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Abstract: To overcome the fault of convolutional networks, which can be over-smooth, blurred, or
discontinuous, a novel transformer network with cross-window aggregated attention is proposed.
Our network as a whole is constructed as a generative adversarial network model, and by embedding
the Window Aggregation Transformer (WAT) module, we improve the information aggregation
between windows without increasing the computational complexity and effectively obtain the image
long-range dependencies to solve the problem that convolutional operations are limited by local
feature extraction. First, the encoder extracts the multi-scale features of the image with convolution
kernels of different scales; second, the feature maps of different scales are input into a WAT module
to realize the aggregation between feature information and finally, these features are reconstructed
by the decoder, and then, the generated image is input into the global discriminator, in which the
discrimination between real and fake images is completed. It is experimentally verified that our
designed Transformer window attention network is able to make the structured texture of the restored
images richer and more natural when performing the restoration task of large broken or structurally
complex images.

Keywords: cross-window aggregated attention; detail feedforward networks; transformer

1. Introduction

Image inpainting is the process of filling the missing areas of an image with reasonable
content so that the inpainted image is semantically reasonable and visually realistic. It
is widely used in many practical scenarios, such as removing objects, restoring old pho-
tographs, image editing [1–3], etc. For image inpainting, it is crucial to be able to give
reasonable content to fill the target area based on the observed area and make the whole im-
age consistent. Traditional image inpainting methods usually match and copy background
patches to the missing areas or by propagating information from the boundaries around
the missing areas. These methods are very effective for images with only a small portion
of damage or repetitive patterns, but for images with large damaged areas or complex
structures, it is often difficult to generate semantically reasonable images because of the
lack of semantic understanding of the image.

Generative Adversarial Network (GAN) can improve the visual effect of network
generated images. Pathak et al. [4] applied GAN and designed a contextual compiler (CE)
as a repair method, which improved on the traditional convolutional neural network and
achieved significant repair results. However, this network has the limitation that it can only
repair masked images with fixed shapes, and its repair results are not satisfactory when per-
forming image repair tasks with random masks. For this reason, Iizuka et al. [5] achieved
image inpainting of arbitrary region breakage by reducing the number of downsamples
and used a null convolution layer instead of a fully connected layer [6]. Moreover, the
method uses global and local discriminators to ensure the overall consistency of the global
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discriminator, and the local discriminator achieves better restoration results by judging the
local consistency of small central regions. However, due to the limited neural telepresence
field output from the convolution operation, the feature information at a distance cannot
be utilized, which results in semantic connectivity inconsistencies in the generated informa-
tion. To cope with this problem, Yu et al. [7] proposed a feedforward generative network
model for image inpainting, which was solved using an attention mechanism [8–10]. The
model consists of two stages. First, an expanded convolutional network trained with
reconstruction loss is used for rough restoration. Second, a context-aware layer with a
spatial propagation layer is built using convolution to match the generated patches with
known context patches, which enhances the spatial consistency and achieves fine repair.
Song et al. [11] adopted a similar approach by introducing a “patch swapping layer” to
replace the patches in the region to be filled with the most pixel consistent patches on the
boundary.

In addition, Nazeri et al. [12] proposed a two-stage GAN model called “EC”, which
combines two stages of edge information prediction and image inpainting and first gener-
ates the edge map of the missing region as image inpainting guidance information to be
sent to the restoration network for restoration, and it achieves better restoration results.
Xiong et al. [13] showed a similar model that uses foreground object contours as a structural
prior, unlike EC that uses edges as information as a prior. Ren et al. [14] pointed out that
edge-preserving smoothed images provide better global structure due to capturing more
semantics, but these methods require higher accuracy for the structure (e.g., edges and
contours). To overcome this weakness, some researchers have addressed this problem by ex-
ploiting the correlation between texture and structure. Li et al. [15] designed a progressive
visual structure reconstruction network (PRVS) to progressively reconstruct the structure
and associated visual features. The reconstruction of visual structures and visual features
are entangled together to benefit each other by sharing parameters. Yang et al. [16] intro-
duced a multitasking framework to generate sharp edges by adding structural constraints.
Liu et al. [17] proposed a mutual encoding–decoding to simultaneously learn features
of convolution that correspond to different layers of structure and texture. However, a
single shared framework is difficult for modeling texture and structure. Therefore, to
effectively implement image structure and texture information restoration, Guo [18] et al.
proposed a new dual-stream network for image inpainting (CTSDG) to further enhance the
performance of image inpainting by dividing it into two subtasks, texture synthesis and
structure reconstruction. Since existing image inpainting techniques are outputting only
one restoration result for a broken image, but image inpainting is by nature an uncertain
task and its output should not be limited, Liu [19] et al. proposed a PD-GAN algorithm
based on this idea (that is, the closer to the center of the hole, the higher its diversity and
the stronger the diversity) and obtained good results.

When convolution is used to process image features, each convolutional layer shares
convolutional kernel parameters spatially. For a single image with both broken and normal
regions, the operation of assigning the same kernel to features that are valid, invalid, or
located on broken boundaries can easily lead to problems, such as structural distortion,
texture blurring, or artifacts. In addition, neural networks operating only within a local
window are inefficient in modeling images over long distances while in the processing of
image inpainting, appropriate information within the entire image needs to be utilized,
and sometimes information far from the damaged area needs to be acquired to repair the
broken area. Therefore, a Transformer-based cross-window aggregation attention image
inpainting method is proposed, and a rectangular window cross aggregation Transformer
module (WAT) is constructed to combine the respective advantages of the attention module
and convolution to complete the extraction of image features, which solves the restrictive
problem that convolutional operations can only extract local features. It is experimentally
verified that the Transformer window aggregation attention network designed in this
paper can make the structural texture of the restored images richer and more natural
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when performing the restoration task of large broken or structurally complex images. The
innovative work of this paper is as follows:

1. We propose a novel Transformer-based cross-window aggregated attentional image
restoration network, which improves the information aggregation between windows
by embedding WAT modules.

2. We effectively obtain the long-range dependence of images without increasing the
computational complexity and solve the problem that convolutional operations are
limited by local feature extraction.

3. Experiments on several datasets demonstrate the effectiveness of the proposed method
and outperform the current restoration methods.

2. Overall Model Design

In this paper, we proposed a Transformer-based window aggregation attention image
network. The overall design of the network model is shown in Figure 1, and the restora-
tion model consisted of three parts, including the generator, discriminator and window
aggregation attention. The encoder was a stack of convolutional layers with multiple
different convolutional kernels and was responsible for extracting multi-scale features
from the input image. In the encoder’s backbone of the generator, partial convolution
layers were employed to replace all the normal convolution in order to better capture
information from irregular boundaries since partial convolution [20] was conditioned only
on uncorrupted pixels, and in addition, jump connections produced more complex pre-
dictions by combining low and high level features at multiple scales. The decoder was
similar in structure to the encoder and was used to reconstruct the features into images.
The discriminator used a Markov global discriminator, which ensured the consistency of
the regional structure with the overall structure. The WAT module was introduced into
the partial convolution of the encoder to aggregate the multi-scale information extracted
by the encoder, and the powerful remote modeling capability of attention was exploited
to fully exploit the contextual information in the hierarchical features. In particular, the
WAT module could effectively obtain the image long-range dependencies and solve the
problem that the convolution operation was limited by local feature extraction. Figure 1A–C
represent the generator and discriminator structure diagram, the generator internal detail
diagram and the discriminator workflow diagram, respectively.
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Figure 1. Overall network model. (A) represents the generator and discriminator structure diagram,
(B) shows the internal details of the generator, and (C) shows the discriminator workflow diagram.
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3. Transformer-Based Window Aggregation Attention Image Inpainting Network
3.1. WAT Module

We improved a window aggregation module (R-MSA) based on the literature [21]
to replace the common multi-headed self-attention module and form a cross-window
aggregation Transformer (WAT) module. Our WAT used local window self-attention to
limit computational complexity and aggregated features across different windows to extend
the perceptual field and improve the aggregation of window information. The first layer
was a window aggregation module (R-MSA), and the second layer was a simple multilayer
perceptron (MLP). Around each of the two sublayers, an in-residual connection [22] was
used, followed by layer normalization [23]. This is presented in Figure 2.
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Figure 2. Structure of the WAT module.

The window aggregation module R-MSA, a key part of the WAT module, employed
a new attention mechanism and contained two novel designs: the rectangular window
self-attention mechanism (Rwin-MSA) and the local complementary module (LCM).

3.1.1. Construction of Rwin-MSA

The Rectangular window multi-head self-attention mechanism (Rwin-MSA), which
performs self-attention in a non-overlapping local window, significantly reduced the compu-
tational cost and computational complexity from O(H2W2C) to O(M2HWC), as depicted
in Figure 3.
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Given a two-dimensional feature mapping X ∈ RC×H×W , where H and W were the
height and width of the mapping and C was the depth, X was decomposed into non-
overlapping windows of window size M×M and then, features and transposed features
Xi ∈ RM2×C were obtained from each window. Then, the features of each window were
self-attended. Suppose the size of the head number k was dk = C/k; then, the kth head
self-attention in the non-overlapping window could be defined as:

X =
{

X1, X2, . . . , XN
}

, N = HM/M2, (1)
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Yi
k = Attention(XiWQ

k , XiWK
k , XiWV

k ), i = 1, . . . , N, (2)

X′k =
{

Y1
k , Y2, . . . , YM

k

}
. (3)

where WQ
k , WK

k , WV
k ∈ RC×dk were the queries, keys and values of the projection matrix

of the head number k, respectively. X′k was the output of the kth head, and then, all
heads {1, 2, . . . , k} were connected for linear projection to obtain the final result. Inspired
by [24,25], the relative position encoding was applied to the attention module, so the
attention calculation formula could be reduced to the following:

Attention(Q, K, V) = So f tmax(
QKT
√

dk
+ B)V. (4)

where B was the relative position deviation. Compared with the global self-attention mecha-
nism, the window-based attention mechanism could significantly reduce the computational
cost. The computational complexity decreased from O(H2W2C) to O(M2HWC) for a given
feature mapping X ∈ RC×H×W .

3.1.2. Construction of LCM

Transformer could efficiently capture global information and model long-term de-
pendencies between pixels. However, CNNs can aggregate local features and extract the
underlying structure of an image (e.g., corners and edges) due to their translation invari-
ance and localization that occupy an indispensable position in image inpainting tasks. To
complement the local nature of the Transformer and to achieve global and local coupling,
we therefore added a separate convolution operation, the Local Complementary Module
(LCM), when computing the self-attentive mechanism using the Rwin-MSA module. The
LCM could complement the Rwin-MSA with local information, which operated on the
value (V) in parallel with the Rwin-MSA module, as demonstrated in Figure 4.
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Using the LCM module, the convolution operation was performed directly on the
value (V) with the following formula:

Rwin−MSA(X) = (Concat(Y1
k , Y2

k , . . . , YM
k ) + Conv(V)WP (5)

where Y1
k , Y2

k , . . . , YM
k was the same as Equation (3), V ∈ RC×H×W was the value projected

directly from X without window aggregation, WP ∈ RC×C denoted the projection matrix
for feature aggregation and Conv(.) was the convolution operation with a convolution
kernel of 3. Compared to performing convolution sequentially or using convolution directly
on X, the operation in this paper had two features: (1) using convolution as a parallel
module enabled the Transformer module to adaptively choose whether to employ attention
or convolution operations, which was more flexible than sequential convolution execution.
(2) From Equation (4), we can see that self-attention can be considered a content-dependent
dynamic weight, and the convolution operation is equivalent to a static weight that can
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be learned. Therefore, the convolution operation on V was performed in the same feature
domain as the attention operation.

3.2. Discriminator Network

In the repair network of this paper, the discriminator was Markov discriminator [26]
(Patch-GAN), which mainly consisted of four convolutional layers and one fully connected
layer. Unlike other discriminator networks, the Markov discriminator first output an N×N
matrix and then calculated the mean of the N × N matrix as the final discriminator output,
which was fundamentally different from the traditional discriminator output of only one
true/false vector. Each position in the Markov discriminator output matrix could represent
a receptive field of the generated image, and each receptive field corresponded to a part of
the region in the generated image. Therefore, the Markov discriminator was used to more
accurately distinguish the differences between the images generated by the generator and
the real images and thus better adjust the network gradient.

To ensure that the discriminator focused on the structure of the whole image as much
as possible and to evaluate whether the generated image was consistent with the real
image, only the global discriminator was used as the discriminator for the whole network
in this paper. This was because the local discriminator woul only focus on the region
after network restoration when identifying the difference between the generated image
and the real image, which satisfied the consistency of the restored region but ignored the
global structure of the overall image, and the global discriminator could better ensure the
consistency between the regional structure and the overall structure so that the generator
could generate more realistic and vivid face images. Finally, to prevent a gradient explosion
in the training process of the generative network, Spectral Normalization [27] (SN) was
introduced in the discriminator to enable a stable training process as a way to improve the
training quality of the GAN network. Table 1 shows the discriminator parameters.

Table 1. Discriminator parameters.

Layers Convolution Kernels Step Lengths Activation Functions

1 4 2 LeakyReLu
2 4 2 LeakyReLu
3 4 2 LeakyReLu
4 4 1 LeakyReLu

Full Connection - - Sigmoid

3.3. Loss Function

In order to minimize the loss in the training session, the algorithm in this paper used a
semantic-based joint loss function, which consisted of four terms, including reconstruction
loss, perceptual loss, style loss and adversarial loss, to obtain a repair network that made
the repair network visually realistic and semantically reasonable.

(1) Reconstruction loss

Lre reconstruction loss was the value of the L1 parametric number that compensated
for the difference between the image Iout and the actual image Ig:

Lre =
∣∣∣∣Iout − Ig

∣∣∣∣
1. (6)

(2) Perceptual loss [28]

Since the reconstruction loss was difficult to capture the high-level semantics, the
perceptual loss Lpere was introduced to evaluate the global structure of the image. The
perceptual loss measured the feature mapping between the real image Ig and the output
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image Iout, with L1 being the distance between the feature space Iout and Ig, and it was
calculated as follows:

Lpere = E[∑
i

1
N
||φi(Iout)− φi(Ig)||1]. (7)

where φi(·) denoted the activation mapping obtained for a given input image I through the
i-th pooling layer of VGG-16.

(3) Style loss

The style loss was further designed in order to ensure style consistency. Similarly, the
style loss calculated the L1 distance between feature maps, which was calculated as:

Lstyle = E[∑
i

∣∣∣∣Φi(Iout)−Φi(Igt)
∣∣∣∣

1]. (8)

where, Φi(.) = ΦT
j
(.)Φj(.) denoted the Gram matrix from the activation mapping Φi.

(4) Adversarial loss [29]

The adversarial loss guaranteed the visual realism of the reconstructed image and the
consistency of texture and structure, where D was the discriminator. The adversarial loss
was introduced into the Markov discriminator to add a new regularization to the network
for discriminating the true and false images, which was calculated as:

Ladv = min
G

max
D

EIgt ,ggt [log D(Igt, Egt)] + EIout,Eout log[1− D(Iout, Eout)]. (9)

In summary, the joint loss function is:

Lall = αLre + βLpere + γLstyle + λLadv, (10)

where α, β, γ and λ were hyper-parameters. In the experimental procedure of this paper,
we set α = 10, β = 0.1, γ = 250 and λ = 0.1.

4. Experimental Environment and Evaluation Index

The deep learning framework used for the experiments was pytorch, the computer
operating system was Windows 10, and the graphics card model was NVIDIA TITAN XP
with 12G of video memory.

Distortion metrics and perceptual quality metrics were used to quantitatively evaluate
model performance. Distortion metrics are used to measure the degree of distortion of the
results, including Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index (SSIM).
Among them, PSNR was used to evaluate the error between the corresponding pixel points
in two images, and a larger value indicated less distortion. SSIM was used to evaluate the
overall similarity between two images in three aspects: brightness, structure and contrast,
and a result closer to 1 indicated a higher similarity. The perceptual quality metric was
used to represent the perceptual quality of the result, representing the subjective perceptual
quality of an image. Here, it was represented by Fréchet inception distance (FID), and its
lower value indicated better subjective perceptual quality.

4.1. Experimental Dataset and Pre-Processing

To verify and evaluate the robustness and generalization ability of the algorithmic
network, the CelebA [30] and Places datasets [31] were used to evaluate the method in
this paper, where the CelebA dataset used contains 165,000 face images in the training set,
19,500 face images in the test set and 19,400 face images in the validation set. We selected
six categories from the Places dataset, each with 5000 training images, 900 test images
and 100 validation images, and we used 30,000 images for training and 5400 images for
testing. Classification was performed in 10% increments for the size of the broken area of
the image. The model took about 7 days to train on CelebA and about 11 days to train on
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Places, and the fine-tuning was done in one day. Our method was compared with three
popular methods, which were CTSDG, BIFPN and DF-Net.

The mask datasets for the experiments all used irregular masks obtained from [20],
classified according to their hole size relative to the whole image in 10% increments, all
images and corresponding masks adjusted to 256 × 256 pixels, batch size processed to
16 sheets, training iterations 300,000 and optimized using the Adam optimizer [32] with
parameters set to β1 = 0.001, β2 = 0.9.

4.2. Qualitative Analysis

Our Transformer cross-window aggregated attention mechanism image restoration
model was visually compared with a representative model as illustrated in Figure 5. CTSDG
was basically able to repair the structure of the original image when the broken area
was small, but artifacts appeared when the broken area was large; for example, artifacts
appeared in the right eye of the female in the third row of the second column. The face of
the male in the second column of the last row showed a confusing structure and blurred
texture. BIFPN was able to repair the structure and texture of the broken image better, but
both showed masking artifacts. DF-Net performed better in small broken areas and also
showed structure confusion and texture blurring in large broken areas. DF-Net performed
better in small breaks and also showed structural confusion and texture blurring in large
breaks, such as in the fourth, fifth and sixth rows of the fourth column. In contrast, our
proposed method performed very well in both large-area and small-area breakage, and the
restored image had clear texture and continuous structure, generating an image that was
closer to the original image and more consistent with the visual effect of the human eye.
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A visual comparison of the restoration model we used with the representative model is
presented in Figure 6. BIFPN was basically able to repair the structure of the original image
when the broken area was small, but artifacts appeared when the broken area was large;
for instance, the windows of the house in the third row of the second column appeared
distorted and deformed. CTSDG was able to repair the structure of the broken image better,
but both showed masking artifacts and blurred textures in the second row of the girl’s head
in the third column and in the windows of the house in the third row. DF-Net performed
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well in small areas of breakage and showed a lack of clear structure and blurred texture in
large areas of breakage, such as the three and four rows of the fourth column. Our proposed
method performed well in both large and small areas of breakage, and the restored images
had clear textures and continuous structures that were more consistent with the human
eye’s vision.
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4.3. Quantitative Analysis

In addition to the qualitative comparison test, three objective evaluation indexes were
used for quantitative analysis in this paper, namely PSNR, SSIM and FID, and it can be seen
from Table 2 that this paper outperformed other methods in all indexes. The test results
of our method improved 1.42, 5.17 and 1.29 in PSNR metrics; 0.74%, 0.56% and 0.30% in
SSIM and 2.75, 3.16 and 1.12 in FID metrics over CTSDG, BIFPN and DF-Net algorithms,
respectively (the above contrasting values are calculated from the average values).

Table 2. Comparison of quantitative analysis results on CelebA.

Evaluation
Metrics

Mask
Category BIFPN CTSDG DF-Net Ours

PSNR

10–20% 32.34 38.78 38.56 38.61
20–30% 31.82 37.75 38.63 38.71
30–40% 29.28 31.76 31.79 34.34
40–50% 26.13 29.30 29.12 31.25
50–60% 23.73 24.37 25.50 26.15

SSIM

10–20% 0.968 0.967 0.969 0.973
20–30% 0.963 0.962 0.965 0.967
30–40% 0.929 0.927 0.929 0.940
40–50% 0.858 0.855 0.861 0.865
50–60% 0.734 0.729 0.737 0.741

FID

10–20% 6.31 5.48 4.98 4.86
20–30% 8.51 7.69 7.80 7.67
30–40% 18.96 20.77 16.04 15.24
40–50% 22.36 21.18 18.98 17.74
50–60% 25.26 23.74 22.91 19.58
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As can be seen from Table 3, this paper outperformed other methods in all indicators.
The test results in this paper showed improvements of 3.40, 2.27 and 1.08 in PSNR; 1.62%,
1.02% and 0.65% in SSIM and 1.90, 4.42 and 0.76 in FID, respectively, compared with
CTSDG, BIFPN and DF-Net algorithms (the above comparison values are calculated from
the average values).

Table 3. Comparison of quantitative analysis results on Places.

Evaluation
Metrics

Mask
Category BIFPN CTSDG DF-Net Ours

PSNR

20–30% 31.34 30.21 32.08 33.32
30–40% 29.85 28.53 30.97 32.79
40–50% 28.69 27.53 30.06 31.20
50–60% 28.20 27.29 29.68 29.76

SSIM

20–30% 0.954 0.958 0.957 0.961
30–40% 0.864 0.850 0.861 0.872
40–50% 0.847 0.835 0.849 0.854
50–60% 0.812 0.809 0.826 0.831

FID

20–30% 11.23 10.98 10.40 10.34
30–40% 19.61 20.70 15.26 15.13
40–50% 24.36 18.18 17.98 17.58
50–60% 26.27 21.74 21.30 19.92

4.4. Ablation Experiments

In order to analyze the contribution of the WAT module to the performance of the
image inpainting network, ablation experiments were therefore designed for this module.
Experiments were conducted with 300 randomly selected test sets from the CelebA and
Places datasets species, and similarly, 300 random masks with the different mask rate were
used for the ablation experiments. Ten randomly selected results from the test result plots
were analyzed for qualitative and quantitative comparisons, and the experimental results
are in Figures 7 and 8.
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In Figure 7, the facial information of the experimental results without the WAT module
in the first row could be basically kept intact, but when the broken area increased, blurring
and structural confusion appeared. The eyes and nose of the third row appeared to be
significantly blurred. The shape of the eyes in the fourth row appeared distorted, and the
eyes and mouth in the fifth row appeared structurally disorganized. The details of the
mouth and eyes in the third, fourth and fifth rows can be seen to be better restored by the
method in this paper. Especially for the repair of the human eyes in the third, fourth and
fifth rows, it can be seen that the method in this paper has a consistent color and better
detail repair of the eyes due to the introduction of the WAT module, which enhances the
ability of the repair network to capture long-distance dependent information. Therefore, it
can be visually seen that the WAT module helps to improve the restoration results.
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In Figure 8, the overall information of the experimental results without WAT module
could be basically kept intact when the damage area was small, but when the damage
area increased, blurring and structural confusion appeared. The details of the trees in the
fourth row were not clear enough, and the structure of the house in the fifth row appeared
confused and blurred in terms of the details of the trees and houses in the fourth and fifth
rows. Looking at the details of the trees and houses in the fourth and fifth rows, we can
see that our method restores better. Therefore, the WAT module helped to improve the
restoration effect.

As indicated in Tables 4 and 5, the WAT model outperformed the no-WAT module in
all three evaluation metrics, indicating that the WAT module helped to improve the repair
performance, which was consistent with the results of the qualitative analysis.
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Table 4. CelebA ablation experiments.

Evaluation Metrics Mask Category No/WAT Ours

PSNR

10–20% 37.34 38.61
20–30% 36.82 38.21
30–40% 30.28 34.34
40–50% 26.13 31.25
50–60% 19.73 26.15

SSIM

10–20% 0.968 0.973
20–30% 0.961 0.967
30–40% 0.921 0.930
40–50% 0.848 0.865
50–60% 0.714 0.741

FID

10–20% 5.10 4.86
20–30% 8.72 7.67
30–40% 18.56 15.24
40–50% 22.10 17.74
50–60% 25.12 19.58

Table 5. Places ablation experiments.

Evaluation Metrics Mask Category No/WAT Ours

PSNR

10–20% 34.15 34.21
20–30% 32.72 33.21
30–40% 30.89 32.57
40–50% 28.13 30.39
50–60% 24.73 28.46

SSIM

10–20% 0.968 0.971
20–30% 0.956 0.963
30–40% 0.856 0.867
40–50% 0.839 0.850
50–60% 0.794 0.834

FID

10–20% 7.53 6.78
20–30% 11.02 10.29
30–40% 16.76 15.56
40–50% 20.10 17.51
50–60% 24.19 19.91

5. Discussion

The limitations of this study were that, similar to other restoration models, our model
still has difficulty in handling images with very high breakage rates, especially in im-
ages with very high breakage rates and complex patterns. Future research directions can
start from large broken area restoration using known features and training experience to
reconstruct images that are reasonable and not limited to the original image.

6. Conclusions

In this paper, we propose a Transformer-based cross-window aggregated attention
model for image restoration, which improves the information aggregation between win-
dows and effectively reduces the complexity of the network by embedding the cross-
window aggregated attention module (WAT) in the generator based on the generative
adversarial network image restoration. First, multi-scale features are extracted from the
input by the encoder, and the WAT module is introduced into the partial convolution of
the encoder to aggregate the extracted multi-scale information, and the powerful remote
modeling capability of attention is utilized to fully exploit the contextual information in
the layered features, which solves the restrictive problem that the convolution operation
can only extract local features and which enhances the network’s access to contextual infor-
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mation in image restoration capability. Second, the global discriminator is used to better
ensure the consistency between the regional structure and the overall structure so that the
generator can generate more realistic and vivid restored images. Finally, the experimental
results show that the restoration network proposed in this paper is better able to perform
the task of restoring images with blurred and large broken areas.
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