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Abstract: A full connected world is expected to be introduced in the sixth generation mobile net-
work (6G). As a typical fully connected scenario, the internet of vehicle (IoV) enables intelligent
vehicle operations via artificial intelligence (AI) and edge computing technologies. Thus, integrating
intelligence into edge computing is, no doubt, a promising development trend. In the future of
vehicular networks, a massive variety of services need powerful computing resources and higher
quality of service (QoS). Existing computing resources are insufficient to match those increasing
requirements. Most works on this problem focused on finding the power-delay’s trade-off, ignoring
QoS and stable load balance. In this study, we found that the computing power and redundancy of
vehicles’ in IoV is increasing. So, those redundant computing resources are possible to be used to
solve the shortage of computing resource. CNN is a typical AI technique. This technology is very
suitable for solving the problems in this article. So, we adopted CNN technique of AI to design and
algorithm of convolutional long short-term memory (CN_LSTM) based traffic prediction (ACLBTP).
ACLBTP was designed to gain the predicted number of vehicles belonging to the edge node. Secondly,
according to the problem of insufficient computing resources on remote servers, we found that a
large amount of redundant computing resources exist in edge nodes. So, we used edge computing
technique to solve the problem of insufficient computing resources on remote servers. ASOBCL was
designed to distribute computing tasks to edge nodes. Meanwhile, an intelligent service offloading
framework was provided in this article. Based on the framework, an algorithm of improved gradient
descent (AIGD) was created to accelerate the speed of iteration. So, the ACLBTP’s convergence of
convolutional neural network (CNN) based on AIGD was able to be accelerated too. In ASOBCL, a
sorting technique was adopted to speed up the offloading work. Simulation results demonstrated
the fact that the prediction strategy designed in this paper had high accuracy. The low offloading
time and maintaining stable load balance were gained via running ASOBCL. Low offloading time
means short response time. Additionally, the QoS was guaranteed. So, these strategies designed in
this paper were effective and valuable.

Keywords: 6G; IoV; AI; edge computing; QoS; CNN; LSTM

1. Introduction

A full connected world is expected to be introduced in the sixth generation mobile
network (6G) [1]. Sixth generation (6G) network faces the challenge of working efficiently
and flexibly in a wider range of scenarios [2]. The autonomous management capability
of 6G systems is enhanced to satisfy various application requirements, such as mobile
broad bandwidth and low latency [3]. As a typical fully connected scenario, the internet of
vehicle (IoV) was selected as the research subject in this paper. According to GE Digital,
new technology of IoT is estimated to unlock manufacturing savings and benefit 46 percent
of the global economy [4]. The internet of vehicles (IoV) is a communication paradigm that
connects the vehicles to the Internet for transferring information between the networks [5].
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The internet of vehicles, as an important subset of internet of things, developed rapidly in
recent times. The development of IoV delivers new insights into application of IoT. Internet
of vehicles (IoV) is constructed with a number of connected vehicle devices which provide
a variety of services [6]. At the same time, the progress of IoV substantially pushes the
development of intelligent transportation [7]. With the increasing growth of sensors’ and
perception devices’ amount, more and more valuable information is able to be obtained
from the surrounding environment via vehicles [8]. In the meantime, the data processing
capability of on-board equipment is constantly improving with the hardware’s innova-
tion and performance upgrade [9]. Meanwhile, IoV services (e.g., auto navigation, traffic
forecast and route planning, etc.) are most delay sensitive. However, the conventional
computing resources are not enough to meet these real time requirements of services [10].
Advanced intelligent vehicular applications (e.g., intelligent road environment perception,
intelligent decision making and vehicle behavior controlling, etc.) are envisioned in the fu-
ture [11]. These intelligent vehicular applications need powerful computing capability, low
latency and stable load balance [12]. According to the problem of conventional computing,
resources are not enough to meet these real time requirements of services, and existing
works mostly ignored the impact of service offloading and of QoS [13]. The summary of
problems in existing works is given as follows.

With these observations from Table 1, we can understand clearly that it is challenging
to gain high QoS and stable load balance at the same time. In this article, the redundant
computing power of vehicles’ in IoV was fully utilized to achieve this goal. Firstly, we
achieved an intelligent computing and service offloading architecture for high QoS. Then,
a series of strategies were designed for gaining low offloading time and maintaining stable
load balance.

Table 1. Summary of Problems in Existing Works.

Problems Existing Works

Ignoring the problems of load balance and the computing
ability of edge nodes.

Satveerrs S et al. provide a plan on service offloading to find the
best power-delay’s trade-off [14].

Ignoring the problem of delay. At the same time, the quality of
service (QoS) is not considered properly.

H. Liu et al. propose parked vehicle edge computing for
distributed task execution [15,16].

Ignoring the problem of large consumption of storage space. In
some cases, this may lead to serious consequences.

To provide high-quality information services, Z. Su et al.
suggest a strategy for caching content in parked vehicles

in advance [17].

Redundant computing and storage resources are not been
considered for reasonable utilization. At the same time, the

quality of service (QoS) is not considered properly.

W Sun et al. suggest edge computing is able to provide
distributed computing service through small-scale data centers

near the edge of the network [18].

The key contributions of this paper are summarized as follows.

(1) Develop an AI-based framework to deploy these strategies designed in this paper for
IoV during the service’s offloading process. In this framework, high QoS and stable
load balance are gained via running these strategies. This framework has important
practical significance for smart transportation especially.

(2) Adopt AIGD (Algorithm of Improved Gradient Descent) to improve the speed of
iteration. So, the convergence efficiency of CNN based on AIGD is able to be improved
significantly. As a result, the speed of the strategies based on AIGD is faster than
normal. This means lower time complexity and lower delay.

(3) Design ACLBTP (Algorithm of CN_LSTM Based Traffic Prediction) to gain the pre-
dicted number of vehicles. These vehicles are selected to be offloaded services.

(4) Conduct ASOBCL (Algorithm of Service Offloading Based on CN_LSTM) to offload
the services. A sorting technique was adopted in this algorithm. So, the work of
offloading in this strategy is more efficient than normal. This means high QoS. This
strategy is able to be deployed in scenarios with responsive requirements.
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The rest of this paper is organized as follows. The related works of this paper is
introduced in Section 2. Section 3 presents the framework of system. The model of system
is proposed in Section 4. These strategies of this paper are discussed in Section 5. The
simulation analysis is given in Section 6. Section 7 proposes the conclusion and future
works of this paper.

2. Related Works

IoV gained explosive advancement due to the growth of sensors technique [19]. Be-
cause vehicles are integrated with more and more computing resources, according Moore’s
law, those selected IoV services are able to be offloaded to those selected vehicles rather
than those edge nodes and remote services. Benefiting from those selected vehicles, the
quality of service is improved and the transmission time is reduced dramatically.

Many studies examined the effectiveness for service offloading. Wan et al. designed
an improved computation offloading method in a 5G environment for IoV, which could ad-
dress the challenge of selecting appropriate different destination [20]. Song et al. proposed a
hierarchical edge architecture with the intention of improving the 5G-based optimal mobile
system [21]. In order to select suitable service and vehicles, it is necessary and imperative
to design an appropriate offloading method. Ma et al. adapted LSH to design indexes of
feature vectors. The purpose was to improve the searching speed [22]. Luo et al. noted that
the MEC-IoV realized the extensive communication ability in the edge of network [23]. Kai
et al. focused on coordinating the vehicular layer and edge layer, and they jointly utilized
heterogeneous edge computing frameworks and advance IoV systems [24].

However, to the best of our knowledge, current studies about service offloading for
IoV focus on service utility and privacy security, but neglect the load balance and quality of
service. In this paper, an AI-enhanced strategy of service offloading was designed, and the
load balance and quality of service were improved.

3. The Framework of System

In this section, the notations summary of this paper and the framework of this system
is designed and expounded. Firstly, the notations summary of this paper is described in
Table 2.

Table 2. Summary of Notations in Problem Formulation.

Notations Descriptions

D1/2 the non-singular matrix
R the Raleigh quotient
v the given direction
H the function of Hessian
α the gradient descent
γ the eigenvalues of H
η the eigenvectors of H
Se the set of edge nodes
Ss the set of services
Rj the resource utilization of j-th EN

Rave the average resource utilizations of ENs
lb the load balance
θ the parameters of function
β the learning rate
µ the damping factor

It can be seen from Table 2 that the descriptions of notations are summarized. Then,
the framework of system was developed as follows.

In this article, we designed the algorithm of convolutional long short-term memory
(CN_LSTM) based traffic prediction (ACLBTP). The ACLBTP was deployed in the edge
nodes. The computing ability and storage of edge node was limited compared with the
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remote servers in this framework. So, we adopted LSTM to design ACLBTP. Meanwhile, an
algorithm of improved gradient descent (AIGD) was created to accelerate the convergence
speed of ACLBTP. The gradient descent method was suitable for light-weight datasets.
So, the AIGD was deployed in the edge nodes too. In this proposed intelligent service
offloading framework, ACLBTP and AIGD were deployed in edge nodes. ASOBCL was
deployed in the remote servers. Firstly, ACLBTP was trained in the training datasets
and accelerated the convergence speed. Secondly, ACLBTP predicted the number of
vehicles and selected the vehicles belonging to the edge node. Finally, ASOBCL distributed
computing tasks to these selected vehicles.

As shown in Figure 1, there were three layers in this framework. These layers were
data perception and computing layer, edge layer and cloud layer. The data perception and
computing layer were composed by those mobile nodes selected via AI strategy deployed
in edge nodes. These mobile nodes were able to exchange information with each other. The
information included traffic data and road conditions, etc. These mobile nodes uploaded
perception data to the edge nodes in the edge layer. The strategy deployed in edge node
offloaded computing task to the mobile nodes. At the same time, the resources were
allocated to these mobile nodes via the strategy.
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The edge layer was composed of edge nodes. The AI strategy designed in this paper
was deployed in these edges. The AI strategy was run in the training set and the predicted
number of mobile nodes was gained. These edge nodes assigned hard computing tasks to
the cloud. The cloud sent control policy back to these edge nodes. The service demands
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were provided to the applications in the application layer. At the same time, policy supports
were given to these applications via cloud.

The collaboration was run between cloud and edge nodes. All the layers in the frame-
work interacted with each other. By analyzing the datasets of services, edge knowledge
bases were built. The knowledge was able to be used for the prediction of the traffic
patterns. In this paper, it was used to predict the number of mobile edge nodes.

This framework was suitable for fully connected networks. In the perception layer
and edge layer, each entity was able to communicate with each other. Meanwhile, there
were enough redundant computing and storage resources in the vehicles of this framework.
Redundant computing and storage resources in the vehicles is a prerequisite for this
framework. In the future, security will be the focus of our next move. Suitable encryption
techniques will be gained to ensure information and privacy security.

In this part, we analyze the complexity of the framework. Assuming that the frame-
work of this paper is represented with F, the complexity of this framework is mainly
determined by these edge nodes and connections between these edge nodes. We mapped
the framework into a graph. The graph is represented by G.

G = (V,E) (1)

where V is the set of edge nodes. E is the set of connections between edge nodes.
The service in Ei is represented by Si.

Si = {F,C,Ji} (2)

where F is the function of service. C is the computing time. Ji represents the number of
implementations of service Si. Assuming the maximum number of services in G is N. In
this paper, complexity of this framework was considered in the worst-case scenario. This
complexity of this frame is represented as follows:

O(F) = N × (Ji)2 (3)

From (3), it can be seen that complexity of this proposed framework was moderate.
The complexity of this framework was mainly determined by the number of edge nodes.
The fewer edge nodes, the lower the complexity of the framework. The reduction in
vertices in G also meant the reduction in edges, the number of services deployed in edge
nodes decreased and the connections between services decreased accordingly. In future
research, we will investigate how to reduce the number of edge nodes by eliminating
non-schedulable paths while ensuring a certain level of QoS. The low complexity of the
framework was able to be gained via reducing the number of nodes.

The models of system based on the framework above are designed in the next section.

4. The Model of System

Precondition was designed via introducing a linear change of variables.

α = D
1
2 θ θ ∈ R (4)

where D
1
2 is a non-singular matrix. Then, a new function is able to be designed as

f(θ) = f(D−
1
2 α) (5)

The gradient of the function is expressed as follows.

f′(α) = D−
1
2 f′(θ) (6)
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The H in this paper is defined as

H = f′′ (θ) (7)

The Hessian of the function is expressed as follows.

f′′ (α) = (D−
1
2
)T

HD−
1
2 (8)

A gradient descent iteration for the transformed function is able to be gained from (6)
and (8).

αt = αt−1 − λ f′(α) (9)

According to the relationship of θ and α, A gradient descent iteration for θ is able to
be obtained as follows.

θt = θt−1 − λD−1f′(θ) (10)

The Raleigh quotient R is defined as

R(H, v) =
vT(Hv)

vTv
(11)

where v is a given direction. R is used to measure the amount of curvature.
The Raleigh quotient R is able to be decomposed as follows.

R(H, v) = ∑n
i γiηiη

T
i v (12)

where γi is the eigenvalues of H. ηi is the eigenvectors of H. So, Hv is able to be gained
from (11) and (12).

The set of EN (Edge Nodes) is defined as follows.

Se = (e1, e2, ...en) (13)

The set of services is defined as follows:

Ss = (s1, s2, ...sm) (14)

A variable ki,j is given to represent whether the n-th service is executed by m-th EN

ki,j =

{
1, i-th sercice is processed by the j-th EN
0, otherwise

(15)

The resource utilization of j-th EN is calculated based on k n,m and it is given by

Rj =
m

∑
i=1

ki,j (16)

Based on (16), the average resource utilizations of ENs Rave are calculated as

Rave =
1
n

n

∑
j=1

Rj (17)

Based on (17), the load balance lb is calculated by

lb =
1
n

n

∑
j=1

(R j − Rave

)2
(18)
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The problem of designing an effective offloading method is expressed as follows.

minlb (19)

Then, these strategies based on the model above are designed as follows.

5. Strategy Design

In this section, we designed three strategies. These strategies were AIGD, ACLBTP
and ASOBCL. Firstly, the strategy of AIGD is described as follows.

It can be seen from Algorithm 1 that β is the learning rate. The µ represents the
damping factor. The contributions of these directions will take a large step in each direction.
This will improve the speed of iteration. So, the convergence speed of CNN was improved
significantly.

Algorithm 1: Algorithm of Improved Gradient Descent

1: Initialization β, µ
2: Initialization H to 0 matrix
3: Gain the min value of f(θ)
4: foreach i in (k,K)
5: get v randomly from N(0,1)
6: D = D + (Hv)2

7: θ = θ− β
f′(θ)√

D/k+µ

8: endfor

Based on the strategy above, the ACLBTP is designed as follows.
It can be seen from Figure 2 that the CN_LSTM_Network Model of ACLBTP was

composed of two convolution layers, a LSTM layer and a full connection layer. The input
data were the traffic datasets. The output data from these convolution layers were put into
the LSTM layer for extracting time features. The LSTM layer was composed of several
LSTM blocks. The output from the full connection layer was the number of vehicles in
each area and in every time slot. The mean squared error (MSE) was adopted as the loss
function of this paper [25]. MSE was used to minimize the number of network errors.
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Base on the flowchart of strategy above, the algorithm’s pseudo code was provided
as follows.

It can be seen from Algorithm 2 that parameters were initialized and a training set was
established firstly. Then, the convolution iteration started. The number of iteration was set
to 2000 in this paper. In every iteration, the input data set was put into these convolution
layers based on AIGD and the spatial feature of time series traffic data were extracted. The
output data from two convolution layers were put into LSTM Layer for extracting time
feature. The output data from LSTM were put into a full connection layer and the output
was the number of vehicles in each area in every time slot. The iteration was continued
until the number of network errors was less than the confidence interval MinValue. At last,
the predicted number of vehicles was gained.

Algorithm 2: Algorithm of CN_LSTM Based Traffic Prediction

1: Initialization Vehicles Data Matrix: M, Layers: 3, Number of iteration: 2000, time slot:16,
Number of data set for each slot:32 Number of network errors: R
2: Establish Training Set: Input Data Set, Output Result Set
3: Set Iteration Number n, Set Confidence Interval: MinValue
4: While (R< MinValue)
5: {
6: for i = 1 to n
7: {
8: Extract Spatial Feature of Time Series Traffic Data via

two Convolution Layers Based on AIGD.
9: The Output Data from two Convolution Layers are

put into LSTM Layer for extracting time feature.
10: The Output Data from LSTM are put into a full

connection layer and the output is the number of
Vehicles in each area in each time slot.

11: i++
12: }
13: R = MSE(Output Data from LSTM, Input Data Set)
14: }
15: Output Predicted Number of Users
16: End of Strategy

Based on the strategy ACLBPT above, the strategy of ASOBCL was designed as follows.
It can be seen from Figure 3 that those vehicles gained via ACLBTP were regarded as

the input data of the workflow. The n was defined as the number of these vehicles. The
Ss was defined as the set of services. Firstly, these vehicles were sorted via (18) by load
in descending order. The order of sort was to gain the vehicle whose load was min more
quickly. One service was selected from Ss and offloaded to the vehicle whose load was
min. The service which was offloaded was removed from the Ss. The work of offloading
continued until the Ss was empty. The sorting technique in ASOBCL ensured each offload
to the vehicle with the smallest load. This guaranteed the success rate of offloading work.
High success rate of offloading work gained high speed offloading work.

Based on the strategy flowchart above, the algorithm’s pseudo code was provided
as follows.

It can be seen from Algorithm 3 that parameters were initialized firstly. The n was
initialized as the output predicted number of vehicles. The Ss was initialized as the service
set. The load of each vehicle was calculated via (18). Firstly, these vehicles were sorted in
descending order by the size of load. One service was selected from Ss and offloaded to
the vehicle with min load. Then, the service was removed from Ss. Those vehicles were
sorted in descending by load again. These steps were repeated until the Ss was empty. The
strategy came to an end.
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Algorithm 3: Algorithm of Service Offloading Based on CN_LSTM Traffic Prediction

1: Initialization Output Predicted Number of Vehicles: n, Service Set: Ss
2: Sort n vehicles via load calculated with (18) desc.
3: While(Ss ! = null)
4: {
5: Offload the service the vehicle with min load.
6: Remove the service from the Ss.
7: Sort n vehicles via load calculated with (18)
desc again
8: }
9: End of Strategy

The simulation analysis based on these strategies are given in the next part.

6. Simulation Analysis

In this paper, the technique of lightweight machine learning was adopted on the edge
nodes. Pre-trained dataset was used as the input to the new machine learning task. The
adoption of pre-trained dataset was able to decrease the computing complexity significantly.
The pre-trained AlexNet CNN was used in MATLAB. The ILSVRC 2012 was adopted in
this paper. The strategy of ASOBCL was implemented in Tensorflow. According to [26],
the channel was selected with parameter of 1. The noise power density was adopted as
−120 dBm.

The performance of these strategy designed in this paper was evaluated from three
aspects: the prediction accuracy, the load balance and the offloading time.
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6.1. Prediction Accuracy

We trained the ACLBTP for 2000 epochs, using a 3 × 3 convolution kernel. The values
of the learning rate, the decay rate and the dropout rate were set as 0.15, 0.85 and 0.6,
respectively. The batch size was 8. The CabSpotting dataset [27] was taken as the vehicle
trajectory data set. After pre-processing, the vehicle trajectory data set was converted into
a traffic data set containing 3000 pieces of data. A total of 50 percent of the available data
were used for training. The remaining 50 percent of the data were taken as validation
data sets.

We compared our ACLBTP model with the two existing prediction models: LSTM
and Conv_LSTM [28]. The comparisons of real values and the predicted values generated
by the three models are shown in Figures 4–6.
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Figure 4 depicts the accuracy of prediction of LSTM over the varying training set size.
As shown in Figure 4, the horizontal axis indicated the lapse of time. The unit was 60 s.
The vertical axis represents the normalized number of mobile edge nodes. The blue line
indicates the changing trends of real values. The red line indicates the changing trends of
predicted values. When the time lapse was at around 100 min, the predicted value deviated
significantly from the real value.

Figure 5 depicts the accuracy of prediction of Conv_LSTM over the varying training
set size. As shown in Figure 5, the horizontal axis indicates the lapse of time, and the unit
was 60 s. The vertical axis represents the normalized number of mobile nodes. The blue
line indicates the changing trends of real values. The red line indicates the changing trends
of predicted values.

Figure 6 depicts the accuracy of prediction of ACLBTP over the varying training set
size. As shown in Figure 6, the horizontal axis indicates the lapse of time, and the unit was
60 s. The vertical axis represents the normalized number of mobile nodes. The blue line
indicates the changing trends of real values. The red line indicates the changing trends of
predicted values.

Upon comparing Figures 4 and 5 with Figure 6, it can be seen that the predicted values
from ACLBTP designed in this paper were much closer to the real values than those from
Conv_LSTM and LSTM. The reason was that ACLBTP can extract time and spatial features
of traffic data with the help of AIGD.

6.2. Load Balance

In this section, comparative algorithms and results analysis are proposed. Firstly,
comparative algorithms are introduced as follows.

6.2.1. Comparative Algorithms

There were four comparative algorithms in this paper: Service Offloading Method
(SOME), First Come First Service (FCFS), Next Come First Service (NCFS) and Benchmark
First Service (BCFS).

SOME: The strategy is an offloading strategy which adopts the locality-sensitive-hash
(LSH) technique. This strategy is designed to offload services and promote IoV service
utility and edge utility, ensuring privacy security at the same time [29].
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FCFS: When the service comes, the vehicle is selected randomly to be provided to the
service in turn until the set of vehicles is empty.

NCFS: When the first service comes, the vehicle is selected randomly to be provided
to the service. When the following service comes, the first selected vehicle is excluded. The
vehicle is selected randomly in the remaining vehicles set to be provided to the service until
the set of vehicles is empty.

BCFS: According to the vehicles’ computing capability, these vehicles are sorted in
descending order. The services are assigned to these vehicles in turn [30].

6.2.2. Results Analysis

In terms of load balance, simulation verification was carried out from the perspective
of the number of services in this paper. Additionally, the simulation verification was
introduced from the perspective of the load balance and the services’ number.

Maintaining a stable load balance was an important goal in this paper. As shown
in Figure 7, the horizontal axis indicated the number of services, and the unit was 1000.
The vertical axis represents the load balance. As the number of services increased, the
load balances of FCFS, BCSF, NCFS, SOME and ASOBCL rose too. Among the four
algorithms, the effect of ASOBCL was always the best, SOME was second, NCFS was
the worst, and FCFS’s effect was better than NCFS’s but worse than SOME and BCFS’s.
FCFS and NCFS selected vehicles randomly. This led to high load balance. ASOBCL
always maintained stable load balance rate in these vehicles because vehicles were selected
reasonably and scientifically.
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6.3. Offloading Time

In this section, comparative algorithms are adopted from the above section. In terms of
offloading time, simulation verification was carried out from the perspective of the number
of services in this paper. Simulation verification was introduced from the perspective of
the offloading time and the services’ number.

The offloading time was compared among FCFS, BCSF, NCFS, SOME and ASOBCL.
As shown in Figure 8, the horizontal axis indicates the number of services, and the unit
was 1000. The vertical axis represents the offloading time, and the unit was 1000 ms. As
the number of services increased, the offloading time for FCFS, BCSF, NCFS, SOME and
ASOBCL rose too. Among the four algorithms, the effect of ASOBCL was always the best,
SOME was second, FCFS was the worst, and NCFS’s effect was better than FCFS’s but
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worse than SOME and BCFS’s. The more the number of visits, the better the offloading
time of ASOBCL. Compared with the other offloading methods, ASOBCL gained lower
offloading time.
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7. Conclusions and Future Work

In this paper, we introduced AI in future vehicular networks, where vehicles which
have enough computing power were taken as auxiliary edge nodes to provide extensive
resources. Firstly, an intelligent service offloading framework was provided. Based on
the framework, three strategies were proposed. The AIGD was created to accelerate the
convergence of CNN. The ACLBTP was designed to gain the predicted number of vehicles
belonging to the edge node. The ASOBCL was conducted to offload these services to
the vehicles belonging to the edge node. The simulation results demonstrated that the
prediction strategy designed in this paper had higher prediction accuracy compared with
other prediction strategies. The low offloading time and maintaining stable load balance
were gained via running ASOBCL. So, the effectiveness and efficiency of ASOBCL was
verified by experiment evaluation. These strategies proposed in this paper will make full
use of the increasing and additional computing power in vehicles in the perception and
computing layer. Computing load of remote servers and general edge nodes was able
to be decreased dramatically. At the same time, transmission bandwidth will be saved.
Computing the load’s decrease and saving of transmission bandwidth means low energy
consumption. Low energy consumption leads to lower coal demand. So, a reduction in
greenhouse gas emissions is gained and the greenhouse effect will be suppressed effectively.
In our future work, we will devote to applying ASOBCL to real life, taking more real details
of an IoV environment into account. These real details include real-time measurement of
vehicles’ computing power, the vehicles’ speed and redundant computing power. Adopting
multi-objective optimization techniques, these strategies of this paper will gain better
practical significance via considering these factors fully.
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