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Abstract: With the surge in tasks for in-vehicle terminals, the resulting network congestion and
time delay cannot meet the service needs of users. Offloading algorithms are introduced to handle
vehicular tasks, which will greatly improve the above problems. In this paper, the dependencies of
vehicular tasks are represented as directed acyclic graphs, and network slices are integrated within
the edge server. The Dynamic Selection Slicing-based Offloading Algorithm for in-vehicle tasks in
MEC (DSSO) is proposed. First, a computational offloading model for vehicular tasks is established
based on available resources, wireless channel state, and vehicle loading level. Second, the solution of
the model is transformed into a Markov decision process, and the combination of the DQN algorithm
and Dueling Network from deep reinforcement learning is used to select the appropriate slices and
dynamically update the optimal offloading strategy for in-vehicle tasks in the effective interval.
Finally, an experimental environment is set up to compare the DSSO algorithm with LOCAL, MINCO,
and DJROM, the results show that the system energy consumption of DSSO algorithm resources
is reduced by 10.31%, the time latency is decreased by 22.75%, and the ratio of dropped tasks is
decreased by 28.71%.

Keywords: mobile edge computing; network slicing; in-vehicle task offloading; deep reinforce-
ment learning

1. Introduction

Mobile edge computing (MEC) involves deploying server nodes near users to address
excessive latency issues and data flow congestion [1]. By enabling the deployment of
functions and applications at the wireless access network (RAN) edge layer closest to
user devices, MEC provides computing resources and high-frequency bandwidth to avoid
network congestion caused by massive data. At the same time, user devices offload
processing tasks to the network edge nodes and real-time access data from MEC edge nodes
to achieve information exchange purposes [2,3]. However, the distributed deployment of
MEC edge nodes and task offloading between nodes consume additional energy. Therefore,
reducing the energy consumption of task offloading in the MEC environment while meeting
the requirements of latency and quality of service (QoS) has become a significant challenge
hindering the development of MEC applications.

The Internet of Vehicles (IoV) is one of the main application scenarios for task offload-
ing in MEC [4]. In actual IoV applications, task offloading between in-vehicle terminal
devices and edge servers is typically influenced by multiple factors [5,6]. Among them,
considering only offloading tasks to edge nodes when confronted with a significant volume
of service requests and a vast amount of data, it is inevitable that an imbalance in the
load of edge nodes and data loss may occur. Furthermore, extensive data exchange can
result in high time latency and energy consumption during communication, which will
lead to mission failure. Especially in vehicular networks with heterogeneous latency and
computing requirements because vehicles usually choose the closest or best communication
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quality Base Station (BS) or Road Side Unit (RSU) to perform computing offloading of
vehicular tasks, and the high mobility of vehicles and short effective communication range
can lead to frequent switching of edge servers, which can easily cause untimely offloading
and communication failures [7]. Thus, the offloading algorithm of vehicular tasks needs a
dramatic reduction in delay and energy consumption.

Network slicing [8] is introduced into the IoV to provide an economical and efficient
solution for vehicle. Network slicing is one of the key technologies of software-defined
networking (SDN) [9], which is the logical division of the common physical infrastructure
into multiple network slices through various network access technologies to provide guar-
antees for heterogeneous quality-of-service performance and maximize network operator
optimization goals. Each slice can act as an independent end-to-end network to support
the service requirements of various in-vehicle applications [10,11]. However, the resource-
constraint result in infrastructure providers not being able to satisfy all service requests [12].
Therefore, to tackle the problem that resource-constrained vehicular terminal devices can
hardly handle massive computational demands in real-time, the issue of data transmission
failure due to frequent changes in the Vehicular Ad-hoc Networks (VANETs) environ-
ment [13]. It is an urgent choice to build a lower cost computational offloading model using
a user-oriented network slicing approach to handle the computational offloading of tasks
to achieve the optimization goal of low latency and low energy consumption.

Most of the current offloading algorithms focus on leveraging Network Function
Virtualization (NFV) and Software Defined Network (SDN) technologies to minimize the
delay and energy consumption associated with task offloading [14,15]. However, these
algorithms seldom consider the dependencies between tasks dependencies. The high-speed
movement of vehicles requires frequent exchange of resource state information, which
triggers untimely information updates and leads to low offloading efficiency of in-vehicle
tasks [16–19]. For this reason, this paper considers the dependency relationships between
in-vehicle tasks and integrates network slices into the edge server (ES), uses Dueling
Network for model training, and dynamically updates the selection slice results. The main
contributions are as follows.

1. The Dynamic selection slicing-based offloading algorithm for vehicular tasks: To
accomplish the optimization objective of decreasing the aggregate expense related
to task offloading, the dynamic selection slicing-based offloading algorithm for in-
vehicle tasks in MEC is proposed in this paper. The algorithm uses the Dueling
Network combined with Deep Q-Network (DQN) in deep reinforcement learning to
dynamically select the optimal slicing results and then update the optimal offloading
policy in the effective interval.

2. Performance Evaluation: The results show that the DSSO algorithm proposed in
this paper improves the efficiency of multi-dimensional resource utilization and task
completion rate and reduces the total cost of the offloading task compared with the
LOCAL, MINCO, and DJROM.

The rest of this paper is organized as follows. Section 2 presents related work. Section 3
designs the in-vehicle tasks offloading model based on the dynamic selection slices. The
DSSO algorithm is proposed in Section 4. Experimental comparison analysis is performed
in Section 5. Finally, Section 6 is the conclusion of the paper.

2. Related Work

The rise of MEC facilitates mobile devices to offload tasks to nearby edge nodes for
processing to reduce task time delays and decrease the discard ratio of delay-sensitive
tasks [20–25]. Bi et al. [20] considered wireless power supply weighting and computational
rate maximization in the MEC scenario and proposed a joint optimal offloading algorithm
based on the alternating direction multiplicative decomposition technique, but the algo-
rithm ignored the inter-task waiting delay during task offloading. Tang et al. [21] explored a
distributed offloading algorithm for the Mobile Edge Computing (MEC) environment that
relies on model-free deep reinforcement learning. The aim of this algorithm is to minimize
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the expected long-term cost. Cheng et al. [22] focused on reducing the UE processing
delay and energy consumption for offloading tasks and proposed a distributed offloading
dynamic optimization algorithm for the MEC server multi-user, but the algorithm did not
consider the optimization of the algorithm using radio resources and extend to other task-
offloading scenarios with the complex structure of multi-user and multi-cell. Kim et al. [23]
proposed a predictive model to decompose and offload tasks to multiple MEC servers
to reduce the execution time at each MEC server. However, they did not consider the
complexity of real WANs and the queueing delay of MEC servers when tasks are queued.
Li et al. [24] designed an online energy minimization algorithm for multiple IoT devices
with latency constraints in edge computing environments. Poularakis et al. [25] studied
the multi-dimensional limitations of storage, computation, and communication to support
MEC service placement and joint optimization problems for request routing; however, the
algorithm does not consider the coordination problem of the existence of backhaul links
between the base stations.

Network slicing is applied to computational offloading. The task improves the utiliza-
tion of multi-dimensional resources in the network by selecting the best performance slices
for computational offloading [26–28]. Chen et al. [26] proposed a DDQN-based computa-
tional offloading strategy for MEC environments that considers the time-varying channel
quality of users and base stations, the energy units received by the wireless environment;
thus, the maximized long-term utility of the dynamically exploited network slices resulting
from the arrival of computational tasks. Huynh et al. [27] studied a network slicing-based
management framework that considers the uncertainty and timeliness of network resource
requests and captures the sliced requests through a semi-Markov decision process to obtain
the optimal resource allocation policy. Al-Khatib et al. [28] proposed a slicing scheme that is
based on priority and reservation. The scheme is designed for diverse vehicle applications
and enhances the utilization of network resources while guaranteeing network utility.
However, this approach does not account for the distinction between prediction models
and immediate allocation.

The offloading algorithm based on deep reinforcement learning (DRL) provides
a prospective solution for addressing tasks offloading in vehicular networks [29–33].
Peng et al. [29] proposed a distributed DRL-based algorithm for network resource manage-
ment in highly dynamic vehicle scenarios. The algorithm trains deep neural networks with
multiple agents, where the MEC server acts as the agent, to make online decisions on vehicle
computation offloading and resource allocation. Mlika et al. [30] introduced a model-free
approach based on DRL to solve the problem of the wireless channel, power allocation,
slice selection, and vehicle grouping in MEC-enabled IoV networks using non-orthogonal
multiple access (NOMA) to make better use of scarce channel resources. Nassar et al. [31]
designed a DRL-based computational offloading strategy that allocates limited resources to
vehicles with heterogeneous delay requirements. Li et al. [32] presented a task partitioning
and scheduling algorithm to solve workload allocation, but relying on task partitioning
and scheduling alone cannot find the optimal offloading strategy in an effective interval.
Huang et al. [33] proposed an online offloading algorithm that maximizes the weighted
value and computational efficiency based on a DRL-based algorithm, but the mobility of
the device can make the algorithm harder to converge.

Although the above algorithms consider offloading tasks to edge nodes in MEC to
improve task offloading efficiency as much as possible, the requirements of relational-
dependent and delay-sensitive tasks can hardly be satisfied. The high-speed movement
of vehicles requires frequent exchange of resource status information, which leads to
untimely information updates and low offloading efficiency of in-vehicle tasks. Therefore,
the offloading algorithm based on dynamic selection slicing for vehicle tasks is proposed
where the custom slice is applied to the algorithm.
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3. System Model and Optimization Goal
3.1. Communication Model

The process of in-vehicle task offloading based on the dynamic selection slices in
MEC is shown in Figure 1. First, the in-vehicle terminal device initiates a compute offload
request to the SDN controller. The SDN controller and the slice orchestrator interact with
information by providing available status through the RSU, which generates data results
that are the criteria for determining whether to offload the pending tasks to the edge server.
Then, the offloading task is offloaded to a suitable slice within the edge server. Finally,
the offloading results are transmitted to the slices through the offloading decision, and
the optimal policy for task offloading is returned to the in-vehicle terminal device. The
parameters involved in this paper are listed in Table 1.
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Figure 1. The process of in-vehicle task offloading.

Table 1. Parameters and Description.

Parameters Description

Di Vehicle i
ωi In-vehicle task
dωi In-vehicle task input size (MB)
Sl Slice l

APj Access point j

yl
i

An indicator variable to represent whether the vehicle Di
select slice Sl offload or not

Tex
i,ωi

The execution delay in the slice for vehicle Di (S)
Tex,l

i,j,ωi
The task execution time delay (S)

Tdelay
ω1,ωi

The communication delay (S)
Tl

i The total time latency (S)
Eex

i The execution energy in the slice for the vehicle Di (J)
Eservice

i The energy consumption for the tasks ωi to the slice Sl (J)

Etrans,l
i

The energy consumption for the vehicle Di to transfer
the task to the slice Sl (J)

El
i the total energy consumption (J)

fi
local The CPU cycle frequency of the vehicle Di (MHz)
Pi The vehicle Di transmission power (W)

τ(t) Task deadline (S)
σ The noise in the channel transmission (dB)

Coml The total amount of computing resources in the slice Sl

λl
i

The number of computing resources allocated to the vehicle Di
in the slice Sl

Rl
i,j The transmission rate (bps)

Bi,j The network bandwidth (bit/s)

hi,j
The channel gain between the vehicle Di and

the access point APj
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3.2. Offloading Model

The Dynamic Selection Slicing-based Offloading Algorithm for in-vehicle tasks,
ω = (ω1, . . . ωi−1, ωi) represents vehicular tasks, and xi ∈ [0, 1] indicates the offload
strategy of the in-vehicle task. The dependencies of the in-vehicle tasks are described using
the directed acyclic graph 2, and the nodes in Figure 2 show the computational offload
tasks generated by the in-vehicle terminal devices, and the dependencies are represented
between tasks using the directed edges of nodes. The node ω1 without a parent is consid-
ered to be the start of a task, while the node ω5 without a child is considered to be the end
of a task, and the node ω4 is represented as dependent on ω2 and ω3. The white nodes
state that the edge server is capable of offloading tasks; the shaded nodes indicate that the
task can only be executed locally in the vehicle.
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1. Local offload

xi = 0 indicates that the task can only be executed locally in the vehicle. Cωi expresses
various resources required per bit of a task, and M shows the set of vehicles. Therefore, the
execution time of in-vehicle tasks Tex

i can be expressed as:

Tex
i = dωi ·Cωi / f local

i ∀i ∈ M (1)

when local execution is selected for vehicular tasks, the transmission time latency can be
ignored. Total time latency Tlocal is the execution time, which can be shown as:

Tlocal = Tex
i ∀i ∈ M (2)

The energy consumption Elocal of the vehicle Di processing task is represented as:

Elocal = Eex
i = dωi ·Cωi ·

(
f local
i

)2
∀i ∈ M (3)

According to Equations (1)–(3), it can be seen that the task latency and energy con-
sumption are mainly determined by the CPU cycle frequency.

2. Offloading to the slice

xi = 1 represents that vehicle load pending tasks to the slices to access edge layer
services. The vehicle terminal is connected to the slices Sl through several access points
APj. Owing to the dependencies between most of the tasks, it is commonly the situation
that APj is too busy to accept the next task. Thus, a binary variable yl

i ∈ (0, 1) is introduced
to determine whether the edge server interface is idle or not. When it is yl

i = 0, the access
point APj is idle. Otherwise, it needs to wait in queue.

In Equation (4), ρl
i,j denotes the amount of wireless resources provided to the vehicle

Di by slice Sl docked to the access point APj, Bi,j indicates the network bandwidth, Pi
illustrates the transmission power of Di, and hi,j indicates the channel gain between the
vehicle Di and the access point APj. “m” denotes a globally fixed constant, and similarly,
Pm denotes the transmission power of Dm, hm,j shows the channel gain between Dm and
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APj, and σ represents noise in the channel transmission. The transmission rate Rl
i,j can be

expressed as:

Rl
i,j = ρl

i,j·Bj,l · log

1 +
pi·hi,j

σ + ∑
yl

i,j=1
pm + hm,j

 (4)

The task transmission delay Ttrans,l
i,j,ωi

is denoted as:

Ttrans,l
i,j,ωi

= Ttrans,j
i,1,ωi

= dωi /Rl
i,1 ∀Rl

i,1,ωi
> 0 (5)

Furthermore, the task execution time delay Tex,l
i,j,ωi

is expressed as:

Tex,l
i,j,ωi

= Tex,l
i,1,ωi

= (dωi ·Cωi )
/(

λl
i ·Coml

)
∀λl

i > 0 (6)

If the pending task is a dependent task when sliced for computational offloading
inevitably results in a queueing situation. ωi−1 outputs the offloading result and returns
to the slice, and then, ωi is transmitted and offloaded to the slice, and δωi represents the
offload result of the task ωi. Therefore, it is necessary to consider the communication
delays arising from the dependencies between tasks for latency-sensitive tasks. Through
Formula (7), the communication delay Tdelay

ω1,ωi between tasks is expressed as:

Tdelay
ω1,ωi =


δω i
Rl

i,j
xi = 1, yi = 0

0 xi = 1, yi = 1
(7)

The total time latency Tl
i for offloading the task ωi to the slice Sl is shown as:

Tl
i = Tex,l

i,j,ωi
+ Ttrans,l

i,j,ωi
+ Tdelay

ω1,ωi (8)

The offloaded energy consumption Eservice
i for the tasks ωi to the slice Sl is expressed as:

Eservice
i = Pl ·

(
Tex,l

i,j,ωi
+ Tdelay

ω1,ωi

)
(9)

Similarly, the energy consumption Etrans,l
i required to support the vehicle Di to transfer

the task to the slice Sl can be given as:

Etrans,l
i = P·Ttrans,l

i,j,ωi
(10)

Therefore, the total energy consumption El
i for offloading tasks ωi to slice Sl can be

shown as:
El

i = Etrans,l
i + Eservice,l

i (11)

3. Optimization objectives

Throughout the overall Telematics system, energy consumption is a key metric to
measure whether the offloading strategy is optimal. In this paper, the total vehicle energy
consumption E1 is expressed as:

E1 = ∑
i∈M

(1− xi)·Eex
i + ∑

i∈M
∑
j∈O

∑
l∈P

xi·yi·Etrans,l
i (12)

In Equation (12), i ∈ M = {1, 2 · · ·NM}, j ∈ O = {1, 2 · · ·NO}, l ∈ P = {1, 2 · · ·NP},
and N denotes the set of natural numbers.
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Similarly, the energy consumption E2 for offloading the in-vehicle tasks to the slice
can be represented as:

E2 = ∑
i∈M

∑
l∈P

xi·yi·Eex,l
i (13)

Therefore, the total energy consumption E of the in-vehicle task offloading is shown as:

P1 : E = E1 + E2 = ∑
i∈M

(1− xi)·Eex
i + ∑

i∈M
∑
j∈O

∑
l∈P

xi·yi·Etrans,l
i + ∑

i∈M
∑
l∈P

xi·yi·Eex,l
i (14)

s.t.



C1 : 0 ≤ fi ≤ fi,max, 0 ≤ pi ≤ pi,max
C2 : 0 ≤ ∑

i∈M
ρl

i,j ≤ 1, ∀j ∈ O, l ∈ P

C3 : xi ≤ ∑
l∈P

yl
i , xi, yl

i ∈ [0, 1], ∀i ∈ M, j ∈ O, l ∈ P

C4 : 0 ≤ ∑
i∈M

λl
i ≤ 1, ∀l ∈ P

C5 : λl
i ≤ yl

i ≤ ωiλ
l
i , ∀i ∈ M, l ∈ P

C6 : (1− xi) · Eex
i + ∑

i∈M
∑

j∈O
∑

l∈P
xi · yl

i · El
i ≤ τi, ∀i ∈ M

In Equation (14), constraints (C1)–(C3) denote restrictions on the CPU cycle frequency,
transmission power, and the amount of wireless resources. Constraint (C4) indicates the
computational resources available to the slice. Constraint (C5) ensures that the task is
processed before the deadline. Then, the NP-hard problem P1 is defined as Theorem 1.

Theorem 1. P1 is an NP-hard problem.

Proof of Theorem 1. Assuming that vehicles select a slice for offloading, the transmitted
power is set to a maximum value. One access point AP, the deadline τi of the task is large
enough, γ1, γ2 represent the average number of vehicles distributed equally, and allocate
wireless resource ρl

i,j and computing resources λl
i to vehicles, ρl

i,j = 1/γ1, λl
i = 1/γ2 in

Equation (15), and the energy consumption El,∗
i can be expressed as:

El,∗
i =

γ1·dωi ·pi,max

Bi,l · log

(
1 +

Pi,max·hi,j
∑

m∈M
pm,max·hm,j

) (15)

In Equation (14), xi = 1 represents the vehicle to offload the pending tasks to the slice.
At this point, the entire system energy consumption can be expressed as shown in P2.

P2 : ∑
i∈M

∑
l∈P

yl
i ·E

l,∗
i (16)

s.t.


C1 : ∑

l∈P
yl

i = 1, ∀i ∈ M

C2 : ∑
i∈M

∑
l∈P

yl
i ·ρl

i,1 ≤ 1

In Equation (16), P2 is mapped to a multi-dimensional multi-choice knapsack problem
(MMKP) [34], i.e., P2 is also an NP-hard problem. However, xi = 0 indicates offloading of
in-vehicle tasks to the vehicle terminal, i.e., the task tasks are processed locally. Thus, the
system energy consumption can be expressed as Elocal = Eex

i . The above two cases can be re-
duced to P1: E = E1 + E2 = ∑

i∈M
(1− xi)·Eex

i + ∑
i∈M

∑
j∈O

∑
l∈P

xi·yi·Etrans,l
i + ∑

i∈M
∑

l∈P
xi·yi·Eex,l

i ,

and it can be concluded that P1 is an NP-hard problem. �
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Similarly, the time latency T1 of local vehicle Di processing is expressed as:

T1 = (1− xi) ∑
i∈M

Tex
i (17)

The time delay for offloading the task to the slice T2 can be shown as:

T2 = ∑
i∈M

∑
j∈O

∑
l∈P

xi · yl
i

[
Ttrans,l

i,j,ωi
+ Tex,l

i,j,ωi
+
(

1− Zl
i,j

)
Tdelay

]
(18)

In Equation (18), Zl
i,j ∈ [0, 1], i ∈ M, j ∈ O, l ∈ P, and zl

i,j indicates whether the vehicle
Di selects slice Sl and uses the access point APj to provide the amount of wireless resources.
zl

i,j = 0 indicates that the pending resources in the vehicle Di have been successfully

offloaded to the slice Sl ; zl
i,j = 1 represents that the access point is busy and needs to wait

in the queue.
The total time delay of the system can be calculated using Equation (19).

P3 : T = T1 + T2 (19)

s.t.


C1 : ρl

i,j ≤ Zl
i,j ≤ ωiρ

l
i,j, ∀i ∈ M

C2 : yl
i ≤ ∑

j∈o
Zl

i,j,ωi
, ∀i ∈ M, l ∈ P

C3 : xi, yl
i , zl

i,j ∈ [0, 1], ∀i ∈ M, j ∈ O, l ∈ P

Since the transmission delay is 0 and the execution delay is relatively small when
the task is selected for local offloading, the execution delay can be ignored in this model.
Similarly, the P3 problem is reduced to P4.

P4 : T = ∑
i∈M

∑
j∈O

∑
l∈P

yl
i ·T

ex,l
i,j,ωi

+
(

1− zl
i,j,ωi

)
·T

delay
(20)

s.t.


C1 : ∑

l∈P
yl

i = 1, ∀i ∈ M

C2 : 0 ≤ zl
i,j,ωi
≤ 1, ∀l ∈ P

C3 : ∑
i∈M

∑
j∈O

∑
l∈P

Tex,l
i,j,ωi

+
(

1− zl
i,l,ωi

)
Tdelay ≤ +∞, ∀i ∈ M

In Equation (20), constraint (C1) guarantees that the slicing access point selected by
the vehicle is free to receive the task ωi; constraint (C2) ensures that the task ωi successfully
selects the access point APj for offloading the task; and constraint (C3) is to be sure that the
task is processed before the deadline.

Therefore, the construction of the objective function F, the total cost of the task to
offload the edge layer slices, and Fmin can be formulated as:

Fmin = βtE + βeE (21)

In Equation (21), βt and βe, respectively, denote the weighting factors of delay and
energy consumption.

In a realistic in-vehicle task offload environment, the objective function F must be
non-static. Therefore, the in-vehicle task offloading problem can be regarded as a mixed
shaping nonlinear problem (MINLP). By the above proof, it can be seen that P2 and P4
are NP-hard problems whose feasible solutions are nonconvex, the time complexity grows
exponentially with the growing number of tasks, and it is clear that the traditional methods
cannot make adaptive decisions based on the dynamic characteristics of vehicles in the
Telematics environment. Consequently, this paper proposes an in-vehicle task offloading
algorithm based on the dynamic selection slices is proposed in this paper.
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4. The Dynamic Selection Slice Offload Algorithm for In-Vehicle Task
4.1. Resource Slicing Based on Markovian Dynamic Adjustment

The offloading problem for the in-vehicle tasks oriented in MEC can be summarized
as a sequential decision problem, and the Markov decision process (MDP) precisely pro-
vides an excellent mathematical model for sequential decision-making. In this paper, the
optimization of in-vehicle task offloading is converted into finding the optimal solution in a
Markov decision process and the design idea is as follows: First, the RSU in the connected
vehicle environment provides available status S(t), and the agent performs placement
decision actions A(t). Then, the agent obtains the reward value r(t) based on the current
state S(t) and action A(t), updates the neural network parameters by Dueling DQN, and
takes the next action A(t + 1). Finally, the DRL algorithm maps the state space to the action
space by iteratively selecting actions that maximize the expected future reward, using the
Q-learning algorithm f : S→ A , generating the slicing results to maximize the reward
value, i.e., minimizing the expected cost. Based on the Markovian dynamic adjustment of
the state space, action space, and reward, the specific explanation is as follows:

1. State

The state space is defined as the collection of all possible states that the agent can
be in S(t) = {H(t), dωi (t), φωi (t), τ(t)}, and in this study, it includes the current status
of network resources, such as wireless channel H(t), input size dωi (t), various required
resources φωi , and deadline time τ(t), available CPU as well as the current status of each
slice and the vehicular location.

2. Action

The action space is the set of actions taken in the available states of the MEC-oriented
vehicle networking when the agent processes the vehicular task ωi in a given time slot t
corresponding to a certain state S(t). The offloading decision action A(t) was taken by the
vehicle. To offload the vehicular task to the appropriate slice for execution, the action space
is mapped to the set of slices within the edge server and denoted as Aωi (t) = {1, · · · , 0, 0}.
Among them, Aωi (t) = {1, · · · , 0, 0} represents offloading the in-vehicle task to the first
slice for execution. Therefore, the action space for the in-vehicle task can be defined as:
Aωi (t) =

{
Aω1(t), · · · , Aωi−1(t), Aωi (t)

}
.

3. Reward

The reward provides feedback to the agent about the action taken in a given state, and
its positive or negative value reflects whether there is an advantage in MEC when available
state information S(t) makes offloading decision actions A(t) or not. If the reward value is
negative, it indicates the need for dynamic adjustment, which needs to interact with the
current in-vehicle network in time to obtain an enormous reward value. Meanwhile, the
reward value can be used as an indicator to evaluate the merit of the offloading strategy.
Additionally, the reward value r(t) can serve as an indicator for evaluating the quality of
offloading strategies.

4.2. Dueling DQN-Based Dynamic Selection Slice Offload Algorithm

In this section, based on the Markov model of resource slicing obtained in Section 4.1,
the Dueling DQN in deep reinforcement learning is used to dynamically select the slicing
results and then update the optimal offloading strategy. Among them, Dueling DQN is
a combination of Dueling Network and DQN algorithm, and the architecture is shown
in Figure 3. Firstly, the input of Dueling DQN is the feedback of state information by
using deep convolutional neural networks to extract information such as shoulder obstacle
image features and visual field features around the vehicle. Secondly, the DQN algorithm
decomposes the action value function into the state value V and the advantage value A
associated with each action in the state by introducing a dyadic network with two fully
connected layer branches. Finally, the final Q-network output is obtained by combining
these values linearly.
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In Dueling DQN, after the agent executes the action a, the state is changed from s to s′.
The reward value r is returned and stored in the experience pool. The sampling quaternions
(s, a∗, r, s′) from the experience pool for data training are based on the priority sampling
method. Due to the dominant function Ea∼π(s)[Aπ(s, a)] = 0, when the selected action a
has zero advantage, the stability of the DSSO algorithm is improved by using decentralized
operations. Instead of using the maximum value as in the DQN algorithm, the average
value is used in the proposed algorithm, and the forward mapping is implemented using
the last module of the network to obtain the true value Q(s, a, θ, α, β) denoted as:

Q(s, a; θ, α, β) = V(s; θ, α) + A(s, a; θ, β)− 1
|A| ∑

a∗∈A
A(s, a∗; θ, β) (22)

In Equation (22), θ denotes the network parameters, α, β represents the relevant param-
eters of the fully connected layer network, a∗ is the next action of a, and the corresponding
state value of a∗ is s′.

The DSSO algorithm predicts the total cost for in-vehicle task offloading, which can be
expressed as:

yDuDQN = r + γmax
a∗

Q
(
s′, a∗; θ−i , α−, β−

)
(23)

The loss function LDuDQN
i is defined as the discrepancy between the predicted value

yDuDQN , obtained from the output of the neural network, and the true value Q(s, a, θ, α, β),
which can be shown as:

LDuDQN
i = E{s,a,s′ ,r}

[(
yDuDQN −Q(s, a; θ, α, β)

)2
]

(24)

In Equation (23), θi
− denotes the update of the network parameters, and α−, β− states

the update of the parameters related to the fully connected layer network. The parameter θ
are continuously copied to the Target network through the Evaluation network under the
optimization step C. The neural network is then subjected to backpropagation using the
loss function LDuDQN

i to update the parameters by comparing the magnitude of the reward
value r(t) = ϕ/(βtT + βeE), ϕ > 0, when offloading a vehicle during a task to evaluate the
effectiveness of offloading strategies.

4.3. Implementation of Offload Algorithm Based on the Dynamic Selection Slices
4.3.1. The Offload Algorithm Description

The DSSO algorithm pseudo code is shown in Algorithm 1.
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Algorithm 1: The Dynamic Selection Slice Offloading Algorithm for In-Vehicle Task

Input: wireless channel status H(t), input size dωi (t), task deadline τ(t)
In−Vehicle task ωi and the maximum number of iterations ξ

Output: Task offload to slice strategy Ψ
1. Begin
2. Initialize the DNN parameters θ1 and set the training interval δ
3. for t = 1, 2, 3, · · · , ξ do
4. if the slice access point is idle yl

i = 0 then
5. Generate initial selection slice result {P1(t), f1(t), ρ1(t), η1(t)}
6. if t mod δ = 0 then
7. Randomly select training sets {H(t), d(t), τ(t)};
8. Use Adam Optimizer to get the best training parameters θ;
9. end if
10. Get the computational resource solution

in the valid interval fk(t) and ηk(t);
11. obtain the radio resource allocation solution ρk(t)

and transmit power results Pk(t) by dichotomous method;
12. Obtain selection slice result {P∗(t), f ∗(t), ρ∗(t), η∗(t)}
13. else if the slice access point is busy yl

i = 1 then
14. Wait and calculate the return to step 4
15. Calculating the reward value r(t)
16. Update Slice Offloading Policy Ψ
17. End

4.3.2. Algorithm Complexity Analysis

Algorithm 1 summarizes that lines 4–14 are based on offloading the pending tasks
to the network slices of the edge server, i.e., xi = 1, and the access point is free yl

i = 0,
and get selection slice results {P∗(t), f ∗(t), ρ∗(t), η∗(t)}. Line 13 indicates that if the access
point is busy, the waiting delay Tdelay is recorded, and return to step 4. Judge whether
this uninstallation solution is the best uninstallation strategy Ψ based on the reward value
corresponding to the selection slice result.

In the DSSO algorithm, the time complexity is derived from the following compo-
nents: (1) Time complexity of getting the selected slice section, which is O(NM · NP · NO);
(2) Time complexity of resulting resource allocation, which is O(NM · NP) + O(NM);
(3) Time complexity of the resulting wireless resource allocation and transmit power setting,
which is O(NM · NP · NO). In summary, the overall time complexity is O(NM · NP · NO).

5. Experimental Results and Analysis
5.1. Experimental Environment and Configuration

The performance of the proposed algorithm is evaluated by building an edge envi-
ronment comprising an SDN controller, a slice orchestrator, and eight edge servers (ES).
The end devices and servers were configured as listed in Table 2. The coverage area is
200 × 200 m2, and equipment is evenly distributed throughout the coverage area, as de-
picted in Figure 4. Among them, the SDN controller installation is based on the Open
Daylight platform [35], Kubernetes control the ES, the end-to-end orchestrator [36] is in-
stalled as a slicing orchestrator, and the test dataset for the experiments uses the KITTI
dataset [37].
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Table 2. Terminal device and server configurations.

Device Type Memory CPU

ES 1~2 4 GB Intel(R) Core(TM) i5-10210U CPU @ 2.11 GHz
ES 3~4 4 GB Intel(R) Core(TM) i7-2450M CPU @ 2.60 GHz
ES 5~6 4 GB Intel(R) Core(TM) i5-4210M CPU @ 2.50 GHz
ES 7~8 4 GB Intel(R) Core(TM) i5-4590U CPU @3.30 GHz
Dell Inspiron 5490 8 GB Intel(R) Core(TM) i5-10210U CPU @ 1.60 GHz
Lenovo Xiaoxin pro 14 8 GB Intel(R) Core(TM) i5-12500H CPU @ 1.80 GHz
Lenovo ThinkPad 8 GB Intel(R) Core(TM) i7-5600U CPU @ 1.80 GHz
HP 840G3 16 GB Intel(R) Core(TM) i5-8350U CPU @ 1.80 GHz
Xiaomi 11 8 GB Snapdragon 778G
Honor 70 pro 12 GB Dimensity 8000
Galaxy Z Flip3 16 GB Snapdragon 888
Samsung w23 16 GB Snapdragon 8 + Gen1
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Figure 4. Experimental environment configuration.

The basic setup of the experiment is as follows: the vehicle detection task is assigned
to two network slices with 28 vCPU cores and 20 MHz bandwidth, and the experiment
adopts the method of controlling variables, which means that only one variable is changed
in each experiment while keeping other variables the same. Each experiment is repeated
ten times under the same conditions, and the average value is used as the final result to
reduce the random effects of the experiment.

5.2. Experimental Parameter Setting
5.2.1. Reward Factor

The cumulative rewards generated by three different learning rates, δ = 0.001,
δ = 0.015, and δ = 0.01 [38], to verify the feasibility analysis of the DSSO algorithm
during the learning process with the number of iterations step = 1000 [22] are shown in
Figure 5.
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The reward variation caused by different learning rate δ is illustrated in Figure 5.
The DSSO algorithm can be converged in δ = 0.001, δ = 0.015, and δ = 0.01. When
δ = 0.001, the reward value converges most slowly among the three, which leads to low
optimization efficiency; δ = 0.015 the cumulative reward converges more slowly and shows
a dangerous trend; δ = 0.01 the reward value curve stability is optimal and connects to the
local optimum stage when the number of iterations exceeds 648; therefore, this experiment
selects δ = 0.01 as the learning rate of the DSSO algorithm.

5.2.2. Weight Factors

The effects of different weight factors on task time latency and energy consumption
are shown in Figure 6. When the vehicle Di has sufficient computing power, it will pay
more attention to shortening the task average latency when processing the task; when the
vehicle Di has insufficient computing power, it will pay more attention to reducing energy
consumption.

Electronics 2023, 12, 2708 13 of 19 
 

 

5.2. Experimental Parameter Setting 
5.2.1. Reward Factor 

The cumulative rewards generated by three different learning rates, 0.001δ =  , 
0.015δ = , and 0.01δ =  [38], to verify the feasibility analysis of the DSSO algorithm during 

the learning process with the number of iterations step = 1000 [22] are shown in Figure 5.  

0 200 400 600 800 1000
0

50

100

150

200

250

300

350

R
ew

ar
d

  0.001
  0.015
  0.01

The number of  iteration  
Figure 5. Convergence at different learning rates. 

The reward variation caused by different learning rate δ  is illustrated in Figure 5. 
The DSSO algorithm can be converged in 0.001δ = , 0.015δ = , and 0.01δ = . When 0.001δ =

, the reward value converges most slowly among the three, which leads to low optimiza-
tion efficiency; 0.015δ =  the cumulative reward converges more slowly and shows a dan-
gerous trend; 0.01δ =  the reward value curve stability is optimal and connects to the local 
optimum stage when the number of iterations exceeds 648; therefore, this experiment se-
lects 0.01δ =  as the learning rate of the DSSO algorithm.  

5.2.2. Weight Factors 
The effects of different weight factors on task time latency and energy consumption 

are shown in Figure 6. When the vehicle iD  has sufficient computing power, it will pay 
more attention to shortening the task average latency when processing the task; when the 
vehicle iD  has insufficient computing power, it will pay more attention to reducing en-
ergy consumption.  

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

50

100

150

200

250

300

350

400

450

500

weight factor

  Energy Consumption (J) 
  Time Latency (S)

En
er

gy
 C

on
su

m
pt

io
n 

(J
)

β t
β e

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Ti
m

e 
La

te
nc

y 
(S

)

1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0
 

Figure 6. Impact of different weight factors on task time latency and energy consumption. Figure 6. Impact of different weight factors on task time latency and energy consumption.

The relationship of energy consumption and time latency on different weight factors
is demonstrated in Figure 6. When βt = 0.9, βe = 0.1, the task time latency of the tasks to
be offloaded is slight, and the energy consumption is high. While βt = 0.1, βe = 0.9, the
time latency of the task to be unloaded is max, and the energy consumption is minor. When
βt = 0.55, βe = 0.45 the reward value is the highest, indicating that the offloading cost of
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the vehicular tasks under edge computing is the lowest. Therefore, βt = 0.55, βe = 0.45 is
selected as the weight factor for the DSSO algorithm in this experiment.

5.2.3. Evaluation Metrics

To evaluate the feasibility of the proposed algorithm DSSO, energy consumption,
average delay, and packet loss rate of task offloading are selected as performance metrics.

1. Energy consumption: denotes the sum of the energy consumption of tasks on the
vehicle terminals and the slices that offload the tasks to the edge server.

2. Time latency: expresses the sum of task execution delay, transmission delay, and
waiting delay.

3. The ratio of dropped tasks: represents the drop ratio of in-vehicle task offloading, and
this metric evaluates the completion efficiency of task offloading.

5.3. Experimental Results and Analysis

To verify the performance of the DSSO proposed in this paper, DSSO is compared
with LOCAL, MINCO [39], and DJROM [40] for experiments.

1. Impact of input data size on algorithm performance

To evaluate the impact of task input data size on algorithm performance, this group of
experiments set the task deadline to 1 s and the task input data size to 16 MB~48 MB. The
impact of task input data size on the energy consumption generated by the four algorithms
is shown in Figure 7.
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As can be seen from Figure 7, as the amount of in-vehicle task input data size in-
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rithm is in the middle, and the energy consumption values of DJROM algorithm and 
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offloading delay by evaluating the service priority and data flow characteristics but does 
not restrict the energy consumption too much; the LOCAL algorithm only considers the 

Figure 7. Impact of task input data size on energy consumption.

As can be seen from Figure 7, as the amount of in-vehicle task input data size increases,
the energy consumption grows for all four algorithms; among them, the energy consump-
tion value of MINCO is large, the energy consumption value of LOCAL algorithm is in the
middle, and the energy consumption values of DJROM algorithm and DSSO algorithm are
relatively low. This is because the MINCO algorithm reduces the task offloading delay by
evaluating the service priority and data flow characteristics but does not restrict the energy
consumption too much; the LOCAL algorithm only considers the available resources of the
vehicle itself to process the task, and as the task input data volume increases, the available
resources are not enough to support the task offloading, and the energy consumption value
of LOCAL algorithm increases steeply; DJROM algorithm maximizes the number of com-
putational bits by reducing the uplink power, which minimizes the energy consumption of
task offloading; DSSO algorithm dynamically selects the optimal offloading strategy for
the in-vehicle tasks by transforming the offloading problem of the in-vehicle task into a
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Markov decision process to solve the optimal slicing result problem, using the Dueling
DQN method in DRL. The DSSO algorithm highlights the advantage of reducing the energy
consumption value compared with the DJROM algorithm when the task input data volume
is large.

The impact of the time latency of four algorithms with different task input data sizes is
given in Figure 8. It can be observed from the chart that as the task input data size increases,
the time latency of all algorithms shows an upward trend. The DJROM algorithm achieves
higher rates by reducing the power of the uplink, resulting in the highest time latency for
tasks. The LOCAL algorithm experiences a sharp increase in the time latency of processing
tasks when the task input data size reaches a particular value. The MINCO and DSSO
algorithms have relatively lower time latency values. However, the DSSO algorithm has
a more substantial advantage over the MINCO algorithm when facing complex network
environments with enormous task offloading sizes.

The point-fold line chart of four offloading algorithms on the ratio of dropped tasks
is outlined in Figure 9. The result has shown that the packet loss rate of LOCAL remains
consistent when the task is offloaded, and the DSSO algorithm has the lowest packet
loss rate when offloading tasks compared to MINCO and DJROM, i.e., the highest task
offloading completion rate. That is because DSSO uses the loss function and the experience
playback mechanism in the neural network to obtain the optimal result of slicing after
mapping the true values through the decentralized operation of Dueling Network and then
updates the uninstallation strategy by comparing the magnitude of the reward value, and
this significantly enhances the stability of the transmission of uninstallation data.
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2. Impact of task deadline on algorithm performance

To evaluate the effect of task deadline on algorithm performance, the average amount
of task input data set for this group of experiments is 32 MB, and the task completion dead-
line varies from 0.6 s to 1.4 s. The energy consumption of different offloading algorithms
with different task deadlines is outlined in Figure 10.

Electronics 2023, 12, 2708 16 of 19 
 

 

16 24 32 40 48
0.0

0.2

0.4

0.6

0.8

1.0

Task Input Size (MB)

R
at

io
  o

f  
D

ro
pp

ed
  T

as
ks

  (
%

) 

  LOCAL

  MINCO
  DJROM

  DSSO 

 
Figure 9. Impact of task input data size on the ratio of dropped tasks. 

2. Impact of task deadline on algorithm performance 
To evaluate the effect of task deadline on algorithm performance, the average amount 

of task input data set for this group of experiments is 32 MB, and the task completion 
deadline varies from 0.6 s to 1.4 s. The energy consumption of different offloading algo-
rithms with different task deadlines is outlined in Figure 10.  

0.6 0.8 1.0 1.2 1.4
0

50

100

150

200

250

300
En

er
gy

  C
on

su
m

pt
io

n 
(J

)

Task Deadline (S)

  LOCAL

  MINCO

  DSSO

  DJROM

 
Figure 10. Impact of task deadline on energy consumption. 

As can be seen from Figure 10, the energy consumption of the four algorithms de-
creases to varying degrees as the task deadline increases. Among them, the DSSO algo-
rithm significantly reduces energy consumption as the task deadline increases. When the 
task deadline is 1.4 s compared with the LOCAL, MINCO, and DJROM algorithms, the 
energy consumption is reduced by 37.76%, 27.83%, and 12.15%, respectively. This is be-
cause the DSSO algorithm uses the Dueling Network in the Dueling DQN algorithm to 
train parameters, which only considers the advantage function that affects the offloading 
action, thereby reducing the energy consumption of task offloading. 

The effect of task deadlines on the time latency of the four algorithms is illustrated in 
Figure 11. From this figure, it can be seen that the time latency of all four algorithms in-
creases as the task deadline increases. Among them, DSSO offloads the task to the network 
slice in the edge server through the collaborative interaction between the in-vehicle termi-
nal and the edge server, which dramatically reduces the time delay of the task by 24.32%, 

Figure 10. Impact of task deadline on energy consumption.

As can be seen from Figure 10, the energy consumption of the four algorithms de-
creases to varying degrees as the task deadline increases. Among them, the DSSO algorithm
significantly reduces energy consumption as the task deadline increases. When the task
deadline is 1.4 s compared with the LOCAL, MINCO, and DJROM algorithms, the energy
consumption is reduced by 37.76%, 27.83%, and 12.15%, respectively. This is because
the DSSO algorithm uses the Dueling Network in the Dueling DQN algorithm to train
parameters, which only considers the advantage function that affects the offloading action,
thereby reducing the energy consumption of task offloading.

The effect of task deadlines on the time latency of the four algorithms is illustrated
in Figure 11. From this figure, it can be seen that the time latency of all four algorithms
increases as the task deadline increases. Among them, DSSO offloads the task to the
network slice in the edge server through the collaborative interaction between the in-
vehicle terminal and the edge server, which dramatically reduces the time delay of the task
by 24.32%, 36.67%, and 6.67% compared with LOCAL, DJROM, and MINCO when the task
deadline is 1.2 s.
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As can be seen from Figure 12, without considering energy consumption and time latency,
the packet loss rate of all four algorithms exhibits a significant decreasing trend with the
increasing task deadline. However, the DSSO algorithm shows the most obvious advantage
because it dynamically adjusts the slicing through continuous updates of neural network
parameters, thereby obtaining an optimal offloading strategy within the effective range.
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6. Conclusions

In this study, the offloading problem of relationship-intensive and delay-sensitive
vehicular tasks in MEC is investigated. The distributed offloading algorithm was designed
to enable devices to make offloading decisions dispersedly, effectively solving the load
imbalance problem at edge nodes. The Dynamic Selection Slicing-based Offloading Algo-
rithm for in-vehicle Task in MEC was proposed. The offloading model of in-vehicle tasks is
constructed by considering vehicle conditions, task dependencies, and available resources.
The DRL approach was used to dynamically select the optimal task offloading strategy.
The experimental results showed that the DSSO algorithm achieved the optimization goal
when facing massive service requests and large data scales and performed better than simi-
lar algorithms in energy consumption, time latency, and task completion rate. However,
due to the link disconnection caused by the high-speed movement of vehicles and the
possible security hazards during data computation offloading. In the future, the security
issues of offloading to in-vehicle task collaboration computing under the edge computing
environment will be investigated.
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