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Abstract: Cochlear implantation is the common treatment for severe to profound sensorineural
hearing loss if there is no benefit from hearing aids. Measuring the electrode impedance along the
electrode array at different time points after surgery is crucial in verifying the electrodes’ status,
determining the compliance levels, and helping to identify the electric dynamic range. Increased
impedance values without proper reprogramming can affect the patient’s performance. The predic-
tion of acceptable levels of electrode impedance at different time points after the surgery could help
clinicians during the fitting sessions through a comparison of the predicted with the measured levels.
Accordingly, clinicians can decide if the measured levels are within the predicted normal range or
not. In this work, we used a dataset of 80 pediatric patients who had received cochlear implants
with the MED-EL FLEX 28 electrode array. We predicted the impedance of the electrode arrays in
each channel at different time points: at one month, three months, six months, and one year after the
date of surgery. We used different machine learning algorithms such as linear regression, Bayesian
linear regression, decision forest regression, boosted decision tree regression, and neural networks.
The used features include the patient’s age and the intra-operative electrode impedance at different
electrodes. Our results indicated that the best algorithm varies depending on the channel, while
the Bayesian linear regression and neural networks provide the best results for 75% of the channels.
Furthermore, the accuracy level ranges between 83% and 100% in half of the channels one year after
the surgery, when an error range between 0 and 3 KΩ is defined as an acceptable threshold. Moreover,
the use of the patient’s age alone can provide the best prediction results for 50% of the channels at
six months or one year after surgery. This reflects that the patient’s age could be a predictor of the
electrode impedance after the surgery.

Keywords: cochlear implantation; electrode impedance; machine learning; feature selection; ML
algorithm evaluation

1. Introduction

Cochlear implant (CI) surgery is becoming a more viable surgical option for children
and adults with substantial sensorineural hearing loss and who have not benefited from
hearing aids [1]. The CI system is composed of several parts (Figure 1), such as the external
audio processor, microphone, external coil, internal implant, radio frequency (RF) internal
coil, and the electrode array that is supposed to be inserted into the scala tympani of the
cochlea. The magnetic attraction between the implant magnet and the audio processor coil
magnet is used to secure the audio processor coil in place on top of the implant coil. The RF
receiver coil also provides the implant with electric power that is emitted from the audio
processor coil [2].
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and then to the auditory nerve [3]. The auditory/cochlear nerve should be present in CI 
candidates as it helps to restore their hearing abilities properly [4]. This nerve acts as a 
conductor, carrying electrical stimulation generated and decoded by the CI system to the 
brainstem and then on to the auditory cortex. 

CI surgery is typically indicated for pre-lingual and post-lingual deafness. Recently, 
it has also been approved for patients with single-sided deafness (SSD). Patients who re-
ceived implants early, before the age of two years, showed better audiological and speech 
performance [5]. On the other hand, pre-lingually deafened patients of an older age may 
not show satisfactory outcomes, and they might sometimes be non-users of implants. The 
explanation behind this is that the brain may utilize the region for auditory sensation at 
the level of the auditory cortex for other somatosensory inputs after a lengthy period of 
deafness [6]. 

The cochlear implant’s (CI) function and the proper placement of the electrode array 
can be evaluated using different methods, one of which is electrical impedance (EI) meas-
urement [1]. Cochlear implant function is largely based on the device’s ability to reliably 
send electrical signals to the auditory nerve fibers [7]. This electrical signal can spread 
easily and widely since the perilymph and endolymph (i.e., intracochlear fluids) are es-
sential electrolytes [2,8]. Therefore, electrical impedance (EI) can be defined as the meas-
ure of the reluctance that is expressed by the perilymph to the current flow when voltage 
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Figure 1. Cochlear implant system and its components, including audio processor, microphone, coil,
internal implant, and electrode array (the illustration is reproduced with permission from MED-EL,
Innsbruck, Austria).

The function of the CI microphone is similar to that of the human pinna—it detects
and captures the audible sound signals from the area around the patient. The audio
processor subsequently uses signal processing algorithms to convert the sound signal into
detailed digital signals and transmit them to the internal part (implantable electronics) via
the inductive link between the external and internal coil. These digital signals are then
converted into electric stimuli/impulses by the electronic system of the internal implant.
Thereafter, the electrode array delivers these stimuli to the scala tympani of the cochlea
and then to the auditory nerve [3]. The auditory/cochlear nerve should be present in
CI candidates as it helps to restore their hearing abilities properly [4]. This nerve acts as
a conductor, carrying electrical stimulation generated and decoded by the CI system to the
brainstem and then on to the auditory cortex.

CI surgery is typically indicated for pre-lingual and post-lingual deafness. Recently,
it has also been approved for patients with single-sided deafness (SSD). Patients who
received implants early, before the age of two years, showed better audiological and speech
performance [5]. On the other hand, pre-lingually deafened patients of an older age may
not show satisfactory outcomes, and they might sometimes be non-users of implants. The
explanation behind this is that the brain may utilize the region for auditory sensation at
the level of the auditory cortex for other somatosensory inputs after a lengthy period of
deafness [6].

The cochlear implant’s (CI) function and the proper placement of the electrode ar-
ray can be evaluated using different methods, one of which is electrical impedance (EI)
measurement [1]. Cochlear implant function is largely based on the device’s ability to
reliably send electrical signals to the auditory nerve fibers [7]. This electrical signal can
spread easily and widely since the perilymph and endolymph (i.e., intracochlear fluids)
are essential electrolytes [2,8]. Therefore, electrical impedance (EI) can be defined as the
measure of the reluctance that is expressed by the perilymph to the current flow when
voltage is applied [1]. A normal measured impedance range is indicative of a good current
flow in the fluid and tissue of the cochlea. Any big variation from the normal range can
reflect an abnormal current flow [9].

The value of the impedance is mainly affected by the relationship between the
electrode–tissue interface and the surrounding tissues around the electrode. After CI surgery,
fibrotic tissue formation is induced by the foreign-body reaction to the electrode [2,10]. The
amount of fibrotic tissue surrounding the electrode array has been found to be significantly
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correlated with EI value. EI reaches its highest value after 4 weeks due to an increase in
fibrous tissue formation; then, it stabilizes after 8 weeks. EI declines after the activation of
the device due to the disrupted adhesion of the fibrous tissue to the electrode [11].

In clinical settings, testing the EI has the following main uses: for the evaluation of the
electrode’s overall function, measurement of the impedance level, detection of problems
such as short- and/or open-circuits, guidance for audio processor fitting, and determination
of the power consumption level [12]. Clinicians’ familiarity with EI variation trends at
different time points after device activation is crucial. This familiarity could also help
non-experienced clinicians with any problems they might have with their patients, in case
irregular EI values are found. However, there is still a lack of objective tools for predicting
the EI at different time points after CI surgery. Therefore, the primary aim of this work
is to develop a machine learning model that can utilize specific characteristics of each
CI patient to predict the EI at different time points after the surgery and up to twelve
months post-activation.

2. Related Work

Machine learning is well-known and has been used in previous studies [13,14]. Many
researchers have used machine learning (ML) in projects related to cochlear implantation.
Table 1 introduces some of these studies and the most important findings. From these
studies, it can be seen that the performance of the ML algorithm differs according to the
type and size of the datasets. Many studies use neural networks as a learning model.
In this research work, we use different machine learning algorithms, including neural
networks. We seek to determine the best algorithm for predicting the electrode impedance
in each channel.

Table 1. Research papers related to cochlear implantation and machine learning.

ID Ref. Type ML Algorithms Goal Results

1 [10] Research
Neural Networks, Linear

Regression, and
Decision Trees

Predict the electrode
impedance after 1 month

Accuracy varies between
66% and 100% based on

the channel

2 [15] Research
Shallow Neural Networks
(SNN) and Support Vector

Machines (SVM)

Classify the insertion
lengths of the

electrode array

The SNN accuracy is 86.1%
(partial insertion data),

while the SVM accuracy is
97.1% (full insertion data)

3 [16] Research SVM and random forest

Predict whether healthy
people will accept the

speech of children with
cochlear implants

Random forest algorithm
produces the best results

4 [17] Survey

The study includes 298
articles; The most common

ML algorithm is Neural
Networks (47.5% of papers)

Determine the usage of ML
in CI

Most papers use ML to
assist CI in signal

processing optimization

5 [18] Research
Neural Networks

and tree-based
ensemble algorithms

Predict the
postoperative cochlear
implant performance

Model accuracy is 95.4%

6 [19] Research Random forest
Automate image-guided

cochlear implant
programming

Recommend specific CI
configuration for

each patient

7 [20] Research Semi-supervised SVM Predict language outcomes
following CI

The model gives a 2-year
prediction for developing
effective language skills



Electronics 2023, 12, 2720 4 of 12

3. Material and Methods
3.1. Subjects

This is a retrospective study that was conducted at a tertiary CI center after obtaining
ethical approval from the institutional review board. Our inclusion criteria were all pre-
lingual children with severe hearing loss who received the same type of CI device (MED-EL,
Innsbruck, Austria) at our tertiary center between 2016 and 2018, who had a complete
and smooth intraoperative insertion that was assured by post-op X-ray, and who recorded
normal EI during the surgery and throughout the follow-up after the device activation. All
enrolled patients were full-time CI users, with an average daily use of at least 8.5 h/day
and had used their devices for at least 2 years. Patients were excluded if they had cochlear
ossifications, inner ear anomalies, or deficient language skills.

3.2. Machine Learning Model

The dataset used in the current study includes 80 patients. For each patient, we
compiled the data for age at implantation and the electrode impedance at each electrode
contact (from Channel 1 to Channel 12) during the surgery.

Dataset preparation required some formatting standardization processes. These pro-
cesses were automated using programming scripts written in the Ring programming
language [21]. These scripts were generated using the Programming Without Coding
Technology (PWCT) software, which is a free/open-source visual programming language
for the development of applications and systems [22]. We selected Ring because of its
powerful GUI tools in addition to its capabilities, which are comparable to those of Python
and Ruby [23].

This study used various algorithms for the regression analyses. We selected some of
the popular machine learning algorithms in the literature [24–26], such as:

1. Neural Networks Regression (NNR);
2. Linear Regression (LR);
3. Modern decision tree algorithms;

3.1 Decision Forest Regression (DFR);
3.2 Boosted Decision Tree Regression (BDTR);

4. Bayesian Linear Regression (BLR).

Picking one algorithm could lead to limited results. Additionally, we cannot try every
possible algorithm to save computational cost and time. So, we decided to pick five different
algorithms. Algorithm selection could be based on different factors like the size and the
structure of the data, Training time, Accuracy, etc. The survey paper in [18] indicates that
the most popular machine learning algorithm used with cochlear implantation datasets
in the literature review is the Neural Networks (47.5%). In this survey we notice that the
other algorithms do not have huge popularity like the neural networks and the difference
between most of them with respect to the usage percentage is not huge. So based on the
literature we decided to select (Neural Networks) as our first choice in our list of algorithms
that we will use with our dataset. Since we have a regression problem, we decided to select
one of the popular regression algorithms in general like linear regression.

After looking at our first two choices (Neural Networks, Linear Regression), We no-
ticed that the function representation of these models is classified as Numerical functions.
To have a variety of algorithms, we decided to extend our list with algorithms that use
symbolic functions too. and we picked decision trees which is one of the popular algo-
rithms that are useful when working with small dataset as we have. We picked modern
decision trees algorithms that uses Ensemble learning like Decision Forest Regression
and Boosted Decision Tree Regression (BDTR). Finally, we added the Bayesian Linear
Regression algorithm to our list of algorithms as an algorithm that uses (Probabilistic
Graphical Models).
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We created ML models using Microsoft Azure Machine Learning. We selected this
tool to reduce the development time and to facilitate the performance of huge experiments
with different parameters that make use of visual tools [27].

Since the dataset is small, and the number of features is limited (from 1 to 13), we used the
default settings for each algorithm as provided by Microsoft Azure ML. For neural-network
regression the model hyperparameters are (Three layers, Number of hidden nodes = 100,
learning rate = 0.005, learning iterations = 100 and the type of normalizer is Min-Max
normalizer). For decision forest regression the model hyperparameters are (Number of
decision trees = 8, the maximum depth of the decision tree = 32, the number of random
splits per node = 128 and the resampling method is bagging). For the boosted decision
tree regression, the model hyperparameters are (maximum number of leaves per tree = 20,
minimum number of samples per leaf node = 10, the learning rate = 0.2 and the total
number of trees constructed = 100). For linear regression the solution method is ordinary
least squares and the L2 regularization weight = 0.001.

Since this is a regression problem, we used the Root Mean Squared Error (RMSE) to
compare between the different algorithms with the winning algorithm being the one that
provides the minimum RMSE. We published the dataset used in this study and the design
of the experiments using Microsoft Azure ML in the GitHub website [28].

The following steps were used to build and test the proposed model:

1. Preparation of the dataset using the Ring language scripts (generated by PWCT);
2. Uploading the dataset to Microsoft Azure Machine Learning;
3. Splitting the data (training data and test data);

3.1 A total of 70% of the data was used for training (56 patients);
3.2 A total of 30% of the data was used for testing (24 patients);
3.3 Random seed was used for the splitting process;

4. Selecting columns (using features group 1 or 2);
5. Selecting the algorithm (from a choice of 5 different algorithms);
6. Training the model using the training data and the selected algorithm;
7. Evaluating the model (calculating the root mean squared error—RMSE);
8. Repeating the experiment and changing the features group and/or the algorithm;
9. Comparing the results of different groups of features and algorithms.

3.3. Outcome Measures

The ML-predicted electrode impedance values were compared to those that were
objectively measured and recorded from the included patients. This comparison was
carried out for each electrode from the 12 contacts of the tested electrode array at the
following time points: one, three, six-, and twelve months post-activation.

3.4. Data Analyses

GraphPad Prism version 9.3.0 was used for all statistical analyses (GraphPad Software,
La Jolla, CA, USA). The mean, standard deviation, and range (minimum and maximum
values) were used to describe the characteristics of the participants. The normality of the
data was first checked before comparing the preoperative and postoperative data. To test
the significance of the group data with a normal distribution, a parametric paired t-test was
used, and the Wilcoxon non-parametric test was used for the rest of the data. The statistical
significance level was set at p = 0.05. The inter-rater reliability, i.e., the degree of agreement
among predicted and recorded EI values, was computed using Cohen’s Kappa.

4. Results

The study included a total of 80 patients, which were divided into the study and control
groups. The results of the study group represent the predicted EI values, while those of
the control group correspond to the measured EI values. The mean age at implantation for
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both groups was 4.52 years (±2.51 years). Among the included patients, 55% underwent
CI on the right side and 45% on the left side.

4.1. Machine Learning Predicted EI Values

Table 2 shows the dataset features and each predicted label. We used the data of both
groups to predict the electrode impedance at each contact at one, three, six, and twelve
months after the surgery.

Table 2. Dataset features.

Features (Group 1) Features (Group 2) Label Rows

Age at implantation

Age at implantation, EI_Intra_1,
EI_Intra_2, EI_Intra_3, EI_Intra_4,
EI_Intra_5, EI_Intra_6, EI_Intra_7,

EI_Intra_8, EI_Intra_9, EI_Intra_10,
EI_Intra_11, EI_Intra_12

One label from (EI_1M_1 to EI_1M_12)
or (EI_3M_1 to EI_3M_12) or (EI_6M_1
to EI_6M_12) or (EI_1Y_1 to EI_1Y_12)

80

Table 3 includes each label in the dataset and the minimum and maximum values. In
addition, the table demonstrates the range of values for each label. Some labels have a high
range; e.g., for electrode number 4, the EI after one month has a range equal to 14.09 KΩ.
On the other hand, some electrodes have a smaller range, such as electrode number 10,
which showed an EI of 5.88 KΩ after one month.

Table 3. Minimum and maximum values for each label in the dataset.

Electrode Impedance (KΩ)

After 1 Month After 3 Months After 6 Months After 1 Year
Electrode# Min Max Range Min Max Range Min Max Range Min Max Range

1 4.48 16.86 12.38 3.86 15.17 11.31 4.66 14.59 9.93 3.86 14.68 10.82
2 5.37 17.64 12.27 3.94 16.98 13.04 3.21 16.64 13.43 3.02 13.43 10.41
3 4.19 14.57 10.38 4.02 13.88 9.86 3.79 13.2 9.41 3.51 13.2 9.69
4 3.38 17.47 14.09 4.08 11.41 7.33 3.59 10.93 7.34 2.86 11.08 8.22
5 2.71 16.5 13.79 3.66 11.8 8.14 3.59 11.17 7.58 3.32 10.66 7.34
6 2.1 10.55 8.45 3.53 8.72 5.19 3.26 8.15 4.89 3.14 7.25 4.11
7 1.97 8.94 6.97 3.31 7.68 4.37 3.18 7.68 4.5 2.95 7.68 4.73
8 2.34 8.59 6.25 3.38 7.72 4.34 3.41 7.56 4.15 3.2 7.56 4.36
9 2.34 8.3 5.96 3.45 7.33 3.88 2.77 7.29 4.52 2.49 7.29 4.8

10 2.12 8 5.88 2.81 9 6.19 2.51 9.26 6.75 2.7 8.54 5.84
11 2.12 9.62 7.5 2.93 8.08 5.15 3.05 9.76 6.71 2.6 8.71 6.11
12 2.12 9.31 7.19 3.25 9.21 5.96 3.19 9.84 6.65 3.06 11.62 8.56

After several attempts in testing the machine learning model, we found that Table 4
contains the best algorithm for predicting the impedance at each electrode in the electrode
array. After one and three months, the best algorithm uses Group 2 features, which include
the patient’s age and intra-operative EI. After six and twelve months, age at implantation
was the best predictor for the EI of half of the electrodes (i.e., six electrodes).

Table 5 demonstrates the best algorithms. It can be seen that Bayesian linear regression
is a better algorithm than neural networks. After that, we have the decision forest regression
and the boosted decision tree regression at the same level. Finally, we have the linear
regression model, which performed well in predicting two labels (out of 48).
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Table 4. The best algorithm and the RMSE.

Electrode#
After 1 Month After 3 Months After 6 Months After 1 Year

Algorithm Group RMSE Algorithm Group RMSE Algorithm Group RMSE Algorithm Group RMSE

1 BLR 2 0.94 BLR 2 0.97 BLR 2 0.85 BLR 2 0.95
2 DFR 2 0.93 BDTR 2 1.03 BLR 1 0.99 BLR 2 0.84
3 LR 2 0.80 BLR 2 0.83 BLR 2 0.72 NNR 2 0.84
4 BLR 2 1.12 NNR 2 0.95 NNR 2 0.97 BLR 1 0.98
5 BLR 2 1.18 BLR 2 0.88 DFR 2 0.87 BLR 1 0.90
6 BLR 2 1.17 BDTR 2 0.78 NNR 2 0.82 BLR 1 0.92
7 BLR 2 1.03 BDTR 2 1.03 NNR 2 0.90 DFR 2 0.93
8 BLR 2 1.05 NNR 2 0.99 NNR 1 0.98 NNR 2 0.87
9 BLR 2 1.09 BDTR 2 0.84 BLR 1 0.94 NNR 2 1.06
10 NNR 2 0.87 NNR 1 0.87 BLR 1 0.83 BLR 1 0.89
11 NNR 1 0.90 NNR 1 1.01 BLR 1 0.95 BLR 1 0.98
12 BDTR 2 0.89 DFR 2 0.92 LR 1 0.77 DFR 1 0.86

Table 5. The best algorithms for predicting the impedance in the electrode array.

Most Used Algorithm (All-Time) Count of Labels

Bayesian Linear Regression (BLR) 23
Neural Network Regression (NNR) 13
Decision Forest Regression (DFR) 5

Boosted Decision Tree Regression (BDTR) 5
Linear Regression (LR) 2

In Table 6, we list electrodes 1–12 and the different periods, ranging from one to twelve
months. Under each period, we assigned three stages of acceptable error ranges: 0–1 KΩ,
0–2 KΩ, and 0–3 KΩ. The number in each cell represents the percentage of the predicted EI
that exists in the specified range. For example, 75% of the predicated electrode impedance
for electrode 1 at 1 month after surgery exists in the 0–3 KΩ range. Values above 60% are
highlighted in the table.

Table 6. Predicted electrode impedance and the error percentage in different ranges.

Electrode
After 1 Month (%) After 3 Months (%) After 6 Months (%) After 1 Year (%)

0–1 KΩ 0–2 KΩ 0–3 KΩ 0–1 KΩ 0–2 KΩ 0–3 KΩ 0–1 KΩ 0–2 KΩ 0–3 KΩ 0–1 KΩ 0–2 KΩ 0–3 KΩ

1 20.83 54.16 75 29.16 41 66.66 25 66 78.50 33.33 54.16 79
2 29.16 62.50 66.66 16.66 54.10 66.66 12.50 25 54.16 50 70.83 87.50
3 41.66 62.50 83.33 41.66 79.16 87.50 41.66 62.50 91.66 16.66 41.66 66.66
4 37.50 66.67 83.33 20.83 54.16 95.83 20.83 54.16 100 25 45.83 75
5 54.17 75 83.33 37.50 79.16 95.83 29.20 83.40 95.90 12.50 29.16 58.33
6 41.67 70.83 91.67 62.50 91.66 100 83.40 100 100 20.83 45.83 83.33
7 37.50 66.67 91.67 79.16 87.50 95.84 79.10 95.80 100 75 95.83 100.00
8 41.67 70.83 83.33 66.66 95.83 95.83 66.60 95.70 95.70 66.66 91.66 95.83
9 58.33 79.17 91.67 62.50 91.66 100 20.80 45.80 58.30 62.50 95.83 100
10 58.33 91.67 100 70.83 100 100 25 58.33 70.83 16.66 50 70.83
11 58.33 91.67 100 50 91.66 100 29.20 50 66.70 29.16 50 62.50
12 45.83 54.17 83.33 41.66 79.16 100 54.20 83.40 100 62.50 87.50 87.50

Both Tables 7 and 8 summarize Table 4. Table 7 provides the winning algorithm for
the prediction of the electrode impedance at a specific number of months after the cochlear
implant surgery, while Table 8 provides the best group of features used in the prediction.

Table 7. The different algorithms and the number of channels where each algorithm provides the
best result.

Algorithm 1 M 3 M 6 M 1 Y

LR 1 0 1 0
NN 2 4 4 3
BLR 7 3 6 7
DFR 1 1 1 2

BDTR 1 4 0 0
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Table 8. The different features groups and the number of channels where each group of features
provides the best result.

1 M 3 M 6 M 12 M

Group (1) 1 2 6 6
Group (2) 11 10 6 6

In Figure 2, we provide a visualization that demonstrates which group of features is
more suitable for predicting the electrode impedance of specific channels.
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different channels over time.

4.2. Machine Learning Predicted EI Values

Hence, we statistically compared the predicted and measured EI values at different
time points. One month after the surgery (Figure 3A), the results showed an average EI
of 6.55 ± 1.21 KΩ for the measured group, while that predicted by the machine learn-
ing model was 6.84 ± 1.23 KΩ. The statistical comparison of both groups revealed
a non-statistical difference (p = 0.99). Similar findings exist at the other time points.
The average values of the predicted versus measured groups were the following: (i) at
three months (Figure 3B) 6.11 ± 0.88 KΩ vs. 6.60 ± 0.83 KΩ; p = 0.99; (ii) at six months
(Figure 3C) 5.20 ± 0.87 KΩ vs. 5.77 ± 0.94 KΩ; p = 0.53; (iii) at twelve months (Figure 3D)
4.85 ± 0.90 KΩ vs. 5.51 ± 0.94 KΩ; p = 0.19.

Despite the nonsignificant (ns) differences among the EI of both groups at most
electrode contacts at the different tested time points, as illustrated in Figure 1, there are
some significant discrepancies between the EI values of specific electrode contacts at two-
time points, namely at six months after the surgery (electrodes # 2, 9, 10, and 11) and at
twelve months post-op (electrodes # 3, 4, 5, 6, 10, and 11). The stars (**), (***) and (****) in
the figure represent the scale of the differences among the EI of both groups.
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5. Discussion

A growing body of evidence has demonstrated the utility of machine learning algo-
rithms in predicting and optimizing auditory outcomes following CI. By analyzing large
amounts of data, machine learning algorithms can be used to create personalized sound
processing strategies for each patient and help in improving the performance of cochlear
implants over time. In [23], Alohali et al. evaluated several machine learning algorithms
(Table 1) to predict EI one month after surgery. The results showed that the performance
of machine learning algorithms was based on the electrode channels, with an accuracy
ranging from 66 to 100% [10].

Our experiments indicate that the electrode impedance of CI devices could be pre-
dicted at the electrode contacts (from 1 to 12) at different time points using different
machine-learning algorithms. Table 6 indicates that the Bayesian linear regression (BLR)
provides the best results, followed by the neural networks (NN), which have been used in
most research papers related to cochlear implantation [18]. The BLR algorithm provides
the best results for seven electrodes when predicting the electrode impedance (EI) after
one month of implantation. Furthermore, it provides the best results for three electrodes
when predicting the EI after three months. The algorithm provides the best results for
six electrodes when predicting the EI after six months, while it provides the best results
for seven electrodes when predicting the EI after one year. Therefore, on average, the
BLR algorithm provided the best results for half of the electrodes. On the other hand, we
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noticed that the linear regression algorithm did not provide good results as compared to
the other algorithms. When predicting the EI after six months or one year, we noticed that
each group of features provided the best results for half of the channels, as demonstrated
in Table 7.

Figure 2 provides a deeper look at the feature groups for predicting the EI of each
channel. We noticed that some electrodes provide the best results with a specific group of
features, while the other channels shift between the groups based on the period of time.
For example, electrode number 11 always provides the best prediction results when using
group 1 of the features. However, electrode numbers 1, 3, and 7 always provide the best
prediction results when using group 2 of the features. Concerning electrode number 10,
after one month, the best prediction results were observed when using feature group 2,
while after 3, 6, and 12 months, the best results were achieved when using feature group 1.

When looking at the features that were used to predict EI at different time points, we
found that age at implantation and intraoperative EI were the best predictors of EI, with
variable accuracies according to the electrode number and time point. Intraoperative EI
values can play a significant role in predicting array positioning and helping correct the
anatomic and functional placement of the implants [29]. However, the role of intraopera-
tive EI in predicting postoperative function is unclear. Previous reports have shown that
abnormal intraoperative EI can significantly predict postoperative electrode function. In [7],
there was a trend of persistent abnormalities in the intraoperative EI, which extended to the
immediate postoperative period; however, the trend was not statistically significant. Carl-
son et al. showed that nearly 58% of postoperative electrode abnormalities were observed
during the intraoperative period [30]. In the present study, we found that intraoperative EI
values can predict EI at different postoperative points.

Electrode numbers 4, 5, and 6 provided the best results for EI prediction using features
group 2 after 1, 3, and 6 months, while they provided the best prediction for EI after
12 months using features group 1. On the other hand, electrode numbers 2, 8, and
9 provided the best results for EI prediction using features group 2 after 1, 3, and 12 months,
while they provided the best prediction for EI after 6 months using features group 1.

The statistical comparison of the ML-model prediction results and the objectively
measured values showed non-significant differences for most electrode contacts at different
time points. This could confirm the accuracy and sensitivity of the proposed model.
Furthermore, the statistically significant differences could be attributed to the low sample
size and the limited number of characteristics that were used to predict the post-op EI
levels. However, the application of such a model needs more investigations with a larger
sample size before generalizing the findings of the current study. This is due to the small
sample size of the current work which could be considered as a study limitation in addition
to its retrospective nature. Another limitation is the probability of the existence of some
other factors that might influence EI despite the clear inclusion/exclusion criteria of the
current study. On the other hand, this model could be used as an initial step for having
an objective tool for predicting EI at different time points after CI surgery. Such a tool
could assure that the clinicians, even the inexperienced person, will be conversant with
EI variation trends at various time points following device activation, and help them to
discover any unusual EI values with their patients as earlier as it happens.

6. Conclusions

The results of this study prove that machine learning is an efficient and effective
tool in the field of cochlear implantation. Using data processing, feature selection, and
machine learning models that employ modern and advanced algorithms, we can predict
the electrode impedance of different channels to help professionals make early decisions
that would improve the hearing quality of cochlear patients [13–15]. In terms of predicting
the EI following CI, in this article, we presented a machine learning model that predicted
the cochlear impedance in 12 different channels using different algorithms such as linear
regression, Bayesian linear regression, random forest regression, boosted decision tree
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regression, and neural networks. We performed several experiments to evaluate the
performance of each model and to determine which model provided the best results at one
month, three months, six months, and one year after the surgery.

We developed the model using the Microsoft Azure Machine Learning tool after
preparing the dataset using scripts written in the Ring programming language. Through
feature selection, we discovered that patient’s age could be used alone to provide the
best prediction results for half of the channels at six months or one year after the cochlear
implant surgery. Our results also showed that the use of a specific prediction algorithm for
each channel provided better results. Furthermore, the accuracy level was between 83%
and 100% in half of the channels one year after the surgery, when an error range between
0 and 3 KO was set as an acceptable threshold.

Author Contributions: Conceptualization, Y.A.A., M.S.F., Y.A. and A.H.; methodology, Y.A.A., M.S.F.
and Y.A.; software, Y.A.A. and M.S.F.; validation, Y.A.A., A.H., F.A. and A.A.; formal analysis,
Y.A.A. and M.S.F.; investigation, Y.A.A., A.H., F.A. and T.M.; resources, M.S.F., F.A. and Y.A.; data
curation, F.A., Y.A., T.M. and A.A.; writing—original draft preparation, M.S.F., Y.A.A. and Y.A.;
writing—review and editing, F.A., A.A., T.M. and A.H.; visualization, M.S.F.; supervision, Y.A.A. and
A.H.; project administration, Y.A. and A.H.; funding acquisition, T.M. All authors have read and
agreed to the published version of the manuscript.

Funding: Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding
this research (IFKSURC-1-5712).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Medical-Bioethics Research Ethics Committee (REC) of King Saud
University, Riyadh (Ref. No. 22/0084/IRB).

Informed Consent Statement: For the data in this retrospective study are from a public database,
formal consent was not required.

Data Availability Statement: The data used to support the findings of this study are available from
the corresponding author upon request.

Acknowledgments: The authors extend their appreciation to the Deputyship for Research & Innova-
tion, Ministry of Education in Saudi Arabia for funding this research (IFKSURC-1-5712).

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Alhabib, S.F.; Abdelsamad, Y.; Yousef, M.; Alzhrani, F.; Hagr, A. Effect of early activation of cochlear implant on electrode

impedance in pediatric population. Int. J. Pediatr. Otorhinolaryngol. 2021, 140, 110543. [CrossRef] [PubMed]
2. Hafez Aboubakr, A.; Yousef, M. Effect of Cochlear Implant Electrode Design on Electrode Impedances and Stimulating Charge

(Maximum Comfortable Level). J. Otolaryngol. 2022, 25, 556152. [CrossRef]
3. Dhanasingh, A.; Hochmair, I. Signal processing & audio processors. Acta Oto Laryngol. 2021, 141 (Suppl. 1), 106–134. [CrossRef]
4. Parry, D.A.; Booth, T.; Roland, P.S. Advantages of magnetic resonance imaging over computed tomography in preoperative

evaluation of pediatric cochlear implant candidates. Otol. Neurotol. 2005, 26, 976–982. [CrossRef]
5. Tajudeen, B.A.; Waltzman, S.B.; Jethanamest, D.; Svirsky, M.A. Speech perception in congenitally deaf children receiving cochlear

implants in the first year of life. Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2010, 31, 1254.
[CrossRef] [PubMed]

6. Sharma, A.; Gilley, P.M.; Dorman, M.F.; Baldwin, R. Deprivation-induced cortical reorganization in children with cochlear
implants. Int. J. Audiol. 2007, 46, 494–499. [CrossRef] [PubMed]

7. Goehring, J.; Hughes, M.; Baudhuin, J.; Lusk, R. How Well Do Cochlear Implant Intraoperative Impedance Measures Predict
Postoperative Electrode Function? Otol. Neurotol. Off. Publ. Am. Otol. Soc. Am. Neurotol. Soc. Eur. Acad. Otol. Neurotol. 2013, 34,
239. [CrossRef]

8. Jiang, C.; de Rijk, S.; Malliaras, G.; Bance, M. Electrochemical impedance spectroscopy of human cochleas for modeling cochlear
implant electrical stimulus spread. APL Mater. 2020, 8, 091102. [CrossRef]

9. French, M.L. Electrical impedance measurements with the CI24M cochlear implant for a child with Mondini dysplasia. Br. J.
Audiol. 1999, 33, 61–66. [CrossRef]

10. Alohali, Y.A.; Almuhawas, F.; Abdelsamad, Y.; Hagr, A.; Fayed, M.S. Predicting Electrode Array Impedance after One Month From
Cochlear Implantation Surgery Saudi Arabia. In Proceedings of the Second International Conference on Artifical Intelligence &
Modern Assistive Technology (ICAIMAT’ 2022), Riyadh, Saudi Arabia, 19 May 2022.

https://doi.org/10.1016/j.ijporl.2020.110543
https://www.ncbi.nlm.nih.gov/pubmed/33302020
https://doi.org/10.19080/GJO.2022.25.556152
https://doi.org/10.1080/00016489.2021.1888504
https://doi.org/10.1097/01.mao.0000185049.61770.da
https://doi.org/10.1097/MAO.0b013e3181f2f475
https://www.ncbi.nlm.nih.gov/pubmed/20814343
https://doi.org/10.1080/14992020701524836
https://www.ncbi.nlm.nih.gov/pubmed/17828665
https://doi.org/10.1097/MAO.0b013e31827c9d71
https://doi.org/10.1063/5.0012514
https://doi.org/10.3109/03005364000000100


Electronics 2023, 12, 2720 12 of 12

11. Busby, P.A.; Plant, K.L.; Whitford, L.A. Electrode impedance in adults and children using the Nucleus 24 cochlear implant system.
Cochlear Implant. Int. 2020, 3, 87–103. [CrossRef]

12. Lanatà, A.; Liu, X.; Andrea Pullano, S.; di Lella, F.A.; Lella, D.F.; Parreño, M.; Fernandez, F.; Boccio, C.M.; Ausili, S.A. Measuring
the Electrical Status of the Bionic Ear. Re-thinking the Impedance in Cochlear Implants. Front. Bioeng. Biotechnol. 2020, 8, 568690.
[CrossRef]

13. Kha, Q.H.; Le, V.H.; Hung, T.N.K.; Nguyen, N.T.K.; Le, N.Q.K. Development and Validation of an Explainable Machine
Learning-Based Prediction Model for Drug-Food Interactions from Chemical Structures. Sensors 2023, 23, 3962. [CrossRef]
[PubMed]

14. Vo, T.H.; Nguyen, N.T.K.; Kha, Q.H.; Le, N.Q.K. On the road to explainable AI in drug-drug interactions prediction: A systematic
review. Comput. Struct. Biotechnol. J. 2022, 20, 2112–2123. [CrossRef]

15. Hafeez, N. Electrical impedance guides electrode array in cochlear implantation using machine learning and robotic feeder. Hear.
Res. 2021, 412, 108371. [CrossRef]

16. Byeon, H. Evaluating the Accuracy of Models for Predicting the Speech Acceptability for Children with Cochlear Implants. Int. J.
Adv. Comput. Sci. Appl. 2021, 12, 25–29. [CrossRef]

17. Crowson, M.G.; Lin, V.; Chen, J.; Chan, T.C.Y. Machine Learning and Cochlear Implantation—A Structured Review of Opportuni-
ties and Challenges. Otol. Neurotol. 2020, 41, E36–E45. [CrossRef] [PubMed]

18. Crowson, M.G. Predicting Postoperative Cochlear Implant Performance Using Supervised Machine Learning. Otol. Neurotol.
2020, 41, e1013–e1023. [CrossRef]

19. Zhang, D. Machine Learning-Based Techniques for Automating Image-Guided Cochlear Implant Programming. Ph.D Thesis,
Vanderbilt University, Nashville, TN, USA, 2019.

20. Tan, L.; Holland, S.; Deshpande, A.; Chen, Y.; Choo, D.; Lu, L.J. A semi-supervised Support Vector Machine model for predicting
the language outcomes following cochlear implantation based on pre-implant brain fMRI imaging. Brain Behav. 2015, 5, e00391.
[CrossRef]

21. Ayouni, M. Beginning Ring Programming. Apress 2020, 978, 4842–5832.
22. Fayed, M.S.; Al-Qurishi, M.; Alamri, A.; Hossain, M.; Al-Daraiseh, A. PWCT: A novel general-purpose visual programming

language in support of pervasive application development. CCF Trans. Pervasive Comput. Interact. 2020, 2, 164–177. [CrossRef]
23. Alohali, Y.A.; Fayed, M.S.; Mesallam, T.; Abdelsamad, Y.; Almuhawas, F.; Hagr, A. A Machine Learning Model to Predict Citation

Counts of Scientific Papers in Otology Field. BioMed Res. Int. 2022, 2022, 2239152. [CrossRef] [PubMed]
24. Kröse, B.; Smagt, P.V.D. An Introduction to Neural Networks; The University of Amsterdam: Amsterdam, The Netherlands, 1993.
25. Gurney, K. An Introduction to Neural Networks; CRC Press: Boca Raton, FL, USA, 1997.
26. Hong, H.; Tong, W.; Perkins, R.; Fang, H.; Xie, Q.; Shi, L. Multiclass decision Forest—A novel pattern recognition method for

multiclass classification in microarray data analysis. DNA Cell Biol. 2004, 23, 685–694. [CrossRef]
27. Barnes, J. Microsoft Azure Essentials Azure Machine Learning; Microsoft Press: Unterschleissheim, Germany, 2015.
28. Yousef et all, Electrode IMPEDANCE Prediction Dataset and Experiments Using Microsoft Azure ML. Available online: https:

//github.com/MahmoudFayed/EIPrediction (accessed on 15 June 2023).
29. Mittmann, P. Intraoperative electrophysiologic variations caused by the scalar position of cochlear implant electrodes. Otol.

Neurotol. 2015, 36, 1010–1014. [CrossRef] [PubMed]
30. Carlson, M.L.; Archibald, D.J.; Dabade, T.S. Prevalance and timing of individual cochlear implant electrode failures. Otol. Neurotol.

2010, 31, 893–898. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1179/cim.2002.3.2.87
https://doi.org/10.3389/fbioe.2020.568690
https://doi.org/10.3390/s23083962
https://www.ncbi.nlm.nih.gov/pubmed/37112302
https://doi.org/10.1016/j.csbj.2022.04.021
https://doi.org/10.1016/j.heares.2021.108371
https://doi.org/10.14569/IJACSA.2021.0120203
https://doi.org/10.1097/MAO.0000000000002440
https://www.ncbi.nlm.nih.gov/pubmed/31644477
https://doi.org/10.1097/MAO.0000000000002710
https://doi.org/10.1002/brb3.391
https://doi.org/10.1007/s42486-020-00038-y
https://doi.org/10.1155/2022/2239152
https://www.ncbi.nlm.nih.gov/pubmed/35909490
https://doi.org/10.1089/dna.2004.23.685
https://github.com/MahmoudFayed/EIPrediction
https://github.com/MahmoudFayed/EIPrediction
https://doi.org/10.1097/MAO.0000000000000736
https://www.ncbi.nlm.nih.gov/pubmed/25730445
https://doi.org/10.1097/MAO.0b013e3181d2d697
https://www.ncbi.nlm.nih.gov/pubmed/20142796

	Introduction 
	Related Work 
	Material and Methods 
	Subjects 
	Machine Learning Model 
	Outcome Measures 
	Data Analyses 

	Results 
	Machine Learning Predicted EI Values 
	Machine Learning Predicted EI Values 

	Discussion 
	Conclusions 
	References

