
Citation: Wei, X.; Wang, Z.; Yang, S.

An Automatic Generation and

Verification Method of Software

Requirements Specification.

Electronics 2023, 12, 2734. https://

doi.org/10.3390/electronics12122734

Academic Editor: Claus Pahl

Received: 5 April 2023

Revised: 16 June 2023

Accepted: 16 June 2023

Published: 19 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Automatic Generation and Verification Method of Software
Requirements Specification
Xiaoyang Wei, Zhengdi Wang and Shuangyuan Yang *

School of Informatics, Xiamen University, Xiamen 361005, China; konhsan@stu.xmu.edu.cn (X.W.);
24320191152534@stu.xmu.edu.cn (Z.W.)
* Correspondence: yangshuangyuan@xmu.edu.cn; Tel.: +86-13338459291

Abstract: The generation of standardized requirements specification documents plays a crucial role
in software processes. However, the manual composition of software requirements specifications is a
laborious and time-consuming task, often leading to errors that deviate from the actual requirements.
To address this issue, this paper proposes an automated method for generating requirements specifi-
cations utilizing a knowledge graph and graphviz. Furthermore, in order to overcome the limitations
of the existing automated requirement generation process, such as inadequate emphasis on data
information and evaluation, we enhance the traditional U/C matrix by introducing an S/U/C matrix.
This novel matrix represents the outcomes of data/function systematic analysis, and verification
is facilitated through the design of inspection rules. Experimental results demonstrate that the
requirements specifications generated using this method achieve standardization and adherence to
regulations, while the devised S/U/C inspection rules facilitate the updating and iteration of the
requirements specifications.

Keywords: requirements specification; UML diagram; S/U/C matrix; knowledge graph

1. Introduction

The inception of requirements specification in software engineering can be traced back
to the nascent stages of software development, characterized by ad hoc project execution
and a lack of standardized or formalized requirements gathering procedures. As the
field of software development progressed and the demand for higher quality software
intensified, there arose a compelling need for a more structured and formalized approach
to requirements gathering and specification.

In the 1970s and 1980s, a number of software development methodologies and frame-
works were developed that emphasized the importance of requirements gathering and
specification, such as structured analysis and design, information engineering, and entity-
relationship modeling. Some more systematic software management methods were also
proposed. The waterfall model, known for its linear and sequential nature, places a signifi-
cant emphasis on upfront requirement gathering and specification. However, this method
may encounter challenges in managing evolving requirements or incorporating feedback
from stakeholders during later stages of development. V-model emphasizes thorough
upfront planning and the validation of requirements through well-defined stages. While
this approach provides a structured framework for software development, it can be less
flexible when accommodating changing requirements or incorporating feedback during
the development process. Agile methodologies, characterized by iterative and incremental
development, have gained prominence for their ability to adapt to changing requirements
and deliver valuable software in shorter timeframes. However, one of the limitations of
agile methods is the potential challenge in maintaining comprehensive and up-to-date
requirement documentation throughout the rapid development cycles. This paper aims to
overcome these limitations by leveraging automation techniques, providing an efficient and

Electronics 2023, 12, 2734. https://doi.org/10.3390/electronics12122734 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122734
https://doi.org/10.3390/electronics12122734
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6703-020X
https://doi.org/10.3390/electronics12122734
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122734?type=check_update&version=1

Electronics 2023, 12, 2734 2 of 17

reliable approach to generate and verify requirements specifications, thereby enhancing
the overall software development process.

Software requirement analysis [1,2] serves as the foundational bedrock and primary
source for software system design and implementation, with its precision and comprehen-
siveness constituting a pivotal assurance for software quality [3]. Regrettably, the manual
composition of software requirements specifications is laborious and time-intensive, fre-
quently resulting in misconceptions and straying from the actual requirements.

The creation of requirements specifications demands a significant level of skill and
expertise from professionals such as systems engineers and UML diagrams can make
requirements specifications more intuitive and clearer, thus assisting software develop-
ment. However, developers may struggle to create precise UML diagrams [4,5], including
software architecture and data flow diagrams [6]. Additionally, non-standard requirements
specifications can lead to unclear and difficult-to-read requirements documents, causing
ambiguity. In addition, small software projects often lack a product manager, which results
in a lack of smooth transition from business requirements to functional requirements. There-
fore, technicians often develop software projects with subjective understanding, which
often leads to rework by customers, resulting in a waste of resources. To avoid these issues
and optimize software development work, automatic conversion of business requirements
into standard software requirements specifications is necessary.

Indeed, even standardized requirements specification documents are not immune to
defects. For instance, a Use/Create (U/C) matrix [7], also referred to as the process/data
class matrix in relevant literature, constitutes a tabular representation consisting of a
column containing a list of functions and a row containing data classes. The relationship
of a function and a data class is represented at the intersection of their corresponding cell,
which needs to be filled in. During software requirement modeling, the U/C matrix is a
widely accepted approach that links system functions with business data tables. This aids
in identifying functional requirements and data specifications for the software’s subsequent
development and subsystem distribution. However, the U/C matrix exhibits certain
limitations in its scope, as it only records the relationship between summarized functional
entities and data entities. In practice, the exploration of business requirements during
the initial stages of a software project typically entails collaborative efforts involving
multiple individuals or even different departments. Consequently, the U/C matrix becomes
unsuitable when comparing local requirements across individuals or departments.

Currently, there are three primary approaches for generating standard functional
requirements specifications. These include manual UML writing, automatic generation
based on structured language and rules, and automatic generation based on knowledge
graph. Although manual writing boasts high accuracy, it is time-consuming and often
influenced by the developers’ subjectivity. The method based on structured language and
rules stipulates the strict sentence structure for writing requirements documents, so as to
formulate the conversion rules of diagram elements and realize the graphical generation
of UML, but it proves challenging for complex structures. Furthermore, the quality of
requirements specifications produced through this approach cannot be evaluated quan-
titatively. The concept of utilizing knowledge graph technology for automated software
requirements specifications generation is a novel approach. A knowledge graph consists
of a database or a structured data model that captures and represents the relationships
between different entities and concepts. The central aspect of UML diagrams is the rep-
resentation of entities and their connections, which is similar to what knowledge graph
represents. Knowledge graph [8,9] technology has achieved considerable progress and
efficacy in generating software requirements specifications predominantly in the English
language, and there are similar models in the Chinese domain. Nonetheless, there are still
some challenges to overcome in this regard:

I. Existing studies mostly focus on functions, use cases, and classes, with inadequate
attention devoted to data-related aspects, including the accuracy of data and the
division of functional granularity.

Electronics 2023, 12, 2734 3 of 17

II. The lack of a comprehensive evaluation concerning the quality of the generated
requirements specifications restricts the ability to make necessary adjustments
based on the actual circumstances of software development.

This paper presents a proposed resolution to the aforementioned challenges by in-
troducing an automatic generation model for requirements specifications, leveraging the
potential of a knowledge graph. The BiLSTM-CRF kg [10] method is used to automat-
ically extract the structured information of functional requirements from the business
requirements description corpus and construct a functional structure knowledge graph,
while another function-data knowledge graph is built using the structured data in the data
tables. Then, merge the two knowledge graphs together. By utilizing the functional entity
relationships and data entity relationships within the graph, this model can generate UML
diagrams including architecture diagrams and data flow diagrams which can then auto-
matically produce standardized requirements specifications. Additionally, an improved
Send/Use/Create (S/U/C) matrix is proposed to address the limitations of the traditional
U/C matrix in accommodating coordination and cooperation among multiple departments.
This improved matrix can assess the quality of requirements specifications based on the
S/U/C situation of data.

2. Related Work

A range of methods and models have been introduced in previous research to (semi-)
automatically generate requirements specifications.

Miranda, MA et al. [11] proposed the implementation of language of use case to
automate models (LUCAM). LUCAM is a specific language that enables the creation of
textual use cases and semi-automated generation of use case diagrams, class diagrams,
and sequence diagrams using LUCAMTool. However, it only accommodates English
business requirements and lacks the assessment of the precision and rationality of UML
diagrams. Emeka, B et al. [12] proposed a formal technique for concurrent generation of
functional requirements that can help provide a systematic way of accounting for speci-
fying the functional requirements of a software, but it is only limited to the development
process of industrial system, and its applicability in other fields has not been verified.
Qu, MC et al. [13] introduced a method that can automatically produce standardized re-
quirements and test documentation, addressing problems such as inconsistency, lack of
integrity in document-related content, and enhancing efficiency. However, while this
method enables tracking of requirements, it does not visually exhibit the results of target
labeling. Additionally, the studies mentioned above do not involve creating requirements
specifications with regard to data entities.

At the same time, for the testing and evaluation of generating requirements specifica-
tions, Mahalakshmi, G et al. [14] emphasized automating the testing process during the
software development cycle, starting from the early stages of requirement gathering. Nev-
ertheless, this approach solely considers the use case flow that arises from the use cases and
overlooks testing other components in the requirements specification. Tsunoda, T et al. [15]
used two specification metrics for SRSs to evaluate their effectiveness to predict future
modifications in two actual developments. Franch et al. [16] created a data-based approach,
known as Q-Rapids, aimed at enhancing the acquisition, evaluation, and recording of qual-
ity requirements in agile software creation. Nonetheless, this approach does not modify
and iterate the requirements specification, which fails to facilitate the development team’s
enhancement in the analysis of requirements and the application of the assessment findings.

Besides, formal methods are based on strict mathematical foundations, which can
generate rigorous, precise, and unambiguous formal constraints, and can be used for model
verification and theorem proving, and are complementary to UML. There has been a lot
of work on formal methods for writing and verifying requirements. Georgiades et al. [17]
provided a novel software tool that attempted to formalize and automate the RE process and
extended the use of the tool’s SRS document component, which automatically generated
well-structured natural language SRS documents. SOFL [18] was proposed to precisely

Electronics 2023, 12, 2734 4 of 17

define functional behavior and incorporate security rules as constraints, which created a
solid foundation for implementation and testing. There is also a formal method called
RSL-IL [19], allowing for the automated verification and creation of complementary views
by performed additional computations on requirements representations, which assist
stakeholders in validating requirements. Formal methods generally involve the use of
formal languages, mathematical notation, and rigorous techniques. This complexity makes
it difficult for non-experts or stakeholders without formal training to understand the
requirements generation process and participate effectively in it.

Software development is a knowledge-intensive activity [20]. Some knowledge-based soft-
ware specification requirements generation methods were also proposed. Avdeenko et al. [21]
proposed a hybrid model for classifying requirements using framework ontology and
production rules. This method allows property inheritance from parent requirement classes
to child classes, and this hierarchy can be used to test the traceability, completeness, and
consistency attributes of the requirements specification.

3. Structural Information Extraction Model of Functional Requirements

Standard requirements decomposition typically involves breaking down high-level
system requirements into smaller and more specific requirements that can be assigned
to different components or subsystems of a software system. It helps in organizing and
managing complex requirements by dividing them into manageable units. In this paper,
software requirements are expressed in the form of knowledge graph. The method first
constructs requirements specification knowledge graphs by automatically extracting var-
ious entities (manageable units) in the requirements and the relationship between them,
and then fuses these graphs into a map. By using the requirements specification knowledge
map, it automatically generates UML diagrams, then automatically generates and evaluates
the requirements specification. The process is shown in Figure 1:

Electronics 2023, 12, x FOR PEER REVIEW 4 of 18

process and extended the use of the tool’s SRS document component, which automatically
generated well-structured natural language SRS documents. SOFL [18] was proposed to
precisely define functional behavior and incorporate security rules as constraints, which
created a solid foundation for implementation and testing. There is also a formal method
called RSL-IL [19], allowing for the automated verification and creation of complementary
views by performed additional computations on requirements representations, which as-
sist stakeholders in validating requirements. Formal methods generally involve the use of
formal languages, mathematical notation, and rigorous techniques. This complexity
makes it difficult for non-experts or stakeholders without formal training to understand
the requirements generation process and participate effectively in it.

Software development is a knowledge-intensive activity [20]. Some knowledge-
based software specification requirements generation methods were also proposed. Av-
deenko et al. [21] proposed a hybrid model for classifying requirements using framework
ontology and production rules. This method allows property inheritance from parent re-
quirement classes to child classes, and this hierarchy can be used to test the traceability,
completeness, and consistency attributes of the requirements specification.

3. Structural Information Extraction Model of Functional Requirements
Standard requirements decomposition typically involves breaking down high-level

system requirements into smaller and more specific requirements that can be assigned to
different components or subsystems of a software system. It helps in organizing and man-
aging complex requirements by dividing them into manageable units. In this paper, soft-
ware requirements are expressed in the form of knowledge graph. The method first con-
structs requirements specification knowledge graphs by automatically extracting various
entities (manageable units) in the requirements and the relationship between them, and
then fuses these graphs into a map. By using the requirements specification knowledge
map, it automatically generates UML diagrams, then automatically generates and evalu-
ates the requirements specification. The process is shown in Figure 1:

Figure 1. Research route of this paper.

Figure 1. Research route of this paper.

3.1. Requirements Specification Knowledge Graph

The knowledge graph for requirements specification comprises two entities, namely
functional entity and data entity. Functional entities have parent–child relationships, while
they have creator and user relationships with data entities. Hence, the knowledge graph
for requirements specification consists of three triples:

Electronics 2023, 12, 2734 5 of 17

(functional entity, include, function entity)

(function entity, creator, data entity)
(function entity, user, data entity)

(1)

In this paper, the BiLSTM-CRF kg method is used to realize the automatic generation
of the requirements specification knowledge graph. This method first realizes the embed-
ding of the functional structure knowledge graph from the original business description,
and then realizes the embedding of the function-data knowledge graph from the U/C
matrix established by business data table description, and finally merges the two graphs to
generate a requirements specification map.

In the process of generating the functional structure map, firstly, word segmentation,
part-of-speech tagging, functional entity naming tagging, and relationship tagging are per-
formed on the requirement description in the original business description corpus to obtain
the functional word segmentation tagging results. Then, entity relationship extraction, en-
tity disambiguation and hidden relationship learning are carried out successively, and the
functional structure knowledge graph can be embedded after obtaining the disambiguated
functional entity-relationship set and saving it to Neo4j graph database.

In the process of generating the function-data knowledge map, the function-data triplet
is obtained by improving the U/C matrix, and then the knowledge graph is automatically
embedded by using Neo4j graph database.

3.2. UML Diagram Generation Based on Graphviz

After the requirements specification knowledge graph is formed, this paper uses
graphviz module to automatically generate architecture diagram according to the parent–
child relationship between functional entities and generate data flow diagram according to
the relationship between functional entities and data entities.

For a software system, its architecture can be built into a tree model, as shown in
Figure 2. Its root node is the whole software system, and the nth layer node corresponds to
the N-1 function. Then, for the structural information between functional entities stored in
the knowledge graph, breadth first can be adopted, that is, traverse the nodes first, then
traverse the relationships, and finally determine the root node.

Electronics 2023, 12, x FOR PEER REVIEW 5 of 18

3.1. Requirements Specification Knowledge Graph
The knowledge graph for requirements specification comprises two entities, namely

functional entity and data entity. Functional entities have parent–child relationships,
while they have creator and user relationships with data entities. Hence, the knowledge
graph for requirements specification consists of three triples: (functional entity, include, function entity)(function entity, creator, data entity)(function entity, user, data entity) (1)

In this paper, the BiLSTM-CRF kg method is used to realize the automatic generation
of the requirements specification knowledge graph. This method first realizes the embed-
ding of the functional structure knowledge graph from the original business description,
and then realizes the embedding of the function-data knowledge graph from the U/C ma-
trix established by business data table description, and finally merges the two graphs to
generate a requirements specification map.

In the process of generating the functional structure map, firstly, word segmentation,
part-of-speech tagging, functional entity naming tagging, and relationship tagging are
performed on the requirement description in the original business description corpus to
obtain the functional word segmentation tagging results. Then, entity relationship extrac-
tion, entity disambiguation and hidden relationship learning are carried out successively,
and the functional structure knowledge graph can be embedded after obtaining the dis-
ambiguated functional entity-relationship set and saving it to Neo4j graph database.

In the process of generating the function-data knowledge map, the function-data tri-
plet is obtained by improving the U/C matrix, and then the knowledge graph is automat-
ically embedded by using Neo4j graph database.

3.2. UML Diagram Generation Based on Graphviz
After the requirements specification knowledge graph is formed, this paper uses

graphviz module to automatically generate architecture diagram according to the parent–
child relationship between functional entities and generate data flow diagram according
to the relationship between functional entities and data entities.

For a software system, its architecture can be built into a tree model, as shown in
Figure 2. Its root node is the whole software system, and the nth layer node corresponds
to the N-1 function. Then, for the structural information between functional entities stored
in the knowledge graph, breadth first can be adopted, that is, traverse the nodes first, then
traverse the relationships, and finally determine the root node.

Figure 2. Software system architecture diagram. Figure 2. Software system architecture diagram.

In order to mitigate the presence of multiple entities with similar functions in the
diagram, the proposed approach employs a two-step process. Initially, during the gener-
ation of the software requirements specification map using the BiLSTM-CRF kg method,
contextual relationships are leveraged to align functional entities, including pronouns and
abbreviations, with the entity-relationship set. This facilitates the acquisition of latent
relations between functional entities. Subsequently, in the subsequent phase of generating
the UML diagram, a set data structure is employed to store the entities. The functions
are then categorized and retained based on the name attribute of the functional entity

Electronics 2023, 12, 2734 6 of 17

within the knowledge graph, leading to the creation of function nodes within the graph.
Connections between the nodes are subsequently established in the graph for each pair
of triples stored in the graph database, thereby denoting the parent–child relationship
between the functions. Lastly, the root node is identified through the detection of the
node with a penetration of 0, serving as the foundation for the reconstruction of the entire
tree structure.

The whole process is shown in Algorithm 1:

Algorithm 1: Generation of Software Architecture Diagram

Input: KnowledgeGraph
Output: Diagram

1: f unctionSet = KnowledgeGraph.findEntity(label = ’function’)
2: triple = KnowledgeGraph.findTriple

(
headlabel = ’function’, taillabel = ’function’

)
3: dot = Digraph(f ormat = ’png’)
4: for s in f unctionSet do
5: dot.node(name = s[′name′], label = s[′name′], shape = ’box’)
6: end for
7: for t in triple do
8: dot.edge(t[′head′][′name′], t[′tail′][′name′])
9: end for

10: Diagram = dot.view()

A data flow diagram (DFD) is a graphical tool to describe the data flow in the software
system. It marks the logic input and logic output of a system, as well as the processing
required to convert the logic input into logic output. In the requirements specification
knowledge graph, there are two kinds of relationships between functional entities and data
entities: creator and user. Therefore, we can start with the data entity and take the path
from its generation to its utilization as the basis for constructing the data flow graph.

To avoid duplication of data entities in the data flow diagram, this study employs
a set data structure similar to the software architecture diagram. The first step involves
identifying data entities according to their name attribute in the knowledge graph, storing
all the data, and generating data nodes in the data flow diagram. The second step is creating
functional nodes for each triple pair with head nodes as functional entities and tail nodes
as data entities stored in the graph database. Then, the nodes in the graph are connected
and marked with the creator or user relationship at the connection.

The whole process is shown in Algorithm 2:

Algorithm 2: Generation of Data Flow Diagram

Input: KnowledgeGraph
Output: DFD

1: dataSet = KnowledgeGraph.findEntity(label = ’data’)
2: triple2 = KnowledgeGraph.findTriple

(
headlabel = ’function’, taillabel = ’data’

)
3: dot2 = Digraph(f ormat = ’png’)
4: for s in dataSet do
5: dot2.node(name = s[′name′], label = s[′name′], shape = ’oval’)
6: end for
7: for t in triple2 do
8: dot2.node(name = t[′head′][′name′], label = t[′head][′name′], shape = ’box’)
9: if t[′relation′] [′name′] = ’creator’) then

10: dot2.edge(t[′head′ [′name′], t[′tail′][′name′], label =′ create′)
11: else
12: dot2.edge

(
t[′tail′][′name′], t[′head′][′name′], label =′ send′

)
13: end if
14: end for
15: DFD = dot2.view()

Electronics 2023, 12, 2734 7 of 17

3.3. Generation of Requirements Specification

According to the relationship between functional entities and between functional
entities and data entities in the requirements specification knowledge map, the requirements
specification is reconstructed to generate a more standardized requirements specification.
At the same time, inserting the generated UML diagram into the document can effectively
solve the ambiguity problem of the requirement document.

3.4. Improvement of Classical U/C Matrix

The U/C matrix is a crucial tool for analyzing data and functions systematically to
divide subsystems. However, the traditional U/C matrix can only be documented in a
single format, which does not allow for comparing local requirements across departments
and individuals. To address this issue, this study divides the U/C matrix into several
Send/Use/Create (S/U/C) matrices. The process involves using a functional entity as a
reference point, maintaining only the entire row and data column information labeled with
“C”, and converting all “U” in the column to “S”. Figure 3 shows the primary steps of
this process.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 18

Figure 3. The process of transforming U/C matrix into S/U/C matrix.

Algorithm 3: Improvement of classical U/C matrix
 Input: 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐺𝑟𝑎𝑝ℎ
 Output: 𝑆𝑈𝐶
 1: // Create U/C Matrix
 2: 𝑡𝑟𝑖𝑝𝑙𝑒3 = 𝐾𝑛𝑜𝑤𝑙𝑒𝑑𝑔𝑒𝐺𝑟𝑎𝑝ℎ. findTriple(ℎ𝑒𝑎𝑑 = ′function , 𝑡𝑎𝑖𝑙 = ′data′)
 3: 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 = set(𝑡𝑟𝑖𝑝𝑙𝑒3[ℎ𝑒𝑎𝑑′])
 4: 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 = set(𝑡𝑟𝑖𝑝𝑙𝑒3[𝑡𝑎𝑖𝑙′])
 5: 𝐟𝐨𝐫 𝑡 in 𝑡𝑟𝑖𝑝𝑙𝑒3 𝐝𝐨
 6: 𝐢𝐟 𝑡[𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛][𝑛𝑎𝑚𝑒] == ′creator′ 𝐭𝐡𝐞𝐧
 7: 𝐢𝐟 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] == ′U′ 𝐭𝐡𝐞𝐧
 8: 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] = ′CU′
 9: 𝐞𝐥𝐬𝐞
10: 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] = ′C′
11: 𝐞𝐧𝐝 𝐢𝐟
12: 𝐞𝐥𝐬𝐞
13: 𝐢𝐟 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] == ′C′ 𝐭𝐡𝐞𝐧
14: 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] = ′CU′
15: 𝐞𝐥𝐬𝐞
16: 𝑈𝐶[𝑡[ℎ𝑒𝑎𝑑′][𝑛𝑎𝑚𝑒]][𝑡[′𝑡𝑎𝑖𝑙′][′𝑛𝑎𝑚𝑒′]] = ′U′
17: 𝐞𝐧𝐝 𝐢𝐟
18: 𝐞𝐧𝐝 𝐢𝐟
19: 𝐞𝐧𝐝 𝐟𝐨𝐫
20: //Change U/C Matrix to S/U/C Matrix
21: 𝐟𝐨𝐫 𝑓 in 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 𝐝𝐨
22: 𝐶𝑠𝑒𝑡 = 𝑠𝑒𝑡()
23: 𝐟𝐨𝐫 𝑖 in 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑆𝑒𝑡 𝐝𝐨
24: 𝐟𝐨𝐫 𝑗 in 𝑑𝑎𝑡𝑎𝑆𝑒𝑡 𝒅𝒐
25: 𝐢𝐟 𝑖 == 𝑓 𝐭𝐡𝐞𝐧
26: 𝑈𝐶𝑆[𝑓][𝑖][𝑗] = 𝑈𝐶[𝑖][𝑗]
27: 𝐢𝐟 𝑈𝐶[𝑖][𝑗] == ′C′ 𝑜𝑟 𝑈𝐶[𝑖][𝑗] == ′CU′ 𝐭𝐡𝐞𝐧
28: 𝐶𝑠𝑒𝑡. add(𝑗)
29: 𝐞𝐧𝐝 𝐢𝐟

Figure 3. The process of transforming U/C matrix into S/U/C matrix.

By traversing the triples of (function entity, relationship, data entity) in the knowledge
graph, this paper generates a U/C matrix with data as rows and function as columns, and
converts it into S/U/C matrix according to the above operations.

The whole process is shown in Algorithm 3. Specifically, the steps to optimize the U/C
matrix to S/U/C matrix are as follows: for each functional entity, a matrix with the same
specifications as the U/C matrix is established separately. For the data generated by this
function, the corresponding position under this function dimension in the S/U/C matrix
is recorded as “C”; for the data used by this function, the corresponding position under
the functional dimension in the S/U/C matrix is recorded as “U” (if the corresponding
position is already “C”, then “CU” is recorded at the corresponding position); for the
data generated by this function and used by other functions, the corresponding position
under this function dimension in the S/U/C matrix is recorded as “S”, thus forming a
three-dimensional S/U/C matrix.

Electronics 2023, 12, 2734 8 of 17

Algorithm 3: Improvement of classical U/C matrix

Input: KnowledgeGraph
Output: SUC

1: //Create U/C Matrix
2: triple3 = KnowledgeGraph.findTriple

(
headlabel = ’function’, taillabel = ’data’

)
3: f unctionSet = set(triple3[′head′])
4: dataSet = set(triple3[′tail′])
5: for t in triple3 do
6: if t[′relation′][′name′] == ’creator’ then
7: if UC[t[′head′][′name′]][t[′tail′][′name′]] == ’U’ then
8: UC[t[′head′][′name′]][t[′tail′][′name′]] = ’CU’
9: else

10: UC[t[′head′][′name′]][t[′tail′][′name′]] = ’C’
11: end if
12: else
13: if UC[t[′head′][′name′]][t[′tail′][′name′]] == ’C’ then
14: UC[t[′head′][′name′]][t[′tail′][′name′]] = ’CU’
15: else
16: UC[t[′head′][′name′]][t[′tail′][′name′]] = ’U’
17: end if
18: end if
19: end for
20: //ChangeU/CMatrixtoS/U/CMatrix
21: for f in f unctionSet do
22: Cset = set()
23: for i in f unctionSet do
24: for j in dataSet do
25: if i == f then
26: UCS[f][i][j] = UC[i][j]
27: if UC[i][j] == ’C’orUC[i][j] == ’CU’ then
28: Cset.add(j)
29: end if
30: end if
31: end for
32: end for
33: for k in Cset do
34: for p in f unctionset do
35: if UC[p][k] == ’U’ then
36: UCS[f][p][k] = ’S’
37: end if
38: end for
39: end for
40: end for

3.5. Automatic Detection of Requirements Specifications

After the generation of S/U/C matrix, this paper generates the inspection principle
of S/U/C matrix according to the inspection principle of U/C matrix, so as to test the
correctness, completeness and consistency of requirements specifications.

The correctness is checked with the following four rules:

(1) Sole produce rule of data entity (CTR-SPR): for any data table entity in the re-
quirements specification map, it has and only has one Creator. Its mathematical
definition is:

FD(Creator) = 1 (2)

FD represents the processing of data entities.

Electronics 2023, 12, 2734 9 of 17

(2) Multi-user rule of data entity (CTR-MUR): for any data table entity in the requirements
specification graph, it has at least one user. Its mathematical definition is:

FD(User) ≥ 1 (3)

(3) Energy conservation rule of data entity (CTR-ECR): the schematic diagram of energy
conservation of data entity is shown in Figure 4.

Electronics 2023, 12, x FOR PEER REVIEW 9 of 18

30: 𝐞𝐧𝐝 𝐢𝐟
31: 𝐞𝐧𝐝 𝐟𝐨𝐫
32: 𝐞𝐧𝐝 𝐟𝐨𝐫
33: 𝐟𝐨𝐫 𝑘 in 𝐶𝑠𝑒𝑡 𝐝𝐨
34: 𝐟𝐨𝐫 𝑝 in 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠𝑒𝑡 𝐝𝐨
35: 𝐢𝐟 𝑈𝐶[𝑝][𝑘] == ′U′ 𝐭𝐡𝐞𝐧
36: 𝑈𝐶𝑆[𝑓][𝑝][𝑘] = ′S′
37: 𝐞𝐧𝐝 𝐢𝐟
38: 𝐞𝐧𝐝 𝐟𝐨𝐫
39: 𝐞𝐧𝐝 𝐟𝐨𝐫
40: 𝐞𝐧𝐝 𝐟𝐨𝐫

3.5. Automatic Detection of Requirements Specifications
After the generation of S/U/C matrix, this paper generates the inspection principle of

S/U/C matrix according to the inspection principle of U/C matrix, so as to test the correct-
ness, completeness and consistency of requirements specifications.

The correctness is checked with the following four rules:
(1) Sole produce rule of data entity (CTR-SPR): for any data table entity in the require-

ments specification map, it has and only has one Creator. Its mathematical definition
is: 𝐹 (𝐶𝑟𝑒𝑎𝑡𝑜𝑟) = 1 (2) 𝐹 represents the processing of data entities.

(2) Multi-user rule of data entity (CTR-MUR): for any data table entity in the require-
ments specification graph, it has at least one user. Its mathematical definition is: 𝐹 (𝑈𝑠𝑒𝑟) ≥ 1 (3)

(3) Energy conservation rule of data entity (CTR-ECR): the schematic diagram of energy
conservation of data entity is shown in Figure 4.

(a) (b)

Figure 4. Data entity energy transfer relationship. (a) Correct data entity energy transfer relation-
ship; (b) Wrong data entity energy transfer relationship.

In the process of demand research, many people often conduct research synchro-
nously or need to investigate multiple business departments. Each researcher or each
business department has different opinions on whether a specific data table is generated
or used, and there is often negligence. This will result in the omission of functional re-
quirements or the lack of data flow. From the perspective of data in the knowledge map,
the generation and use of a certain type of data are corresponding. That is, for any data

Figure 4. Data entity energy transfer relationship. (a) Correct data entity energy transfer relationship;
(b) Wrong data entity energy transfer relationship.

In the process of demand research, many people often conduct research synchronously
or need to investigate multiple business departments. Each researcher or each business
department has different opinions on whether a specific data table is generated or used,
and there is often negligence. This will result in the omission of functional requirements or
the lack of data flow. From the perspective of data in the knowledge map, the generation
and use of a certain type of data are corresponding. That is, for any data table entity, the
number of the received results corresponds to the number of the sent results. If not, then
something must have gone wrong in the data flow.

In order to solve this problem, the project defines that the energy emitted (Number of
Senddata) by any data table entity in the requirements specification map is opposite to the
energy used (Number of Usedata), and the quantity is equal. Its mathematical definition is:

1≤i≤N

∑
1≤J≤M

(
Fi
(
Senddatai

)
+ Fi

(
Usedataj

))
= 0 (4)

(4) Energy keeping rule of functional entity (CTR-EKR): for any functional entity in the
requirements specification graph, the sum of the absolute value of energy sent and
received is greater than or equal to 1. If it is 0, it indicates that the function may have
missing data transmission or be a single independent function (which is relatively
rare). Its mathematical definition is:

|FF(Senddata)|+ |FD(Usedata)| ≥ 1 (5)

FF represents the processing of data entities. Similarly, it is easy to draw the following
conclusions:

i f (|FF(Senddata)|+ |FD(Usedata)| = 0), maybe missing data trans f er
i f (|FF(Senddata)| ≥ 1∩ |FD(Usedata)| = 0), is basic data module

i f (|FF(Senddata)| ≥ 1∩ |FD(Usedata)| ≥ 1), is business processing module
i f (|FF(Senddata)| = 0∩ |FD(Usedata)| ≥ 1), is statistic alanalysis module

(6)

Electronics 2023, 12, 2734 10 of 17

Correctness Perfect Rules (CPR) are used to check completeness of requirements speci-
fications. The completeness test mainly includes three parts: function inspection test, data
table inspection test and parent–child functional relationship inspection test. That is, the
function test list FuncTestCaseList, the data test list DataTestCaseList and the parent–child
functional relationship test list PFuncTestCaseList are added automatically and manually.
These test cases are automatically queried in the generated requirements specification map
to find out whether there are any omissions. Its mathematical definition is:

i f (Fexist(∃ f unc ∈ RKG, ∀ f unc ∈ FuncTestCaseList)) = true
i f (Fexist(∃data ∈ RKG, ∀data ∈ DataTestCaseList)) = true

i f (Fexist(∃p f unc ∈ RKG, ∀p f unc ∈ PFuncTestCaseList)) = true
(7)

RKG represents the requirements specification knowledge graph. Fexist indicates
whether the search result in RKG exists, if it exists, the test is determined to be successful,
otherwise it is not successful and the completeness is lacking.

Consistency Test (CST) mainly includes two tests: the path attack test (main process
test) from function A to function B and the automatic generation function deployment test
of DFD. That is to determine whether the main process extracted by RKG is completely
consistent with the core main process of the system, and whether the DFDs generated by
RKG extraction at all levels are consistent with the real business situation. By examining
the judgment result, it can be determined if there are any discrepancies in RKG.

4. Experimental Results and Analysis
4.1. Dataset Source and Experimental Environment

The data used in this paper were mainly the system requirement documents in the
actual software development project collected online and offline. A total of 150 system
requirements documents were obtained and used to train the BiLSTM-CRF kg model and
generate software requirements specification maps. Among these maps, 15 were randomly
chosen for quality inspection and software requirements specification generation.

This experiment used the graphviz module based on Python to generate UML dia-
grams, so as to realize the generation of requirements documents, define the requirements
specification inspection principle and realize the improvement of U/C matrix and the
inspection of requirements based on data flow. The specific software and hardware config-
uration of the experimental environment is shown in Table 1.

Table 1. Configuration of experimental environment.

Environment Type Details

Hardware Environment

CPU Intel(R) Xeon(R) CPU E5-2620 v4 @2.10 GHz × 32
GPU GeForce GTX 1080 Ti/PCIe/SSE2

Memory 64 G
Video Memory 10.91 G

Software Environment

Operating System Ubuntu20.04
Tool Kit graphviz

Development Language Python 3.6
Development Tool JetBrains PyCharm Community Edition 2020.2

4.2. Typical Experimental Results and Evaluation

Firstly, the experiment needs to generate standard requirements specification through
the knowledge graph stored in the graph database Neo4j. The knowledge graph is shown
in Figure 5.

Electronics 2023, 12, 2734 11 of 17

Electronics 2023, 12, x FOR PEER REVIEW 11 of 18

This experiment used the graphviz module based on Python to generate UML dia-
grams, so as to realize the generation of requirements documents, define the requirements
specification inspection principle and realize the improvement of U/C matrix and the in-
spection of requirements based on data flow. The specific software and hardware config-
uration of the experimental environment is shown in Table 1.

Table 1. Configuration of experimental environment.

Environment Type Details

Hardware Environment

CPU Intel(R) Xeon(R) CPU E5-2620 v4 @2.10 GHz × 32
GPU GeForce GTX 1080 Ti/PCIe/SSE2

Memory 64 G
Video Memory 10.91 G

Software Environment

Operating System Ubuntu20.04
Tool Kit graphviz

Development Language Python 3.6
Development Tool JetBrains PyCharm Community Edition 2020.2

4.2. Typical Experimental Results and Evaluation
Firstly, the experiment needs to generate standard requirements specification

through the knowledge graph stored in the graph database Neo4j. The knowledge graph
is shown in Figure 5.

Figure 5. Knowledge Graph.

Figure 5. Knowledge Graph.

The graph includes both function and data entities. There is a parent–child relationship
between function entities and a create and use relationship between function entities and
data entities. The experiment generates the architecture diagram of the software system
according to the parent–child relationship between functional entities, and generates the
data flow diagram according to the create/use relationship between functional entities and
data entities. Taking the “second-hand trading platform” as an example, the architecture
diagram generated through the knowledge graph is shown in Figure 6 and the data flow
diagram is shown in Figure 7a.

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

The graph includes both function and data entities. There is a parent–child relation-
ship between function entities and a create and use relationship between function entities
and data entities. The experiment generates the architecture diagram of the software sys-
tem according to the parent–child relationship between functional entities, and generates
the data flow diagram according to the create/use relationship between functional entities
and data entities. Taking the “second-hand trading platform” as an example, the architec-
ture diagram generated through the knowledge graph is shown in Figure 6 and the data
flow diagram is shown in Figure 7a.

Commodity trading
system

Commodity
module

Wishing pool
module

Personal center
modulel

Message
module

Private chat
function

View
message list

Send
message

One shot
function

Commodity
purchase

Order
evaluation

Complete
order

Commodity
payment

Product
release

Product
browsing

Commodity
classification

Product
details

Wish post
reply

Forward
share

Post a wish
post

Manage wish
stickers

Figure 6. Software architecture diagram.

By drawing UML diagrams and describing the relationship between various func-
tions and data, standard requirements specification documents can be generated.

Commodity
payment

Complete order Modify order
status

Order
search

Purchase list
view

Order
data

Updated
order data

create

send send

create

send send

send

send

Register personal
information

Modify personal
information

Post a wish
post

Wish post
reply

Manage wish
stickers

User data

Post data

create

send send

create

send send

create

One shot
function

send

Send
message

send

Forward
share

send

Product
release

Product
browsing

Publish
search

Commodity
data

send

create

send send

Publish
list view

send

My points
details

send

Order
evaluation

Evaluation
data

send

create

(a)

Commodity
payment

Complete orderModify order
status

Order
search

Purchase list
view

Order
data

Updated
order data

create

sendsend

create

send send

send
send

Register personal
information

Modify personal
information

My points
details

Wish post
reply

Manage wish
stickers

Post data

create

send send

create

send send

create

Product
release

send

Order
evaluation

send

Forward
share

send

Send
message

Product
browsing

Publish
search

Commodity
data

send

create

send send

Publish
list view

send

One shot
function

send

Post a wish
post

send

create

Evaluation data
No User!

User data
Has 2 Creator!

(b)

Figure 7. Data Flow Diagrams. (a) Generated data flow diagram; (b) Inspection result of require-
ments specifications. Places marked in red show possible errors in DFDs.

Figure 6. Software architecture diagram.

Electronics 2023, 12, 2734 12 of 17

Electronics 2023, 12, x FOR PEER REVIEW 12 of 18

The graph includes both function and data entities. There is a parent–child relation-
ship between function entities and a create and use relationship between function entities
and data entities. The experiment generates the architecture diagram of the software sys-
tem according to the parent–child relationship between functional entities, and generates
the data flow diagram according to the create/use relationship between functional entities
and data entities. Taking the “second-hand trading platform” as an example, the architec-
ture diagram generated through the knowledge graph is shown in Figure 6 and the data
flow diagram is shown in Figure 7a.

Commodity trading
system

Commodity
module

Wishing pool
module

Personal center
modulel

Message
module

Private chat
function

View
message list

Send
message

One shot
function

Commodity
purchase

Order
evaluation

Complete
order

Commodity
payment

Product
release

Product
browsing

Commodity
classification

Product
details

Wish post
reply

Forward
share

Post a wish
post

Manage wish
stickers

Figure 6. Software architecture diagram.

By drawing UML diagrams and describing the relationship between various func-
tions and data, standard requirements specification documents can be generated.

Commodity
payment

Complete order Modify order
status

Order
search

Purchase list
view

Order
data

Updated
order data

create

send send

create

send send

send

send

Register personal
information

Modify personal
information

Post a wish
post

Wish post
reply

Manage wish
stickers

User data

Post data

create

send send

create

send send

create

One shot
function

send

Send
message

send

Forward
share

send

Product
release

Product
browsing

Publish
search

Commodity
data

send

create

send send

Publish
list view

send

My points
details

send

Order
evaluation

Evaluation
data

send

create

(a)

Commodity
payment

Complete orderModify order
status

Order
search

Purchase list
view

Order
data

Updated
order data

create

sendsend

create

send send

send
send

Register personal
information

Modify personal
information

My points
details

Wish post
reply

Manage wish
stickers

Post data

create

send send

create

send send

create

Product
release

send

Order
evaluation

send

Forward
share

send

Send
message

Product
browsing

Publish
search

Commodity
data

send

create

send send

Publish
list view

send

One shot
function

send

Post a wish
post

send

create

Evaluation data
No User!

User data
Has 2 Creator!

(b)

Figure 7. Data Flow Diagrams. (a) Generated data flow diagram; (b) Inspection result of require-
ments specifications. Places marked in red show possible errors in DFDs.

Figure 7. Data Flow Diagrams. (a) Generated data flow diagram; (b) Inspection result of requirements
specifications. Places marked in red show possible errors in DFDs.

By drawing UML diagrams and describing the relationship between various functions
and data, standard requirements specification documents can be generated.

At the same time, the experiment generates U/C matrix through the relationship
between functional entities and data entities, and then decomposes it into S/U/C matrix.
The U/C matrix and the decomposed S/U/C matrix are shown in Figure 8.

After the S/U/C matrix is generated, the experiment tests the S/U/C matrix ac-
cording to Formulas (2)–(5). First of all, the experiment needs to automatically generate
test cases according to these rules, using the error presumption method in the software
testing method.

As for correctness tests, the experiment extracts a list of data tables from the S/U/C
matrix as the source of test cases for checking energy relationships in the CTR-SPR, CTR-
MUR, and CTR-ECR rules. It tests whether the data table only has one creator, whether there
are users, and whether the emitted energy is equal to the received energy. Additionally,
a list of functions is extracted from the business requirement description as the source of
test cases for checking energy relationships in the CTR-EKR rule, focusing on the principle
of energy keeping. The results of correctness tests are shown in Figure 9. For CTR-SPR,
CTR-MUR, and CTR-ECR rules, the number of test cases is the number of data tables. For
the CTR-EKR rule, the number of test cases is the number of functional entities. It shows
that the “use” of the evaluation information node is 0, that is, the CTR-MUR rule is not
satisfied. This shows that during the demand research process, the demand analyst may
have missed a certain functional module; at the same time, the classification information
does not satisfy the principle of energy conservation, which also shows that there may be a
lack of function during the demand research process.

Electronics 2023, 12, 2734 13 of 17Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 8. U/C Matrix to S/U/C Matrix.

(a) (b)

(c) (d)

Figure 9. Results of correctness tests. Red marks indicate that the test results are contrary to inspec-
tion rules. (a) Results of CTR-SPR inspection; (b) Results of CTR-MUR inspection; (c) Result of CTR-
ECR inspection; (d) Results of CTR-EKR inspection.

(a)

Figure 8. U/C Matrix to S/U/C Matrix.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 8. U/C Matrix to S/U/C Matrix.

(a) (b)

(c) (d)

Figure 9. Results of correctness tests. Red marks indicate that the test results are contrary to inspec-
tion rules. (a) Results of CTR-SPR inspection; (b) Results of CTR-MUR inspection; (c) Result of CTR-
ECR inspection; (d) Results of CTR-EKR inspection.

(a)

Figure 9. Results of correctness tests. Red marks indicate that the test results are contrary to inspection
rules. (a) Results of CTR-SPR inspection; (b) Results of CTR-MUR inspection; (c) Result of CTR-ECR
inspection; (d) Results of CTR-EKR inspection.

When employing completeness rules for testing purposes, three distinct types of test
cases become necessary: functional module test cases, data table test cases, and functional
parent–child relationship test cases. The functional module test cases are derived from an
automatically generated list of business functions extracted from the business requirements
description. Their primary purpose is to assess the presence or absence of any missing
system function modules. The data table test cases, on the other hand, stem from the U/C

Electronics 2023, 12, 2734 14 of 17

matrix and are employed to determine the existence or absence of data tables. Lastly, the
functional parent–child relationship test cases are derived from the parent–child relation-
ship list found within the automatically generated business function list from the business
requirements description. These test cases are instrumental in evaluating the presence or
absence of parent–child relationships between system function modules. The results of
completeness tests are shown in Figure 10.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 18

Figure 8. U/C Matrix to S/U/C Matrix.

(a) (b)

(c) (d)

Figure 9. Results of correctness tests. Red marks indicate that the test results are contrary to inspec-
tion rules. (a) Results of CTR-SPR inspection; (b) Results of CTR-MUR inspection; (c) Result of CTR-
ECR inspection; (d) Results of CTR-EKR inspection.

(a)

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

(b)

(c)

Figure 10. Results of completeness tests. Places marked in red indicate that the actual results did not
meet expectations. (a) Results of data table case test; (b) Results of functional module case test; (c)
Results of functional parent–child relationship case test.

Observing Figure 10, it is evident that there is a wrong inclusion relationship (er-
ror_include) between the publish search and commodity module nodes. Upon examining
the original business description corpus, it is clear that there is a parent–child relationship
between these modules, but it is not reflected in the software requirements specification
map. This highlights the possibility of errors in the construction of the software require-
ments specification map for the commodity and publishes search modules.

The consistency test includes a functional path test and a DFD inclusion test, which,
respectively require some correct business process paths and correct DFD diagrams as test
cases, and then verify whether they are consistent in the requirements specification map.
The results of the consistency test are shown in Figure 11.

(a)

(b)

Figure 11. Results of Consistency test. Places marked in red indicate that the actual results did not
meet expectations. (a) Functional path test results; (b) DFD inclusion test results.

The use case data of the function path use case is an array, and the order of the array
of elements represents the order of the test function path; while the use case data of the
DFD containing use cases is a JSON structure, its data attribute represents the data table,
and the route attribute is an array, indicating the direction of the data flow. It can be seen
from Figure 11 that there is a lack of data transfer relationship between the release of
wishing stickers and the release of products. The reason for this kind of problem may be
an error in the process of requirement research or an error in the process of embedding
the requirements specification map. Through the inspection of the original S/U/C matrix,

Figure 10. Results of completeness tests. Places marked in red indicate that the actual results did
not meet expectations. (a) Results of data table case test; (b) Results of functional module case test;
(c) Results of functional parent–child relationship case test.

Observing Figure 10, it is evident that there is a wrong inclusion relationship (er-
ror_include) between the publish search and commodity module nodes. Upon examining
the original business description corpus, it is clear that there is a parent–child relationship
between these modules, but it is not reflected in the software requirements specification
map. This highlights the possibility of errors in the construction of the software require-
ments specification map for the commodity and publishes search modules.

The consistency test includes a functional path test and a DFD inclusion test, which,
respectively require some correct business process paths and correct DFD diagrams as test
cases, and then verify whether they are consistent in the requirements specification map.
The results of the consistency test are shown in Figure 11.

The use case data of the function path use case is an array, and the order of the
array of elements represents the order of the test function path; while the use case data
of the DFD containing use cases is a JSON structure, its data attribute represents the
data table, and the route attribute is an array, indicating the direction of the data flow.
It can be seen from Figure 11 that there is a lack of data transfer relationship between
the release of wishing stickers and the release of products. The reason for this kind of
problem may be an error in the process of requirement research or an error in the process

Electronics 2023, 12, 2734 15 of 17

of embedding the requirements specification map. Through the inspection of the original
S/U/C matrix, it was found that the problem of missing data flow direction existed in the
demand research process.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 18

(b)

(c)

Figure 10. Results of completeness tests. Places marked in red indicate that the actual results did not
meet expectations. (a) Results of data table case test; (b) Results of functional module case test; (c)
Results of functional parent–child relationship case test.

Observing Figure 10, it is evident that there is a wrong inclusion relationship (er-
ror_include) between the publish search and commodity module nodes. Upon examining
the original business description corpus, it is clear that there is a parent–child relationship
between these modules, but it is not reflected in the software requirements specification
map. This highlights the possibility of errors in the construction of the software require-
ments specification map for the commodity and publishes search modules.

The consistency test includes a functional path test and a DFD inclusion test, which,
respectively require some correct business process paths and correct DFD diagrams as test
cases, and then verify whether they are consistent in the requirements specification map.
The results of the consistency test are shown in Figure 11.

(a)

(b)

Figure 11. Results of Consistency test. Places marked in red indicate that the actual results did not
meet expectations. (a) Functional path test results; (b) DFD inclusion test results.

The use case data of the function path use case is an array, and the order of the array
of elements represents the order of the test function path; while the use case data of the
DFD containing use cases is a JSON structure, its data attribute represents the data table,
and the route attribute is an array, indicating the direction of the data flow. It can be seen
from Figure 11 that there is a lack of data transfer relationship between the release of
wishing stickers and the release of products. The reason for this kind of problem may be
an error in the process of requirement research or an error in the process of embedding
the requirements specification map. Through the inspection of the original S/U/C matrix,

Figure 11. Results of Consistency test. Places marked in red indicate that the actual results did not
meet expectations. (a) Functional path test results; (b) DFD inclusion test results.

In addition, the method in this paper can display the test results in a DFD, as shown
in Figure 7b. Based on the results of the automated validation analysis, the requirements
specification can be revised and the version can then be updated.

Finally, this paper conducts statistical analysis on the quality inspection results of the
generated requirements specification maps of 15 software systems, as shown in Table 2 and
Figure 12.

Table 2. Quality inspection use case test results.

Use case Type The Total Number of Use
Cases of This Type Number of Use Cases Passed Passing Rate

Correctness test use case 628 599 95.38%
Completeness test use case 1563 1524 97.50%
Consistency test use case 287 273 95.12%

Electronics 2023, 12, x FOR PEER REVIEW 16 of 18

it was found that the problem of missing data flow direction existed in the demand re-
search process.

In addition, the method in this paper can display the test results in a DFD, as shown
in Figure 7b. Based on the results of the automated validation analysis, the requirements
specification can be revised and the version can then be updated.

Finally, this paper conducts statistical analysis on the quality inspection results of the
generated requirements specification maps of 15 software systems, as shown in Table 2
and Figure 12.

Table 2. Quality inspection use case test results.

Use case Type The Total Number of Use
Cases of This Type

Number of Use Cases
Passed

Passing Rate

Correctness test use case 628 599 95.38%
Completeness test use case 1563 1524 97.50%
Consistency test use case 287 273 95.12%

Figure 12. Requirements specification map quality inspection use case test passing rate.

5. Conclusions
The purpose of this paper is to address the challenges associated with inconsistencies

in business descriptions, low writing efficiency, and error-prone processes during manual
software requirements specification compilation. To do so, we utilize the BiLSTM-CRF kg
model to automatically create a software requirements specification map and generate the
corresponding software requirements specification. Additionally, we enhance the U/C
matrix used in system analysis by introducing the S/U/C matrix, which facilitates cross-
departmental and individual comparisons of local demand survey results. To ensure the
quality of the software requirements specification map, a quality inspection method is
proposed that leverages the energy transfer relationships between entities in the map.
This inspection method includes a series of test cases focusing on correctness, complete-
ness, and consistency. By quickly locating and labeling errors on the DFD, this method
allows for the timely resolution of issues that arise during the software requirement re-
search and specification preparation process. The study randomly chose 15 out of 150 soft-
ware requirements specification maps generated by the BiLSTM-CRF kg model for quality
evaluation. The results indicate that the use case test of the requirements specification map
has a passing rate of 96%, and the method presented in the paper is effective in generating
and updating software requirements specifications.

Although this paper realizes the automatic generation and quality inspection of the
software requirements specification, the quality of the software requirements specification
map has not been fully evaluated by classification and quantification, and the severity of

Figure 12. Requirements specification map quality inspection use case test passing rate.

5. Conclusions

The purpose of this paper is to address the challenges associated with inconsistencies
in business descriptions, low writing efficiency, and error-prone processes during manual

Electronics 2023, 12, 2734 16 of 17

software requirements specification compilation. To do so, we utilize the BiLSTM-CRF kg
model to automatically create a software requirements specification map and generate the
corresponding software requirements specification. Additionally, we enhance the U/C
matrix used in system analysis by introducing the S/U/C matrix, which facilitates cross-
departmental and individual comparisons of local demand survey results. To ensure the
quality of the software requirements specification map, a quality inspection method is
proposed that leverages the energy transfer relationships between entities in the map. This
inspection method includes a series of test cases focusing on correctness, completeness,
and consistency. By quickly locating and labeling errors on the DFD, this method allows
for the timely resolution of issues that arise during the software requirement research
and specification preparation process. The study randomly chose 15 out of 150 software
requirements specification maps generated by the BiLSTM-CRF kg model for quality
evaluation. The results indicate that the use case test of the requirements specification map
has a passing rate of 96%, and the method presented in the paper is effective in generating
and updating software requirements specifications.

Although this paper realizes the automatic generation and quality inspection of the
software requirements specification, the quality of the software requirements specification
map has not been fully evaluated by classification and quantification, and the severity of
different errors cannot be distinguished, which requires further study. Additionally, the
timing issue during the data flow process will be further considered in future work.

Author Contributions: Conceptualization, S.Y., Z.W. and X.W; methodology, X.W., Z.W. and S.Y.;
software, X.W. and Z.W; validation, Z.W. and X.W.; formal analysis, Z.W.; investigation, X.W.;
resources, S.Y.; data curation, X.W.; writing—original draft preparation, X.W.; writing—review and
editing, Z.W.; visualization, X.W.; supervision, S.Y.; project administration, S.Y.; funding acquisition,
S.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Natural Science Foundation of Fujian Province of China
(No. 2022J01003).

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to further research plans.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hung, B.; Omori, T.; Ohnishi, A. Ripple effect analysis of data flow requirements. In Proceedings of the 14th International

Conference on Software Technologies, Prague, Czech Republic, 26–28 July 2019; pp. 262–269.
2. Boyarchuk, A.; Pavlova, O.; Bodnar, M.; Lopatto, I. Approach to the Analysis of Software Requirements Specification on Its

Structure Correctness. In Proceedings of the IntelITSIS, Khmelnytskyi, Ukraine, 10–12 June 2020; pp. 85–95.
3. Liu, C.; Zhao, Z.; Zhang, L.; Li, Z. Automated conditional statements checking for complete natural language requirements

specification. Appl. Sci. 2021, 11, 7892. [CrossRef]
4. Braude, E.; Van Schooneveld, J. Incremental UML for agile development with PREXEL. In Proceedings of the 40th International

Conference on Software Engineering: Companion Proceeedings, Gothenburg, Sweden, 27 May–3 June 2018; pp. 310–312.
5. Torre, D.; Labiche, Y.; Genero, M.; Baldassarre, M.T.; Elaasar, M. UML diagram synthesis techniques: A systematic mapping study.

In Proceedings of the 10th International Workshop on Modelling in Software Engineering, Gothenburg, Sweden, 27–28 May 2018;
pp. 33–40.

6. Heayyoung, J.; Omori, T.; Ohnishi, A. Ripple effect analysis method of data flow diagrams in modifying data flow requirements.
In Proceedings of the 10th Knowledge-Based Software Engineering: 2018: Proceedings of the 12th Joint Conference on Knowledge-
Based Software Engineering (JCKBSE 2018), Corfu, Greece, 27–30 August 2018; pp. 1–11.

7. International Business Machines Corporation. Data Processing Division. Business Systems Planning: Information Systems Planning
Guide; IBM: Armonk, NY, USA, 1978.

8. Lin, J.; Zhao, Y.; Huang, W.; Liu, C.; Pu, H. Domain knowledge graph-based research progress of knowledge representation.
Neural Comput. Appl. 2021, 33, 681–690. [CrossRef]

9. Kejriwal, M.; Sequeda, J.F.; Lopez, V. Knowledge graphs: Construction, management and querying. Semant. Web 2019, 10, 961–962.
[CrossRef]

10. Wang, Z.; Pan, J.-S.; Chen, Q.; Yang, S. BiLSTM-CRF-KG: A Construction Method of Software Requirements Specification Graph.
Appl. Sci. 2022, 12, 6016. [CrossRef]

https://doi.org/10.3390/app11177892
https://doi.org/10.1007/s00521-020-05057-5
https://doi.org/10.3233/SW-190370
https://doi.org/10.3390/app12126016

Electronics 2023, 12, 2734 17 of 17

11. Miranda, M.A.; Ribeiro, M.G.; Marques-Neto, H.T.; Song, M.A.J. Domain-specific language for automatic generation of UML
models. IET Softw. 2018, 12, 129–135. [CrossRef]

12. Emeka, B.; Liu, S. A Formal Technique for Concurrent Generation of Software’s Functional and Security Requirements in SOFL
Specifications. In International Workshop on Structured Object-Oriented Formal Language and Method 2019; Springer International
Publishing: Cham, Switzerland, 2020; pp. 13–28.

13. Qu, M.; Wu, X.; Tao, Y.; Liu, Y. Research on generating method of embedded software test document based on dynamic model.
IOP Conf. Ser. Mater. Sci. Eng. 2018, 322, 062018. [CrossRef]

14. Mahalakshmi, G.; Vijayan, V.; Antony, B. Named entity recognition for automated test case generation. Int. Arab J. Inf. Technol.
2018, 15, 112–120.

15. Tsunoda, T.; Washizaki, H.; Fukazawa, Y.; Inoue, S.; Hanai, Y.; Kanazawa, M. Empirical study on specification metrics to predict
volatility and software defects. In Proceedings of the TENCON 2018-2018 IEEE Region 10 Conference, Jeju, Republic of Korea,
28–31 October 2018; pp. 2479–2484.

16. Franch, X.; Gómez, C.; Jedlitschka, A.; López, L.; Martínez-Fernández, S.; Oriol, M.; Partanen, J. Data-driven elicitation, assessment
and documentation of quality requirements in agile software development. In Proceedings of the Advanced Information Systems
Engineering: 30th International Conference, CAiSE 2018, Tallinn, Estonia, 11–15 June 2018; pp. 587–602.

17. Georgiades, M.G.; Andreou, A.S. Automatic generation of a software requirements specification (SRS) document. In Proceedings of
the 2010 10th International Conference on Intelligent Systems Design and Applications, Cairo, Egypt, 29 November–1 December 2010;
pp. 1095–1100.

18. Emeka, B.; Liu, S. A Formal Technique for Concurrent Generation of Software’s Functional and Security Requirements in
SOFL Specifications. In International Workshop on Structured Object-Oriented Formal Language and Method; Springer International
Publishing: Cham, Switzerland, 2019; pp. 13–28.

19. de Almeida Ferreira, D.; Da Silva, A.R. Formally specifying requirements with RSL-IL. In Proceedings of the 2012 Eighth
International Conference on the Quality of Information and Communications Technology, Lisbon, Portugal, 3–6 September 2012;
pp. 217–220.

20. van Vliet, H. Knowledge sharing in software development. In Proceedings of the 10th International Conference on Quality
Software (QSIC), Zhangjiajie, China, 14–15 July 2010; p. 2.

21. Avdeenko, T.V.; Pustovalova, N.V. The ontology-based approach to support the requirements engineering process. In Proceedings
of the 2016 13th International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE),
Novosibirsk, Russia, 3–6 October 2016; pp. 513–518.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1049/iet-sen.2016.0279
https://doi.org/10.1088/1757-899X/322/6/062018

	Introduction
	Related Work
	Structural Information Extraction Model of Functional Requirements
	Requirements Specification Knowledge Graph
	UML Diagram Generation Based on Graphviz
	Generation of Requirements Specification
	Improvement of Classical U/C Matrix
	Automatic Detection of Requirements Specifications

	Experimental Results and Analysis
	Dataset Source and Experimental Environment
	Typical Experimental Results and Evaluation

	Conclusions
	References

