i = PD,t + PL,t + PPEV,t (9)

where PD,t is the load demand at time t, PL,t is the transmission loss at time t, and its
mathematic model is formulated as:

PL,t =
N

∑
i=1

N

∑
j=1

Pt,iBijPt,j +
N

∑
i=1

B0iPt,i + B00 (10)

where Bij, B0i, and B00 are the network loss coefficients.

2.3. Determination of the Generation Level of the Slack Generator

As seen from Equation (10), the transmission loss of the power grid is the function of
the output power of the units. The slack generator is usually used to decompose PL,t, and
the decision variable Pt,N is separated. Equation (10) could be expressed as:

PL,t = BNN P2
t,N + (2

N−1

∑
i=1

BN,iPt,i + BN0)Pt,N + (
N−1

∑
i=1

N−1

∑
j=1

Pt,iBijPt,j +
N−1

∑
i=1

B0iPt,iB00) (11)

Similarly, Equation (9) could be transformed into the following equation:

Pt,N = PD,t + PL,t + PPEV,t −
N−1

∑
i=1

Pt,i (12)

Combining Equations (11) and (12), the output power of the slack generator Pt,N can
be obtained as:

BNN P2
t,N + (2

N−1

∑
i=1

BN,iPt,i + BN0 − 1)Pt,N + (PD,t +
N−1

∑
i=1

N−1

∑
j=1

Pt,1BijPt,j +
N−1

∑
i=1

Bi0Pt,i −
N−1

∑
i=1

Pt,i + B00) = 0 (13)

3. The Modified Moth Flame Algorithm
3.1. Brief Overview of MFO

The moth flame optimization (MFO) algorithm is a novel swarm intelligence optimiza-
tion algorithm proposed by scholar Seyedali Mirjalili in 2015 [27]. It is inspired by the spiral
flight of moths at night, as they follow the moon and adjust their flight direction accordingly.
However, the artificial flame is very close compared to the moon. Maintaining a fixed
angle with the artificial light would eventually generate a spiral flight path approaching
the flame for moths. The MFO has strong parallel optimization ability and can explore a
wide range of solution spaces. For non-convex problems such as DED with a large number
of local optimal points, the MFO is more suitable. Figure 1 depicts the flowchart of the
MFO algorithm.
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3.1.1. Initialize Parameters

The MFO is essentially a swarm intelligence optimization algorithm. For the ED
problem, the candidate solutions are denoted by m, that is, the moths are denoted by m.
Moths fly in a one-dimensional or multi-dimensional manner in the feasible domain, and
their flight paths are the range of the solution. The moths’ population M is described as:

M =


m1,1 m1,2 · · · m1,d
m2,1 m2,2 · · · m2,d

...
...

. . .
...

mn,1 mn,2 · · · mn,d

 (14)

where n is the number of moths, and d is the size of the dimension.
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In the MFO, each moth has a corresponding flame, and the moth flies along its corre-
sponding flame to update its position. The moth corresponds with the flame represented
as F by the dimension. The position of the flame is expressed as:

F =


F1,1 F1,2 · · · F1,d
F2,1 F2,2 · · · F2,d

...
...

. . .
...

Fn,1 Fn,2 · · · Fn,d

 (15)

The upper bound ub and lower bound lb in the search space can be given as follows:

ub = [ub1, ub2, ub3, · · · · · · , ubn−1, ubn] (16)

lb = [lb1, lb2, lb3, · · · · · · , lbn−1, lbn] (17)

3.1.2. The Moth’s Location Updating

The moth flies following the logarithmic spiral function S, which is constructed as:

S(Mi, Fi) = Diebt cos(2πt) + Fj (18)

where b is the parameter of the logarithmic spiral shape, and t ∈ [−1, 1] is the distance
parameter. The value t is proportionate to the distance of the moth relative to the flame.
If t = 1, the moth is far away from the flame, and if t = −1, the distance of the moth
relative to the flame is very short, so the flying domain of the moth is the entire global
space, including the flame itself and the space occupied by the flame. The variable K can
be introduced into the value of the path coefficient t, where K ∈ [−1,−2]. Therefore, the
value range of t is t ∈ [K, 1]. As the number of iterations increases, the value of K changes
linearly from big to small, which improves the efficiency of moths approaching the flames.

Di is the distance from the ith moth to the jth flame and formulated as:

Di =
∣∣Fj −Mi

∣∣ (19)

where Fj is the jth flame. The number of flames f lame_no needs to be adaptively updated
to reduce calculation time and improve operating efficiency, which is updated by:

f lame_no = round(N − k× N − 1
T

) (20)

where k is the current iteration number, N is the maximum number of flames, and T is the
maximum number of iterations.

The position update mechanism of the MFO is critical to unlocking its full local search
capabilities. So, the optimal position generated by the moth in the previous iteration should
be updated in the current iteration, meaning that if the fitness value is better than the flame,
the position of the flame is updated. In each iteration, the position of the flame is saved in
the matrix F, and then the moth updates the position according to the matrix F; the update
mechanism Mi is expressed as:

Mi = S(Mi, Fj) (21)

3.2. Chaos Moth Flame Algorithm

The chaos moth flame (CMFO) algorithm is an enhanced version of the MFO algo-
rithm [27]. It integrates chaotic mapping with the evolutionary mechanism of the MFO
to produce improved results. The CMFO algorithm uses a chaotic sequence, generated
through chaotic mapping, to initialize the solution space and enhance the search process.
As a result, the CMFO algorithm is able to obtain better initial solutions compared with the
MFO algorithm. The pseudo-code for the CMFO algorithm is presented in Algorithm 1.
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Algorithm 1. Chaos moth flame optimization

Input: Population size NP = 30.
Output: The final solution Xbest and its fitness fbest.
1: Set the iteration FEs = 1 and maximum iteration Max_FEs;
2: for i = 1 to dim
3: for j = 1 to NP
4: Introduce chaotic mapping using Equation (23);
5: Initialize the upper boundary and the lower boundary (ub, lb);
6: Initialize the position of the ith particle Xij and use mapping;
7: end for
8: end for
9: While FES <= Max_FES do
10: Adaptively update the number of f lame_no using Equation (20);
11: for i = 1 to dim
12: Check if moths go out of the search space through (ub, lb) and bring it back;
13: Calculate the fitness of moths f (Xij);
14: end for
15: if FES == 1
16: Sort the first population of moths f (Xbest);
17: Update the flames best_ f lame_ f (Xij);
18: else
19: Re-combinate the moth and flame; Calculate the double_ f itness(moth_ f (Xij), f lame_ f (Xij));
20: Sort the re-combinate population double_ f itness;
21: Update the flames f lame_ f (Xbest) using Equation (21);
22: end if
23: Calculate parameter a using the relevant formula;
24: for i = 1 to dim
25: Calculate parameter b using chaotic mapping through Equation (23);
26: for j = 1 to NP
27: if i <= Flame_no
28: Calculate the distance between the moth and the flame Dij using Equation (19);
29: Calculate the path coefficient t using the relevant formula;
30: Update the position Xij using Equation (18), Equation (23);
31: end if
32: if i > Flame_no
33: Calculate the distance between the moth and the flame Dij using Equation (19);
34: Calculate the path coefficient t using the relevant formula;
35: Update the position Xij using Equation (21), Equation (23);
36: end if
37: end for
38: end for
39: Update the global best position Xbest and its fitness fbest; FES = FES + 1;
40: end while

Chaos Mapping

Chaos is a complex and ubiquitous phenomenon in non-linear deterministic systems,
where it showcases the interplay between order and disorder, determinism, and random-
ness [7]. Chaos is limited to a specific region, is unique and never repeats, and its orbit is
complex. Although it appears random, chaos is in fact a deterministic system [14], where
the state of the system at any moment is influenced by its previous state. This makes chaos
unpredictable and seemingly random, yet it also exhibits good autocorrelation and low-
frequency broadband, making it distinct from periodic and quasi-periodic motion. Chaos
is characterized by its extreme sensitivity to initial conditions, which is one of its most
prominent features. The chaotic map is described by different probability distributions
that can be quantified using a probability density function. In order to measure the chaotic
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degree [17] of the dynamic system, LE is introduced, which is used to evaluate the chaotic
degree of the system as follows:

LE = lim
n→∞

1
n

n

∑
k=1

ln
∣∣ f ′(xk)

∣∣ (22)

For all one-dimensional chaotic maps, LE > 0, the three chaotic maps introduced are
sine map, iterative map, chebyshev map, and correlation chaos map in Table 1.

Table 1. Chaotic maps.

NO. Chaotic Map Equations LE

1. Sine map:
{

XK+1 = (a/4) · sin(πXk)
0 < a ≤ 4, a = 4, Xk ∈ (0, 1)

0.6885

2. Iterative map:
{

XK+1 = sin(a/Xk)
a ∈ (0, ∞), a = 2, Xk ∈ [−1, 1]/{0}

1.6556

3. Chebyshev:
{

XK+1 = cos(a · cos−1 Xk)
a > 0, a = 3, Xk ∈ [−1, 1]

1.0986

Since the parameters of the logarithmic helix are fixed, the shape of the logarithmic
helix is also fixed for MFO [27], which makes the local search ability worse. So, MFO deals
with problems with high dimensionality and non-convex, which tend to get stuck in local
optima. Here, the chaotic map is introduced to the evolution mechanism of the logarithmic
spiral, which makes the parameters of the logarithmic spiral change in a chaotic shape in
the iteration process of the CMFO. So, it makes CMFO search more comprehensively in
the solution space and has strong global exploration ability. In addition, the chaotic map
sequence is applied to the initialization process of CMFO, so that the CMFO has a better
initial solution, which can reduce the running time of the algorithm and accelerate the
convergence speed. The search principles of MFO and CMFO on the solution space are
shown in Figure 2.
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In Figure 2, for MFO [27], the moth needs to construct a logarithmic spiral by
Equation (18) during the search process. Among the parameters of the logarithmic spiral
function, the parameter b determines the shape of the logarithmic spiral and is a static
parameter. As can be seen from the MFO of Figure 2, the static parameter b is weakly
adaptive, causing the MFO to poorly explore the solution space.

The chaotic map is applied to the logarithmic spiral evolution mechanism, which is
formulated by Equation (23), so that the parameter b can change in a chaotic state with
the iteration. The parameter b is improved to a dynamic chaotic parameter. Taking the
two-dimensional solution space as an example, it can be seen from the CMFO of Figure 2
that the application of the dynamic chaos parameter makes the shape of the helix change
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continuously with the iterations, which is highly adaptive and more exploratory to the
solution space. Therefore, CMFO can well-compensate for the deficiencies of MFO.

In addition, to make the CMFO better converge to the optimal solution, the chaotic
mapping sequence is used to generate the initial solution, thereby saving the running time
of the CPU. Meanwhile, sine chaotic mapping is used for updating the parameter b. The
mathematical model of the logarithmic spiral search of CMFO is described as:{

S(Mi, Fi) = Diebit cos(2πt) + Fj
bi+1 = sin(πbi)

(23)

4. Performance Verification of CMFO

In order to verify the rationality and validity of the CMFO, it is compared with nine
other meta-heuristic algorithms, of which the abbreviations and parameters are shown
in Tables 2 and 3, respectively. The above experiments are performed by conducting on
seven well-known benchmark functions, which are F1 (Sphere), F2 (Schwelfel’s 2.22), F3
(Schwelfel’s 1.2), F4 (Step), F5 (Griewank), F6 (Ackley), F7 (Penalized-1), as shown in
Table 4, which include unimodal and multimodal functions. Because of only one optimum,
the solution of unimodal function can be determined easily. However, for the multimodal
function, the number of local minimum increases with the dimension of problems, thus
it is difficult to obtain optimal solutions. Therefore, the selected benchmark functions
can effectively evaluate the performance of the algorithm in terms of escaping from the
local optimum and convergence speed. Furthermore, three dimensions, namely 10, 20,
and 50, are selected to test the generalization ability of the algorithm, and each trial runs
30 times independently. For the test case of 10 dimensions and 20 dimensions, the number
of iterations is 1000. For the test case of 50 dimensions, the number of iterations is 10,000.
All experiments in this study are conducted in a PC with MATLAB ®2020a, Intel(R) Core
(TM) i5-7200U CPU @ 2.50 GHz(4CPUs), and RAM 8.0 GHz. The experiment results are
shown in Tables 5–7, which are in terms of the standard deviation “Sta”, optimal value
“Best” of the best-so-far solution, and average CPU running time “Time(s)”.

Table 2. List of algorithm abbreviations.

Table of Abbreviations Abbreviation

1. Moth-Flame Optimization Algorithm MFO [27]
2. Dragonfly Algorithm DA [28]
3. Multi-Verse Optimizer MVO [29]
4. Sine Cosine Algorithm SCA [30]
5. Ant Lion Optimizer ALO [31]
6. Grasshopper Optimisation Algorithm GOA [32]
7. Salp Swarm Algorithm SSA [33]
8. Whale Optimization Algorithm WOA [34]
9. Ocean Predator Algorithm MPA [35]
10. Grey Wolf Optimizer GWO [36]
11. Chaos Moth-Flame Optimization Algorithm CMFO

Table 3. The parameters of the algorithms.

Algorithms Parameter Settings Iteration

MFO [27] NP = 30 1000, 10,000
DA [28] NP = 30, Beta = 1.5 1000, 10,000
MVO [29] NP = 30, WEP_Max = 1, WEP_min = 0.2 1000, 10,000
SCA [30] NP = 30, a = 2 1000, 10,000
ALO [31] NP = 30 1000, 10,000
GOA [32] NP = 30, Cmax = 1, Cmin = 0.00004 1000, 10,000
SSA [33] NP = 30 1000, 10,000
WOA [34] NP = 30, b = 1 1000, 10,000
MPA [35] NP = 30, Fads = 0.2, P = 0.5, Beta = 1.5 1000, 10,000
GWO [36] NP = 30 1000, 10,000
CMFO NP = 30 1000, 10,000
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Table 4. Benchmark functions.

Function Dim Range Fmin

F1(x) =
n
∑

i=1
x2

i
10/20/50 [−100, 100] 0

F2(x) =
n
∑

i=1
|xi |+

n
∏
i=1
|xi | 10/20/50 [−100, 100] 0

F3(x) =
n
∑

i=1
(

i
∑

j=1
xj)

2 10/20/50 [−100, 100] 0

F4(x) =
n
∑

i=1
([xi + 0.5])2 10/20/50 [−100, 100] 0

F5(x) = 1
4000

n
∑

i=1
xi

2 −
n
∏
i=1

cos( xi√
i
) + 1 10/20/50 [−600, 600] 0F6(x) = π

n {10 sin(πy1) +
n−1
∑

i=1
(yi − 1)2[1 + 10 sin2(πyi+1)] + (yn − 1)2}+

n
∑

i=1
u(xi , 10, 100, 4)

yi = 1 + xi+1
4

10/20/50 [−50, 50] 0

F7(x) = 0.1{sin2(3πxi) +
n
∑

i=1
(xi − 1)2[1 + sin2(3πxi + 1)] + (xn − 1)2[1 + sin2(2πxn)]}+

n
∑

i=1
u(xi , 5, 100, 4) 10/20/50 [−50, 50] 0

In Tables 5, A1 and A2, in Appendix A, among the three metrics “Sta”, “Best”, and
“Time”, N means that the algorithm is worse than the CMFO in more than two metrics, and
Y means that the algorithm is better than the CMFO in more than two metrics. Furthermore,
‘+’ means that the performance of the algorithm is superior. Tables 5, A1 and A2, in
Appendix A, show that the proposed CMFO is better than the other algorithms except
for WOA [34], MPA [35], and GWO [36], according to the statistical results. In particular,
the small optimal value and standard deviation of different kinds of functions indicate
that the CMFO has high solution precision and stability. Furthermore, compared with
other methods, the CMFO significantly reduces the time of computing. For example, in
10 dimensions, the CMFO converged 305%, 916%, 1511%, 135%, 2%, 163%, 24%, 147%, 77%,
and 9% faster compared with the other 10 algorithms in the unimodal test function F1, and
also improved the stability of the optimal values. In the multimodal test function F6, the
CMFO improves the convergence speed compared with the other 10 algorithms by 1544%,
314%, 589%, 52%, −3%, 104%, −1%, 110%, 18%, and 7%, respectively, and improves the
stability and accuracy of the optimal values. In the multimodal test function F7, the CMFO
converges 102%, 339%, 684%, 62%, 9%, 121%, 8%, 121%, 38%, and 4% faster than the other
10 algorithms, respectively, and also improves the accuracy of the optimal values. Moreover,
the advantages of CMFO in optimizing unimodal and multimodal test functions remain
when improved to 20 and 50 dimensions, indicating that the improved algorithm is equally
suitable for solving high-dimensional, high-complexity optimization problems, making
it a good choice to use CMFO for problems with higher dimensionality and complexity
like DED.

In order to provide an intuitive comparison, the convergence curves of Step, Ackley,
and Penalized-1 representatives are illustrated in Figures 3 and A1 in Appendix A. It
can be seen from the convergence curves that the CMFO has stronger exploration ability,
faster convergence, more generality, and higher accuracy compared with other algorithms.
Such improvements are related to chaotic mapping and are introduced into CMFO. Mean-
while, the experiment results fully demonstrate that the proposed CMFO is promising
and competitive.
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Table 5. Comparison of CMFO with other algorithms (10 dimensions).

NO. Statistics ALO DA GOA MVO SSA WOA SCA MPA GWO MFO CMFO

F1 Sta 1.40 × 10−9 2.34 × 101 1.50 × 10−7 1.80 × 10−3 3.30 × 10−10 4.24 × 10−155 4.74 × 10−25 2.93 × 10−63 9.89 × 10−133 9.46 × 10−22 2.06 × 10−34

Best 8.42 × 10−10 2.50 × 10−3 6.37 × 10−8 1.20 × 10−3 4.13 × 10−10 1.70 × 10−175 3.69 × 10−34 2.89 × 10−65 4.91 × 10−123 1.30 × 10−20 1.55 × 10−36

Time(s) 1.45 × 101 3.64 × 101 5.77 × 101 8.44 × 10−1 3.65 × 10−1 9.44 × 10−1 4.45 × 10−1 8.86 × 10−1 6.34 × 10−1 3.91 × 10−1 3.58 × 10−1

Winner N N N N N Y N Y Y N +
F2 Sta 1.34 × 100 1.12 × 100 8.08 × 101 1.16 × 10−2 9.19 × 10−6 9.27 × 10−106 1.20 × 10−18 5.90 × 10−35 7.86 × 10−67 1.01 × 10−13 1.50 × 10−20

Best 1.44 × 10−5 6.91 × 10−1 2.01 × 102 8.10 × 10−3 4.58 × 10−6 3.15 × 10−116 7.80 × 10−22 1.13 × 10−36 7.54 × 10−69 2.56 × 10−15 2.84 × 10−22

Time(s) 1.42 × 101 3.85 × 101 5.99 × 101 9.15 × 10−1 4.09 × 10−1 1.26 × 100 4.56 × 10−1 9.50 × 10−1 6.68 × 10−1 4.51 × 10−1 4.38 × 10−1

Winner N N N N N Y N Y Y N +
F3 Sta 8.10 × 10−6 6.02 × 101 1.02 × 10−1 1.42 × 10−2 1.24 × 10−9 2.86 × 101 5.45 × 10−8 3.07 × 10−31 1.08 × 10−53 1.27 × 10−5 1.10 × 10−10

Best 2.22 × 10−6 2.19 × 100 1.62 × 10−4 4.80 × 10−3 6.00 × 10−10 9.64 × 10−6 3.68 × 10−13 3.56 × 10−36 2.59 × 10−61 3.97 × 10−3 3.60 × 10−13

Time(s) 1.42 × 101 3.89 × 101 6.48 × 101 1.05 × 100 5.66 × 10−1 1.31 × 100 5.43 × 10−1 1.33 × 100 8.57 × 10−1 6.01 × 10−1 5.83 × 10−1

Winner N N N N N N N Y Y N +
F4 Sta 6.63 × 10−10 1.33 × 101 2.66 × 10−7 1.70 × 10−3 3.16 × 10−10 8.42 × 10−5 9.86 × 10−2 9.99 × 10−15 1.97 × 10−7 2.19 × 10−10 0.00 × 100

Best 9.24 × 10−10 1.58 × 10−2 3.59 × 10−8 1.20 × 10−3 2.11 × 10−10 1.04 × 10−5 1.70 × 10−1 4.39 × 10−16 4.86 × 10−7 3.92 × 10−17 0.00 × 100

Time(s) 1.28 × 100 3.62 × 101 5.92 × 101 9.10 × 10−1 4.06 × 10−1 8.38 × 10−1 4.35 × 10−1 9.45 × 10−1 6.17 × 10−1 3.97 × 10−1 3.92 × 10−1

Winner N N N N N N N N N N +
F5 Sta 9.07 × 10−2 3.01 × 10−1 1.19 × 10−1 9.36 × 10−2 9.78 × 10−2 1.42 × 10−1 9.45 × 10−2 9.87 × 10−2 1.19 × 10−1 4.9748 9.04 × 10−2

Best 3.20 × 10−2 1.51 × 10−1 1.40 × 10−1 8.48 × 10−2 4.93 × 10−2 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 16.1056 0.00 × 100

Time(s) 1.42 × 101 3.67 × 101 6.47 × 101 1.00 × 100 4.84 × 10−1 1.04 × 100 4.95 × 10−1 1.27 × 100 6.90 × 10−1 4.72 × 10−1 4.91 × 10−1

Winner N N N N N N N N N N +
F6 Sta 6.95 × 10−1 1.35 × 100 8.90 × 10−1 1.43 × 10−1 2.67 × 10−1 4.00 × 10−3 2.54 × 10−2 2.77 × 10−15 7.86 × 10−3 0.2801 9.47 × 10−33

Best 2.58 × 10−11 5.80 × 10−2 6.07 × 10−6 1.56 × 10−5 5.12 × 10−12 2.28 × 10−5 3.32 × 10−2 4.25 × 10−16 1.20 × 10−7 2.37 × 10−7 4.71 × 10−32

Time(s) 1.46 × 101 3.68 × 101 6.12 × 101 1.35 × 100 8.62 × 10−1 1.82 × 100 8.78 × 10−1 1.87 × 100 1.05 × 100 9.49 × 10−1 8.88 × 10−1

Winner N N N N N N N N N N +
F7 Sta 4.39 × 10−3 2.18 × 10−1 1.35 × 10−2 5.40 × 10−3 4.40 × 10−3 2.61 × 10−2 6.93 × 10−2 1.18 × 10−13 3.98 × 10−2 1.47 × 10−5 6.92 × 10−32

Best 1.04 × 10−10 3.56 × 10−2 4.19 × 10−6 1.11 × 10−4 2.12 × 10−11 7.70 × 10−5 1.86 × 10−1 7.23 × 10−15 1.00 × 10−6 3.79 × 10−8 1.35 × 10−32

Time(s) 1.69 × 101 3.67 × 101 6.55 × 101 1.36 × 100 9.12 × 10−1 1.85 × 100 9.01 × 10−1 1.85 × 100 1.15 × 100 8.71 × 10−1 8.35 × 10−1

Winner N N N N N N N N N N +
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Table 6. Scenarios.

Scenario 1: Only Units Dimensions Scenario 2: Units with PEVs Dimensions

Case I: 5 units 5 × 24 = 120 Case IV: 5 units + PEVs 6 × 24 = 144
Case II: 10 units 10 × 24 = 240 Case V: 10 units + PEVs 11 × 24 = 264
Case III: 15 units 15 × 24 = 360 Case VI: 15 units + PEVs 16 × 24 = 384

Table 7. Comparison of whether PEVs in DED.

Parameter Best Cost ($) Worst Cost ($) Average Cost ($) Fluctuation
(MW)ˆ2 Sta CPU Time (s)

Scenario 1
caseI: 5 units 3.98 × 104 4.07 × 104 3.99 × 104 1.06 × 106 6.67 × 102 2.65 × 102

caseII: 10 units 2.28 × 106 2.31 × 106 2.29 × 106 1.97 × 106 4.85 × 104 9.57 × 102

caseIII: 15 units 6.71 × 105 6.95 × 105 6.74 × 105 2.09 × 106 9.67 × 103 2.05 × 103

Scenario 2
caseIV: 5 units 3.93 × 104 4.19 × 104 4.07 × 104 7.90 × 105 8.87 × 102 2.33 × 102

caseV: 10 units 2.17 × 106 2.33 × 106 2.25 × 106 1.01 × 106 3.90 × 104 9.30 × 102

caseVI: 15 units 6.50 × 105 6.83 × 105 6.71 × 105 1.16 × 106 9.00 × 103 1.97 × 103
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5. Implementation of CMFO to DED Problems

The conceptual representation of the CMFO approach to solving the dynamic economic
dispatch problem with the integration of plug-in electric vehicles is depicted in Figure 4.
This representation consists of three integral components: the initial population formation
through chaotic mapping, which enhances the diversity of the population; the objective
function and constraints of the DED problem, which are transformed from a multi-objective
problem to a single-objective problem through weight factors; and the application of the
CMFO algorithm to solve the DED problem [45].

Furthermore, the model of plug-in electric vehicles to the grid used in this paper is
shown in Figure 5. The system operator determines the day-ahead schedule of thermal
power plants according to the power demand as well as coordinates the power deliver-
ing/receiving to/from the PEV aggregators [46]. In plug-in electric vehicles to the grid
mode, PEV aggregators are designed to possess options for delivering or receiving power
to/from the grid. The model is simple and efficient, so it is used to study the DED problem.

5.1. Parameter Setting

The population size of the CMFO is NP = 500, the number of PEVs is 75,000, the
charging and discharging efficiencies are both 0.85, the available PEVs are 20%, and the
average battery capacity is 0.015 MW. The V2G error is 0.01, and the objective function
weight value is set to 1. In addition, the charging and discharging power of PEVs is
100 MW, and for 5 units, the maximum power generation of a single unit is 300 MW; the
minimum value of power generation demand for each time period is 410 MW and the
maximum value is 720 MW. For 10 units, the maximum generation power of each single
unit is 470 MW, and the minimum value of generation demand for each time period is
1036 MW and the maximum value is 1972 MW. For 15 units, the maximum generation
power of each single unit is 470 MW, and the minimum value of generation demand for
each time period is 1171 MW and the maximum value is 2394 MW. Therefore, from the
power generation perspective, the power ratios of a single genset and a PEV are 3:1, 4.7:1,
and 4.7:1, respectively, and the impact of a PEV is 13.9~24.4% for 5 units, 5.1~9.7% for
10 units, and 4.2~8.5% for 15 units. Therefore, the reasonable deployment of electric vehicle
charging and discharging can reduce the grid fluctuation to a certain extent and achieve
the effect of peak and valley reduction.

Regarding the algorithms used for comparison, for MFO [27], NP = 500 and the
crossover probability PC = 0.7. For GADMFI [26], the mutation probability Pm = 0.3 and
the population size NP = 100. For MPA [35], NP = 500, Fads = 0.2, P = 0.5, and Beta = 1.5.
The number of iterations for each algorithm remains fixed. In order to verify the reliability
of the proposed algorithm for DED problems, two scenarios and six cases are considered,
as described in Table 6.

5.2. Scenarios 1 and 2

The three cases of Scenario 1 are power systems with 5 units, 10 units, and 15 units,
respectively, which are used to test the performance of the CMFO. For Scenario 2, PEVs are
connected to the grid to reduce the fluctuation of the power grid, and the charging mode
is random charging, which is more in line with the actual situation, regardless of forcing
the user to choose to discharge at peak power consumption and charge at low power
consumption [47,48]. Three cases, 5 units + PEVs, 10 units + PEVs, and 15 units + PEVs,
are used to test the performance of the CMFO. The experiment results of Scenarios 1 and 2
are shown in Table 7. For intuitive analysis of Units + PEVs, the output power in each
period is shown in Figure 6, and the power curve in each period is shown in Figure 7. In
Figure 6, the “FEVs” curve represents the charge and discharge of PEVs in each period, and
the “Original Demand + FEVs” curve represents the actual power generation of the genset
in each period when PEVs are engaged. The curve “Original Demand + FEVs” reduces the
grid fluctuation compared with the curve “Original Demand” and achieves the effect of
peak and valley reduction. Each stacked histogram in Figure 7 represents the sum of the



Electronics 2023, 12, 2742 15 of 26

power generation of each test case at each period, and the bars with different colors repre-
sent the power output of different units. Meanwhile, for Scenario 2, the output powers of
each unit and PEVs in each period are also shown in Tables 8, A3 and A4, in Appendix A.
Table 7 shows that the grid fluctuations for 5 units, 10 units, and 15 units can be reduced
by 25.5%, 48.8%, and 44.5%, respectively. Furthermore, for 5 units, 10 units, and 15 units,
the fuel cost is also reduced by 1.2%, 4.8%, and 3.1%, respectively. Additionally, for 5 units,
10 units, and 15 units, the CPU running times decreased by 1.2%, 4.8%, and 3.1%, re-
spectively. Therefore, the connection of the electric vehicle to the grid does improve the
operation of the power grid, and it further proves that the CMFO is very effective for
solving DED with PEVs [49,50].
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5.3. Performance Evaluation of CMFO

To test the performance of the CMFO for DED, the CMFO is compared with GADMFI [26],
MFO [27], and MPA [35]. The experiment results are shown in Table 9, of which ‘NFS’ is
represented as an infeasible solution. From Table 9, compared with GADMFI [26] in the
six cases, the CMFO reduces the best fuel costs by 7.4%, 7.3%, 0.2%, 10.5%, 12.5%, and
1.1%; reduces the worst fuel costs by 6.8%, 6.7%, −2.7%, 4.8%, 6.4%, and 1.3%; reduces
the average fuel costs by 8.0%, 7.6%, 0.2%, 5.4%, 10.1%, and −1.2%, respectively; and
reduces CPU running time by 44.4%, 33.8%, 33.9%, 58.5%, 54.5%, and 60.0%, respectively.
Compared with MFO [27], the CMFO reduces the best fuel cost by 1.5%, 0.4%, 0%, 2.7%,
0.5%, and 2.1%, and reduces CPU running time by −8.0%, −6.9%, 2.8%, 12.1%, 1.8%,
and 1.5%, respectively. Compared with MPA [35], the CMFO reduces the best fuel cost by
5.0%, 1.1%, 0.1%, 9.9%, 7.4%, and 2.4%; reduces the worst fuel costs by 7.9%, 0.3%, 1.9%,
4.8%, 3.0%, and 1.0%; reduces the average fuel costs by 5.5%, 1.0%, 1.1%, 7.2%, 4.9%, and
1.3%; and reduces CPU running time by 27.2%, 31.1%, 13.5%, 50.6%, 36.7%, and 16.3%,
respectively. Such improvements mainly benefit from introducing the chaotic mapping
mechanism to CMFO, which helps the CMFO to jump out of the local optimum effectively.
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Table 8. Case IV: 5 units + PEVs.

Hour U1(MW) U2(MW) U3(MW) U4(MW) U5(MW) PEVs(MW)

1 10.0000 53.6858 175.0000 40.0000 50.0000 63.9108
2 15.7117 27.1060 31.5891 84.2206 93.7074 52.5612
3 12.3513 62.5644 32.9835 151.6454 295.3407 35.8271
4 66.4852 74.7164 45.3262 191.0710 125.7262 17.3350
5 10.3371 47.6915 149.1630 40.0000 90.4991 13.1349
6 70.0996 83.7379 102.7415 40.0000 50.0000 0.6600
7 57.0166 42.8705 30.0000 76.7857 112.7795 6.9656
8 10.0000 52.0368 30.0000 132.5563 50.0000 3.7592
9 45.5688 98.9987 30.0000 58.6576 286.4174 −3.9636
10 51.6049 43.4705 175.0000 143.2037 50.0000 −4.3255
11 10.0000 20.0000 30.0000 40.0000 155.1979 −9.3044
12 42.5523 97.3219 141.7528 172.2989 63.4971 −20.6566
13 10.0000 44.5992 30.0000 250.0000 150.2540 −3.7945
14 10.0000 118.0385 157.8564 244.6124 50.0000 2.2380
15 19.3010 33.3553 133.4780 99.8295 50.0000 15.9469
16 27.0477 20.0000 100.0908 111.1224 202.6196 49.0711
17 75.0000 124.5431 93.7788 40.0000 137.5331 55.8396
18 59.3929 68.8096 169.7482 102.9944 50.0000 26.3521
19 75.0000 53.0772 83.2589 40.0000 271.9666 −1.6668
20 10.0000 85.7967 108.6016 40.0000 101.0388 −31.0459
21 29.7327 39.2235 46.4968 40.0000 174.5293 −20.2485
22 47.7149 106.2207 153.9936 100.3830 300.0000 18.7699
23 27.1922 84.3751 30.0000 59.3461 131.1061 56.5571
24 75.0000 104.5927 39.5150 152.5159 50.0000 87.0775
Total fuel cost ($): 3.93 × 104

Table 9. Comparison of different algorithms for DED.

Test Case Algorithm Fuel Costs ($) CPU Time (s)

Best ($) Worst ($) Average ($) Average (s)

Case I GADMFI 4.3085 × 104 4.3145 × 104 4.3109 × 104 4.77 × 102

MFO
MPA

4.04 × 104

4.18 × 104
NFS
4.327 × 104

NFS
4.217 × 104

2.45 × 102

3.37 × 102

CMFO 3.98 × 104 4.07 × 104 3.99 × 104 2.65 × 102

Case II GADMFI 2.4643 × 106 2.4649 × 106 2.4646 × 106 1.4344 × 103

MFO
MPA

2.29 × 106

2.3047 × 106
3.29 × 106

2.3162 × 106
3.11 × 106

2.3119 × 106
8.95 × 102

1.2549 × 103

CMFO 2.28 × 106 2.31 × 106 2.29 × 106 9.57 × 102

Case III GADMFI 6.7313 × 105 6.7690 × 105 6.7561 × 105 3.1073 × 103

MFO
MPA

6.71 × 105

6.715 × 105
NFS
7.082 × 105

NFS
6.814 × 105

2.11 × 103

2.3261 × 103

CMFO 6.71 × 105 6.95 × 105 6.74 × 105 2.05 × 103

Case IV GADMFI 4.3944 × 104 4.3900 × 104 4.3897 × 104 5.59 × 102

MFO
MPA

4.04 × 104

4.320 × 104
NFS
4.393 × 104

NFS
4.3644 × 104

2.65 × 102

3.51 × 102

CMFO 3.93 × 104 4.19 × 104 4.07 × 104 2.33 × 102

Case V GADMFI 2.4818 × 106 2.4801 × 106 2.4811 × 106 2.0429 × 103

MFO
MPA

2.18 × 106

2.3304 × 106
3.29 × 106

2.3992 × 106
3.09 × 106

2.3594 × 106
9.48 × 102

1.2709 × 103

CMFO 2.17 × 106 2.33 × 106 2.25 × 106 9.30 × 102

Case VI GADMFI 6.5694 × 105 6.7391 × 105 6.6320 × 105 4.88 × 103

MFO
MPA

6.64 × 105

6.658 × 105
NFS
6.882 × 105

NFS
6.798 × 105

2.00 × 103

2.2902 × 103

CMFO 6.50 × 105 6.83 × 105 6.71 × 105 1.97 × 103
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6. Conclusions

This paper explores a modified version of the moth flame algorithm (MFO), referred
to as CMFO, to solve the DED problem in the presence of PEVs in a more efficient manner.
The proposed algorithm incorporates chaotic mapping to initialize the population and
improve the evolution mechanism of MFO, thereby compensating for its shortcomings and
avoiding premature convergence. The performance of the CMFO is evaluated through
experiments on benchmark functions and compared with other popular algorithms. The
results demonstrate that CMFO can find high-quality solutions in a shorter time frame.
Furthermore, two scenarios with and without PEVs are tested using CMFO, with the
number of units ranging from 5 to 15. The results show that CMFO can produce optimal
solutions, especially for large-scale problems and confirm that V2G can effectively reduce
grid fluctuations and achieve peak shaving and valley filling. In the future, we will consider
the introduction of solar energy as well as wind energy into the DED problem, which will
be more helpful to solve the actual problem.
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Appendix A

Table A1. Comparison of CMFO with other algorithms (20 dimensions).

NO. Statistics ALO DA GOA MVO SSA WOA SCA MPA GWO MFO CMFO

F1 Sta 2.12 × 10−8 3.83 × 102 3.51 × 10−2 1.67 × 10−2 5.81 × 10−10 6.02 × 10−154 4.47 × 10−8 1.7 × 10−52 5.18 × 10−75 6.85 × 10−8 1.12 × 10−11

Best 2.17 × 10−8 1.22 × 102 6.54 × 10−4 4.64 × 10−2 2.87 × 10−9 7.49 × 10−167 5.93 × 10−11 1.0 × 10−57 2.39 × 10−78 3.05 × 10−6 1.80 × 10−13

Time(s) 3.65 × 101 6.78 × 101 1.16 × 102 1.29 × 100 4.39 × 10−1 1.13 × 100 6.39 × 10−1 1.03 × 100 9.41 × 10−1 1.39 × 100 1.15 × 100

Winner N N N N N Y N Y Y N +
F2 Sta 1.93 × 101 3.09 × 100 2.95 × 1015 1.52 × 10−2 4.76 × 10−1 9.18 × 10−102 3.51 × 10−9 5.9 × 10−29 1.13 × 10−43 1.72 × 10−6 4.07 × 10−9

Best 1.13 × 10−2 3.41 × 100 2.51 × 102 7.71 × 10−2 5.53 × 10−5 1.71 × 10−113 2.11 × 10−11 1.4 × 10−32 4.94 × 10−45 8.00 × 10−5 8.16 × 10−10

Time(s) 4.10 × 101 8.22 × 101 1.29 × 102 1.38 × 100 5.00 × 10−1 1.22 × 100 6.54 × 10−1 1.23 × 100 1.05 × 100 10.31 × 10−1 9.85 × 10−1

Winner N N N N N Y Y Y Y N +
F3 Sta 5.36 × 101 2.53 × 103 8.77 × 101 1.32 × 100 7.71 × 10−1 1.93 × 103 2.81 × 102 5.0 × 10−18 2.66 × 10−23 11.8826 6.59 × 100

Best 8.58 × 100 4.35 × 102 3.15 × 101 6.35 × 10−1 2.62 × 10−2 2.72 × 102 1.92 × 10−1 4.5 × 10−27 2.51 × 10−30 3.99 × 103 7.84 × 10−1

Time(s) 4.27 × 101 9.03 × 101 1.29 × 102 1.65 × 100 8.20 × 10−1 1.76 × 100 9.26 × 10−1 1.95 × 100 1.36 × 100 1.57 × 100 1.52 × 100

Winner N N N N N N N Y Y N +
F4 Sta 2.83 × 10−8 1.41 × 100 3.51 × 10−2 2.19 × 10−2 1.35 × 10−9 1.56 × 10−2 1.71 × 10−1 7.40 × 10−11 1.23 × 10−1 4.02 × 10−4 3.24 × 10−11

Best 2.35 × 10−8 3.18 × 10−1 8.17 × 10−4 2.75 × 10−2 1.82 × 10−9 7.99 × 10−4 1.68 × 100 4.58 × 10−11 2.21 × 10−6 5.13 × 10−8 8.78 × 10−13

Time(s) 4.19 × 101 6.20 × 101 1.55 × 102 1.47 × 100 5.09 × 10−1 1.17 × 100 6.22 × 10−1 1.17 × 100 1.03 × 100 9.99 × 10−1 9.72 × 10−1

Winner N N N N N N N N N N +
F5 Sta 2.85 × 10−2 9.47 × 10−1 9.49 × 10−2 7.82 × 10−2 1.31 × 10−2 0.00 × 100 2.32 × 10−1 0.00 × 100 0.00 × 100 52.8037 1.60 × 10−12

Best 5.38 × 10−6 8.84 × 10−1 3.78 × 10−2 1.29 × 10−1 1.34 × 10−8 0.00 × 100 1.63 × 10−9 0.00 × 100 0.00 × 100 40.6902 4.66 × 10−13

Time(s) 4.23 × 101 6.89 × 101 1.91 × 102 1.54 × 100 5.85 × 10−1 1.31 × 100 7.00 × 10−1 1.28 × 100 1.11 × 100 1.20 × 100 1.09 × 100

Winner N N N N N Y N Y Y N +
F6 Sta 2.62 × 100 5.89 × 100 1.96 × 100 4.90 × 10−1 9.69 × 10−1 2.54 × 10−3 1.17 × 10−1 1.31 × 10−11 1.53 × 10−2 3.0935 3.10 × 10−10

Best 4.37 × 10−1 7.08 × 10−1 1.04 × 100 6.52 × 10−4 3.30 × 10−1 3.81 × 10−4 2.50 × 10−1 5.06 × 10−12 9.72 × 10−3 6.47 × 10−5 1.77 × 10−12

Time(s) 4.29 × 101 7.69 × 101 2.01 × 102 1.93 × 100 1.07 × 100 2.21 × 100 1.16 × 100 2.30 × 100 1.58 × 100 1.79 × 100 1.82 × 100

Winner N N N N N N N N N N +
F7 Sta 7.16 × 10−3 8.54 × 100 8.36 × 10−2 1.65 × 10−2 4.39 × 10−3 8.02 × 10−2 6.16 × 10−2 8.67 × 10−11 1.26 × 10−1 7.86 × 10−4 5.12 × 10−11

Best 3.96 × 10−8 1.49 × 100 4.09 × 10−3 5.97 × 10−3 1.75 × 10−10 7.50 × 10−3 1.17 × 100 4.80 × 10−11 1.37 × 10−5 3.29 × 10−7 1.34 × 10−11

Time(s) 4.27 × 101 7.68 × 101 2.65 × 102 1.97 × 100 1.07 × 100 2.23 × 100 1.18 × 100 2.32 × 100 1.70 × 100 1.86 × 100 1.80 × 100

Winner N N N N N N N N N N +
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Table A2. Comparison of CMFO with other algorithms (50 dimensions).

NO. Statistics ALO DA GOA MVO SSA WOA SCA MPA GWO MFO CMFO

F1 Sta 2.96 × 10−27 1.92 × 102 7.30 × 10−3 7.90 × 10−3 1.93 × 10−9 0.00 × 100 1.35 × 10−16 0.00 × 100 0.00 × 100 5.35 × 10−4 5.71 × 10−38

Best 8.27 × 10−26 5.07 × 101 1.66 × 10−2 1.47 × 10−2 9.04 × 10−9 0.00 × 100 1.01 × 10−28 0.00 × 100 0.00 × 100 0.0633 2.95 × 10−39

Time(s) 3.71 × 103 7.07 × 102 3.13 × 103 3.18 × 101 7.46 × 100 1.73 × 101 1.20 × 101 2.46 × 101 22.47876667 9.991 9.828
Winner N N N N N Y N Y Y N +

F2 Sta 3.5048 × 10−6 2.99 × 100 5.41 × 1023 5.69 × 10−2 1.42 × 100 0.00 × 100 7.51 × 10−29 0.00 × 100 0.00 × 100 10 2.87 × 101

Best 1.40 × 10−7 1.75 × 100 5.16 × 1022 1.09 × 10−1 4.20 × 10−3 0.00 × 100 4.22 × 10−42 5.92 × 10−286 3.21 × 10−277 42.4382 3.31 × 10−22

Time(s) 3.61 × 103 7.47 × 102 4.46 × 103 2.91 × 101 7.50 × 100 1.71 × 101 1.14 × 101 2.37 × 101 2.25 × 101 1.11 × 101 1.07 × 101

Winner N N N N N Y Y Y Y N +
F3 Sta 7.83 × 10−1 8.91 × 103 6.58 × 101 6.90 × 10−3 1.43 × 10−4 3.53 × 103 7.62 × 103 6.20 × 10−118 3.02 × 10−103 2.50 × 104 1.95 × 104

Best 4.02 × 100 7.91 × 103 7.46 × 102 9.97 × 100 1.58 × 10−5 2.75 × 100 5.69 × 102 9.46 × 10−170 7.69 × 10−125 1.69 × 104 3.83 × 10−1

Time(s) 4.07 × 104 9.24 × 102 3.25 × 103 3.67 × 101 1.62 × 101 3.19 × 101 1.91 × 101 5.05 × 101 3.18 × 101 1.81 × 101 1.73 × 101

Winner N N N N Y N N Y Y N +
F4 Sta 5.88 × 10−9 1.71 × 102 1.58 × 10−1 2.11 × 10−2 2.11 × 10−9 2.77 × 10−5 3.65 × 10−1 1.50 × 10−12 7.87 × 10−1 8.94 × 10−2 2.62 × 10−28

Best 8.62 × 10−8 5.19 × 102 2.37658 × 10−6 1.61 × 10−2 8.49 × 10−9 4.51 × 10−5 7.63 × 100 3.38 × 10−12 7.42 × 10−1 9.15 × 10−7 3.89 × 10−30

Time(s) 3.95 × 103 6.28 × 102 3.28 × 103 3.07 × 101 7.52 × 100 2.13 × 101 1.12 × 101 2.36 × 101 2.24 × 101 10.06 × 100 9.54 × 100

Winner N N N N N N N N N N N
F5 Sta 5.80 × 10−5 1.05 × 100 9.34 × 10−8 6.50 × 10−2 7.20 × 10−3 3.00 × 10−3 1.17 × 10−1 0.00 × 100 0.00 × 100 219.95 0.00 × 100

Best 1.51 × 10−8 1.79 × 100 1.0899 × 10−8 5.51 × 10−2 1.76 × 10−8 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 40.93 0.00 × 100

Time(s) 3.99 × 103 6.96 × 102 3.29 × 103 3.21 × 101 8.67 × 100 2.03 × 101 1.21 × 101 2.60 × 101 2.31 × 101 1.20 × 101 1.15 × 101

Winner N N N N N N N N N N +
F6 Sta 2.66 × 100 1.84 × 100 1.6563 × 10−7 1.04 × 100 2.13 × 100 2.15 × 10−6 4.02 × 10−1 5.11 × 10−14 2.09 × 10−2 9.55 2.69 × 10−28

Best 8.02 × 100 4.59 × 100 1.10373 × 10−8 1.01 × 10−4 8.16 × 10−2 2.84 × 10−6 4.98 × 10−1 1.00 × 10−14 4.33 × 10−2 8.03 × 10−9 5.01 × 10−32

Time(s) 4.09 × 104 8.24 × 102 3.32 × 103 3.79 × 101 1.72 × 101 3.49 × 101 2.05 × 101 4.67 × 101 3.20 × 101 1.95 × 101 1.90 × 101

Winner N N N N N N N N N N +
F7 Sta 5.20 × 10−3 9.55 × 100 1.52238 × 10−7 5.30 × 10−3 5.40 × 10−3 4.10 × 10−3 5.33 × 100 3.30 × 10−3 3.19 × 10−1 3.75 × 10−2 3.81 × 10−27

Best 5.96 × 10−9 1.65 × 101 5.83674 × 10−9 1.70 × 10−3 4.06 × 10−10 6.05 × 10−5 3.79 × 100 2.93 × 10−12 1.00 × 100 1.94 × 10−7 1.38 × 10−30

Time(s) 3.91 × 104 1.25 × 103 4.63 × 103 4.00 × 101 1.80 × 101 3.42 × 101 2.06 × 101 4.66 × 101 3.21 × 101 2.04 × 101 1.98 × 101

Winner N N N N N N N N N N +
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Table A3. Case V: 10 units + PEVs.

Hour U1(MW) U2(MW) U3(MW) U4(MW) U5(MW) U6(MW) U7(MW) U8(MW) U9(MW) U10(MW) PEVs(MW)

1 160.8696 135.0000 75.8791 70.4196 75.0092 90.0275 62.8406 120.0000 52.8649 10.8690 94.6990
2 158.0798 209.0647 210.1943 91.7465 110.1556 96.0797 41.5575 120.0000 20.0000 45.8892 95.6250
3 326.0844 152.2495 340.0000 96.2404 151.6132 106.2034 20.0000 47.4621 52.6828 10.0000 88.6514
4 218.9264 469.0351 168.7642 287.0613 130.2719 160.0000 113.9288 98.3395 80.0000 32.7801 95.6250
5 470.0000 135.0000 157.5864 60.0000 73.000 122.8604 35.9626 91.3752 21.6378 25.7479 95.6250
6 265.8216 300.9719 220.1718 60.0000 185.2786 133.4428 94.2156 62.6338 80.0000 10.0000 69.1834
7 343.1182 429.8119 119.9667 60.0000 132.6423 57.0000 50.6804 116.6768 62.8030 34.8863 69.6282
8 162.6787 343.1822 340.0000 164.6482 200.1918 92.9345 65.3742 120.0000 74.5129 10.0000 43.7423
9 207.8677 135.0000 73.0000 60.0000 73.0000 160.0000 104.0212 88.8840 75.6037 21.8873 −46.6844
10 194.0210 265.0607 134.8639 60.0000 80.1453 91.1980 69.5596 91.7487 20.0000 55.0000 −67.6524
11 268.7014 135.0000 222.6136 300.0000 194.5386 160.0000 20.0000 63.4064 73.8344 55.0000 −95.6250
12 208.6174 135.0000 239.7760 60.0000 155.4622 149.0560 100.0996 120.0000 60.9646 54.8210 −91.0158
13 470.0000 251.1638 81.6651 178.4283 188.6079 57.0000 130.0000 105.7340 70.6994 15.4677 −89.7206
14 150.0000 470.0000 73.0000 176.1563 243.0000 143.9798 98.1321 90.4682 76.2892 49.0920 −95.6250
15 227.6801 252.8597 218.3943 296.4656 199.4953 135.3638 103.9355 120.0000 80.0000 12.9426 −57.0687
16 167.8396 135.0000 257.8612 146.1311 111.1340 57.0000 35.5646 59.9987 58.8004 10.0000 95.6250
17 198.1592 470.0000 172.0344 60.0000 146.6389 57.0000 130.0000 69.0981 67.7218 15.6682 95.6250
18 152.7733 470.0000 263.2928 277.3604 73.0000 64.9634 121.8852 93.0555 80.0000 10.0000 77.2728
19 231.2472 135.0000 216.8723 127.6963 169.6135 143.6869 130.0000 49.3555 37.4418 55.0000 −21.2253
20 150.0000 135.0000 340.0000 272.0725 126.2345 160.0000 130.0000 120.0000 57.7948 10.0000 −95.6250
21 360.5431 155.0912 73.0000 300.0000 73.0000 117.9040 124.2923 47.0000 57.1555 30.4884 −95.6250
22 212.9997 201.2310 146.0474 136.8243 243.0000 79.0038 110.9226 120.0000 20.0000 55.0000 −2.1954
23 150.0000 454.4394 168.4946 195.1094 73.0000 160.0000 22.4399 120.0000 24.0680 50.3871 89.7206
24 202.6265 146.0963 340.0000 300.0000 192.4758 61.6324 27.8024 92.8556 20.4039 55.0000 91.5265
Total fuel cost ($): 2.17 × 106
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Table A4. Case VI: 15 units + PEVs.

Hour U1(MW) U2(MW) U3(MW) U4(MW) U5(MW) U6(MW) U7(MW) U8(MW) U9(MW) U10(MW) U11(MW) U12(MW) U13(MW) U14(MW) U15(MW) PEVs(MW)

1 176.1425 150.0000 108.5106 37.4253 150.0000 139.9990 149.5835 174.3534 90.1577 145.0685 20.0059 26.4062 32.1544 15.6656 15.8053 95.5845
2 150.0000 157.2984 76.7167 20.9051 230.0000 135.0000 135.0000 76.9470 25.0000 160.0000 80.0000 44.9757 60.3988 48.2415 55.0000 94.9566
3 230.0000 189.4391 45.0562 130.0000 257.9667 141.3246 174.0046 71.3305 85.0000 60.0000 62.8225 35.5883 55.0944 47.1280 15.0000 79.6634
4 250.8802 248.6492 119.7183 46.5227 186.8387 221.3246 254.0046 60.0000 135.1947 92.4861 20.0000 20.0000 66.6012 19.8366 15.0000 16.9080
5 152.0290 176.2061 130.0000 130.0000 266.8387 301.3246 161.6952 125.0000 162.0000 25.0000 80.0000 49.3656 85.0000 55.0000 29.5266 39.0652
6 232.0290 256.2061 130.0000 130.0000 346.8387 194.7503 241.6952 92.0639 62.0000 85.0000 80.0000 48.3496 85.0000 55.0000 55.0000 8.4544
7 185.6283 336.2061 54.3645 130.0000 258.0539 274.7503 321.6952 111.4288 122.0000 145.0000 80.0000 80.0000 71.1359 32.9579 55.0000 −20.8501
8 186.1909 216.2061 123.6913 130.0000 338.0539 274.6801 401.6952 176.4288 100.2891 160.0000 80.0000 80.0000 85.0000 49.9208 24.3312 18.4826
9 266.1909 267.9316 130.0000 130.0000 218.0539 336.0582 465.0000 151.0490 160.2891 76.1382 80.0000 71.6256 85.0000 55.0000 55.0000 −23.3298
10 237.5543 338.4802 130.0000 130.0000 298.0539 416.0582 465.0000 216.0490 60.2891 133.9989 57.8353 75.4310 76.3099 54.4817 15.0000 −62.0132
11 290.1651 418.4802 130.0000 130.0000 277.9550 296.0582 465.0000 116.0490 120.2891 160.0000 80.0000 80.0000 85.0000 55.0000 55.0000 −74.9379
12 239.8424 455.0000 130.0000 130.0000 357.9550 376.0582 429.4799 181.0490 162.0000 60.0000 80.0000 80.0000 85.0000 55.0000 55.0000 −92.1149
13 314.0770 455.0000 47.5684 35.5678 237.9550 441.8185 383.0594 246.0490 162.0000 120.0000 80.0000 80.0000 85.0000 55.0000 51.1514 −62.0901
14 394.0770 455.0000 74.8172 22.3819 317.9550 321.8185 263.0594 146.0490 62.0000 79.2814 80.0000 57.4652 81.4700 39.4746 46.7670 18.2028
15 274.0770 445.5679 36.2120 96.5197 245.2786 354.0521 343.0594 61.9443 85.9525 90.3827 25.5028 20.0000 56.9248 55.0000 21.6266 50.5477
16 154.0770 437.4610 33.0886 54.0824 325.2786 396.8847 223.0594 60.0000 25.0000 143.3122 20.0000 54.4025 25.0000 15.0000 16.4214 94.7860
17 211.8056 317.4610 69.1444 105.9533 205.2786 320.7043 303.0594 60.0142 25.0000 43.3122 20.0000 52.8721 53.8645 15.0000 55.0000 94.7618
18 291.8056 207.4020 58.8509 61.9531 241.3096 338.9532 383.0594 125.0142 85.0000 103.3122 76.6928 20.0000 25.0000 55.0000 55.0000 68.0401
19 371.8056 246.0679 105.6112 127.6078 184.5946 218.9532 463.0594 150.3590 67.1361 78.3030 58.3296 76.6625 53.3198 54.6784 54.0692 3.6578
20 390.0996 326.0679 130.0000 71.8341 264.5946 298.9532 343.0594 215.3590 117.4928 138.3030 80.0000 80.0000 85.0000 55.0000 55.0000 −77.6699
21 455.0000 406.0679 130.0000 130.0000 200.2990 378.9532 233.5655 280.3590 162.0000 38.3030 47.6016 41.6110 42.7547 15.0000 54.7570 −82.4789
22 368.3029 286.0679 75.9519 95.9541 150.0000 258.9532 313.5655 180.3590 153.0308 65.9215 23.2737 23.1034 85.0000 23.4638 38.3682 32.3405
23 443.9799 166.0679 32.6274 31.8548 150.0000 162.6467 260.4023 128.2035 53.0308 25.0000 20.0000 76.9612 30.3996 23.4964 18.2893 95.4537
24 323.9799 194.2043 42.2713 26.0050 150.0000 177.8022 140.4023 88.2984 32.0471 85.0000 80.0000 38.9659 28.2723 55.0000 15.0000 95.5798
Total fuel cost ($): 649,550
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Figure A1. The convergence comparison curves of each algorithm. (a–c): Test functions are Step,
Ackley, and Penalized-1, dimension is 20. (d–f): Test functions are Step, Ackley, and Penalized-1,
dimension is 50.
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