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Abstract: Solutions for emotion recognition are becoming more popular every year, especially with
the growth of computer vision. In this paper, classification of emotions is conducted based on images
processed with convolutional neural networks (CNNs). Several models are proposed, both custom and
transfer learning types. Furthermore, combinations of them as ensembles, alongside various methods of
dataset modification, are presented. In the beginning, the models were tested on the original FER2013
dataset. Then, dataset filtering and augmentation were introduced, and the models were retrained
accordingly. Two methods of emotion classification were examined: a multi-class classification, and a
binary classification. In the former approach, the model returns the probability for each class. In the latter,
separate models for each single class are prepared, together with an adequate dataset based on FER2013.
Each model recognizes a single emotion from the others. The obtained results and a comparison of the
applied methods across different models is presented and discussed.

Keywords: facial emotion recognition; image analysis; convolutional neural network; FER2013

1. Introduction

Facial expressions contain a lot of valuable and accessible information. The most
common purpose of the analysis of facial expressions is to determine the current emotion
of a particular person. Many companies (for instance, Google [1] and Microsoft [2]) have
already incorporated such solutions into their applications. The problem seems fairly
easy when the emotion in the image is obvious. For example, the “happy” emotion is
usually simple to identify. However, a difficulty arises when the intensity of the emotional
expression is low, and thus predictions based on micro-expressions can be close in their
probability values and easily mistaken.Such a situation often occurs with “neutral” and
“sad” emotions, when even the slightest changes can make a difference. As we know
from experience, sometimes even humans have trouble recognizing the real emotion. The
provided solutions can be successfully used as provided or incorporated into more complex
solutions; for instance, in the fast-growing field of remote communication with webcams
enabled, such as teleconferences or job interviews, suggesting how the other party might
feel or react in certain situations.

Artificial intelligence, especially in the field of computer vision, allows for advanced
image analysis and inference of hidden features. This makes this technique effective and
successful when applied in the problem of object classification in various fields. One
such area is emotion recognition based on the facial expression presented in a provided
image. In particular, convolutional neural networks (CNNs) have proven to be effective in
solving such tasks. First, the layers responsible for feature extraction [3] aim to recognize
specific patterns (e.g., micro-expressions) in images. Then the classification layers, based
on the input data from previous layers, perform classification (e.g., emotion recognition).
The use of CNNs in facial expression recognition (FER) has been the topic of many articles,
presenting a wide range of different approaches to the problem. The most popular include
transfer learning, custom CNNs, and ensemble models [4].
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The dataset used to conduct this research was the well-known FER2013 created by
Pierre Luc Carrier and Aaron Courville. It was first introduced in [5] for a Kaggle competi-
tion. The dataset consists of 35,887 grayscale images, which are cropped and each of the
size of 48 × 48 pixels. The face in the images can be classified into one of seven possible
categories. The FER2013 dataset is highly imbalanced, since the number of images per
class varies a lot (the most numerous,“happy”, contains 8989 images, and the least numer-
ous,“disgust”, only 547). As described in [5], the human accuracy on this dataset is about
65 ± 5%. Moreover, some images may be labeled incorrectly, due to the method of their
collection, as well as the use of crowd-sourcing for labeling [6]. These dataset characteristics
have room for further improvement, which will be discussed in more detail in Section 3.
There are other popular datasets available, such as AffectNet [7], JAFFE [8], CK+ [9], and
KDEF [10], representing either images taken “in the wild” (achieved accuracy reported in
literature is around 75%) or in laboratory conditions (reported accuracy exceeding 90%).
However, these datasets are not covered by the scope of this paper.

To conclude the introduction, the unique nature of this manuscript and its distinct con-
tributions to the existing knowledge on facial emotion recognition (FER) are emphasized.
Although numerous studies investigating FER methodologies using convolutional neural net-
works (CNN), including VGG and ResNet architectures, have been conducted, several unique
elements are offered by this research that distinguish it from the current state of the art:

• A comprehensive comparative analysis of the existing FER methods that utilize a
CNN architecture is presented. Through the side-by-side examination of these method-
ologies, an in-depth understanding of their respective strengths and weaknesses is
offered, highlighting areas where improvements could be made and potential research
opportunities may be found. This study goes beyond mere implementation of existing
architectures, aiming to enhance the collective understanding of their performance in
various scenarios;

• The introduction of two novel models for FER is a key feature of this work. The first
model, which prioritizes efficiency, has been designed to achieve commendable per-
formance in a shorter time frame than the previously published models. The second
model, an ensemble approach, leverages fewer models than commonly reported in the
literature yet outperforms many more complex systems. These innovative models con-
tribute to the continual advancement of FER methodologies, setting new performance
and efficiency standards;

• In terms of resources for the research community, significant strides have been made
through the meticulous updating of the FER database and making an enhanced version
publicly available. This allows researchers to conduct more accurate and relevant
analyses using the most current data, fostering progress in the field;

• A divergence from the norm is proposed by the use of binary models in FER—an
approach not frequently adopted in existing literature. This addition extends the
range of methods available for FER and paves the way for new lines of inquiry and
exploration in emotion recognition research.

The rest of this paper is structured as follows: Section 2 describes an overview of
works related to this paper. Section 3 explains the FER2013 dataset in depth, along with the
applied modification methods. Section 4 presents the selected models. Section 5 compares
the obtained results between models presented in this paper, as well as the results obtained
by other researchers. Section 6 provides a discussion of the presented approach. Section 7
briefly concludes the paper.

2. Related Work

A lot of research effort has been put into the topic of facial emotion recognition.
In this analysis, we will focus on the most recent works, while also presenting the most
significant efforts from previous years. Several approaches to research can be identified.
Some of the researchers focused on enhancing a dataset, either by augmentation or by
using external data, in order to improve the performance of the networks. Others focused
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on hyperparameter tuning. Another approach was to modify or extend existing model
architectures. Finally, much effort, with excellent results, has been applied to creating
ensemble models. Luckily, most researchers used the FER2013 dataset, which allows for a
quantitative comparison of results.

One of the first works using the FER2013 dataset was that presented in 2013 by
Goodfellow et al. [5], which determined the accuracy of the “null model”, obtaining
65.5% as an ensemble of a few convolutional neural networks and with use of a TPE
hyperparameter optimization method. In the following year, Nguyen et al. [11] focused
on the influence of low-level, mid-level, and high-level features on the performance of
facial emotion classification. As a result, accuracies of 73.03% and 74.09% were achieved
with the use of a single MLCNN and ensemble MLCNNs (multi-level convolutional neural
networks), respectively. As a backbone, a single VGGNet-inspired [12] 18-layer network
was used.

Pioneering work in using additional features such facial landmarks and utilizing
external datasets was presented in 2015 by Zhang et al. [13]. The authors were able to
obtain an accuracy of 75.1%. In 2016, Pramerdorfer et al. [14] focused on finding bottlenecks
in the existing CNNs, and the removal of one of them was proven to increase classification
performance on the FER2013 dataset. An ensemble of 8 such networks achieved an accuracy
of 75.2%. The same year, Kim et al. [15] introduced a two-level hierarchical committee
consisting of a number of deep CNNs. By ensembling 36 networks and averaging outputs,
an accuracy of 72.72% was achieved. A year later, Connie et al. [16] proposed a hybrid
CNN–SIFT (scale invariant feature transform) aggregator, which was a combination of
three models: a single CNN, a CNN with SIFT, and a CNN with dense SIFT. It obtained an
accuracy of 73.4%, albeit lower than the previous efforts.

In 2018, Jun et al. [17] proposed a 19-layer VGGNet-inspired model with slight modifi-
cations, such as adding dropout to a fully connected layer. What is more, before mirroring
the training, images were randomly cut down by 4 pixels reducing their resolution to
44 × 44 pixels. The highest accuracy achieved by the best configuration was 73.06%. In
2019, Hua et al. [18] presented an ensemble of 3 models (the best individual model obtained
an accuracy of 68.18%), with an increasing number of convolutional layers and achieved
an accuracy of 71.91%. This result was not a significant improvement in accuracy over
the previous models, but again justified use of the ensemble approach. In the same year,
Porus, niuc et al. [19] achieved an accuracy of 71.25% by using the RESNET50 model with
pretrained weights trained on the VGGFace2 [20] dataset. Besides a basic data augmen-
tation, they also performed contrast limited adaptive histogram equalization (CLAHE),
which resulted in more emphasized contours and a higher contrast of the images. Also
in 2019, Georgescu et al. [21] proposed a complicated model with an accuracy of 75.42%.
Additionally to the CNNs, the BOVW (bag of visual words) model was used, as well as
linear SVM and local learning techniques.

The following years have shown an increase in the interest in this topic, which can
be linked to general interest in machine learning methods and their overall improvement
and development. In 2020, Kusuma et al. [22] presented a standalone model based on the
VGG-16 and achieved an accuracy of 69.40%. The model was modified in order to benefit
from global average pooling (GAP) as its last pooling layer. The experiments took into
account many factors, such as the use of different optimizers, such as SGD, Adam, SWATS
(switching from Adam to SGD), balanced and imbalanced data distributions, layer freezing,
and the use of batch normalization. In addition, Riaz et al. [23] proposed a shallow eXnet
network with only 4.57 million parameters, along with some up-to-date data augmentation
methods, such as cutout, mixup, and the combination of these two, which achieved an
accuracy of 73.54%. Jia et al. [24] obtained an accuracy of 71.27% using an ensemble of
3 models (inspired by ALexNet, VGGNet, and ResNet) with a support vector machine
(SVM) as a classifier. Khanzada et al. [25] achieved an accuracy of 74.8% on the original
FER2013, and 75.8% with auxiliary data as an ensemble of 7 models. Pham et al. [26]
proposed a new residual masking network consisting of four residual masking blocks. It
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achieved an accuracy of 74.14% and 76.82% using single-model and ensemble method (as
an ensemble of 6 CNNs) approaches, respectively. The authors utilized auxiliary training
data in their work.

In 2021, Minaee et al. [27] proposed an attentional convolutional network and achieved
an accuracy of 70.02% with the use of a spatial transformer (affine transformation was
applied), whose main task was to concentrate on a specific part of the image. Khaired-
din et al. [28] proposed a single network based on VGGNet. By experimenting with various
optimizers and learning rate schedulers, they managed to obtain an accuracy of 73.28%.
Another research work proposing hyperparameter optimization was conducted by Vulpe-
Grigoras, i et al. [29], which utilized a random search algorithm to find the model with the
best performance. It achieved an accuracy of 72.16%.

The most recent (2022) efforts were those of Pecoraro et al. [30], who achieved a 74.42%
accuracy using a single model by applying a local multi-head channel (LHC) self-attention
module and a ResNet34v2 network as a backbone. In addition, Fard et al. [31] presented
adaptive correlation (Ad-Corre) loss with Xception as a backbone network and obtained an
accuracy of 72.03%. Furthermore, the RESNET50 model was also examined, achieving an
accuracy of 68.25% without Ad-Corre and 71.48% with Ad-Corre (which gave an +3.23%
accuracy boost). Another research paper that is worth mentioning is the one presented by
Akhand et al. [32], which presented an excellent overview of the use of transfer learning
models in this problem. This research, however, cannot be compared to the others in terms
of accuracy, as it did not make use of the FER2013 dataset.

A summary of the results of the research presented above is given in Section 5.4.
We took the findings of the aforementioned related works into consideration, especially
the added value of ensemble methods, a careful approach, and use of the dataset. We
started with various modifications of the dataset and then proposed networks with only
a few layers, as well as transfer learning ones. In order to boost the performance even
higher a method of model ensembling was used in our research. Besides the accuracy,
supplementary metrics were introduced, such as precision, recall, and F1-score. In addi-
tion to multi-class classification, a binary classification approach is also proposed in the
following sections.

3. Database and Augmentation

As stated in the introduction, FER2013 [5] was used as the dataset to conduct this
research. It was randomly divided into 3 sets with the given split ratio: 80% training, 10%
validation, and 10% test sets. More or less every grayscale image in the dataset shows a
cropped face of the size 48 × 48 pixels.

First, the prepared models were tested on the original dataset. Then, the manually
filtered FER2013 was introduced, where images not presenting a human face were removed
and those clearly mislabeled were subjectively reassigned to a different, matching class.
Finally, all classes were balanced using basic methods of data augmentation, such as
zooming, rotating, and mirroring.

When it came to binary classification, a separate set based on the filtered FER2013 was
prepared per class, containing only two possible labels—chosen emotion and other. Training
sets for the binary approach were augmented in the same way as previously, in order to
maintain a balance between the two classes. Below, the prepared datasets are described in
more detail, with the number of training samples in each dataset presented in Table 1.
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Table 1. Number of training samples per class in particular datasets.

Original
FER2013

Balanced
Original
FER2013

Filtered
FER2013

Balanced
Filtered
FER2013

Angry 3995 8000 3623 8000
Disgust 436 8000 442 8000

Fear 4097 8000 3711 8000
Happy 7215 8000 6816 8000
Neutral 4965 8000 4493 8000

Sad 4830 8000 5132 8000
Surprise 3171 8000 3093 8000

3.1. Original FER2013

The original FER2013 contains 35,887 grayscale images randomly split into 3 sets:
training—28,706, validation—3585, and test—3596. More or less every image shows only
one cropped face of a size of 48 × 48 pixels and is labeled as one of 7 emotions: “angry”,
“disgust”, “fear”, “happy”, “neutral”, “sad”, or “surprise”. Exemplary images are presented
in Figure 1. The dataset itself is imbalanced, as the sizes of the classes vary greatly. It is
worth mentioning that the FER2013 presents a wide range of images taken in the wild,
differing in the position of the face, brightness, and distance from the camera. The people
depicted in the images also vary in age, race, and gender. Moreover, the actors express
emotions with different intensities.

Figure 1. Selected examples of the original FER2013 dataset.

All of these characteristics allow humans to achieve about a 65 ± 5% accuracy on this
dataset, possibly having a high Bayes rate [5]. In the same paper, the “null model” was
described as an ensemble [4] of CNNs, which gave a result of a 65.5% accuracy.

3.2. Original Balanced FER2013

The original, balanced FER2013 is an augmented version of the original dataset.
To balance the differences in the number of images between classes, basic methods of
augmentation were used:

• Rotation. Rotating images randomly in the range between 10◦ clockwise and 10◦

counterclockwise;
• Mirror. Mirroring images only horizontally, as vertical mirroring does not suit the

characteristics of the dataset;
• Zoom. Zooming images with a minimum zoom factor of 1.1 and a maximum of 1.2

(a random value between 1.1 and 1.2 was chosen).

The augmentation process resulted in a balanced dataset of 8000 training samples
per class. The test and validation sets were the same as in the original FER2013 and were
not augmented.
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3.3. Filtered FER2013

In the filtered FER2013, the dataset was manually cleaned, in order to remove non-face
images (presented in Figure 2), or those which were clearly not corresponding to any
particular class. In the case of explicit mislabeling, the picture was subjectively relabeled
to the proper category. The resulting dataset consisted of 34,140 images split into 3 sets:
training—27,310, validation—3410, and test—3420. Figure 3 shows images that can be
classified as different emotions, but as stated before, such a decision is very subjective.

Figure 2. Non-face images.

Figure 3. Images with ambiguous labels [6].

3.4. Filtered Balanced FER2013

The filtered and balanced FER2013 was based on the filtered dataset described above.
Its training set was augmented in the same manner as the original, balanced FER2013. This
resulted in 8000 training samples per class. The test and validation sets were the same as in
the filtered FER2013 and were not augmented.

3.5. Binary Datasets

Binary datasets were prepared for every individual emotion. This resulted in assembling
seven separate datasets, each having only two possible labels—chosen class and other.

Initially, from the training samples of the filtered FER2013, random 1000 images per
class were taken. The “disgust” emotion did not provide enough samples, so it was taken
in full.

Datasets were constructed in such a way that the other class constituted of 1000 images
of each emotion, except the emotion that the particular binary classification model aimed
to identify.

In total, the other class was composed of 6000 samples. The chosen emotion class
consisted of the corresponding class of the filtered FER2013, augmented up to 6000 images
in the same manner as previously.
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Only the “happy” set was randomly undersampled to meet the criteria, and the
remaining images were moved to the validation set. The test set was the same as in the
balanced and filtered FER2013.

All classes, except the chosen one, were collected together and then randomly under-
sampled, in order to keep the balance with the emotion being classified. Table 2 presents
the size of the training, validation, and test sets per class for every binary dataset.

Table 2. Number of training, validation, and test samples per class.

Training Validation Test

Angry/Other 6000 452 454
Disgust/Other 6000 55 56

Fear/Other 6000 463 465
Happy/Other 6000 1667 852
Neutral/Other 6000 561 563

Sad/Other 6000 640 642
Surprise/Other 6000 772 388

4. Proposed Models

Research was carried out on four models in total. Two of them were custom CNN
models, and the other two were developed using the transfer learning technique. A con-
volutional neural network (CNN) was used for its capabilities of feature extraction as
performed by the convolutional layers. Then, the classification layers were responsible for
emotion recognition [33]. The generic architecture of a such CNN is presented in Figure 4.

Figure 4. Basic architecture of a convolutional neural network for emotion recognition.

Below, the architectures of the applied CNN models are presented, along with the
applied parameters and hyperparameters.

4.1. Five-Layer Model

The five-layer model was a standard CNN network with five convolutional layers,
followed by batch normalization, which decreased the internal covariate shift [34]. This
resulted in a faster training time and a higher accuracy [35]. Then, max pooling was used,
taking the maximum value of each region of the pooling [36]. To reduce the overfitting, a
dropout was applied as a regularizer, making the model more generalized [37].

In the case of the five-layer CNN, a fully-connected layer was implemented. The archi-
tecture of the five-layer model is presented in Table 3. Table 4 shows the parameters and
hyperparameters used for the five-layer model. Similar ones were used in the six-layer
model discussed below, except for the lack of dropouts in the fully connected layers.
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Table 3. The five-layer CNN model architecture.

Layer (Type) Output Shape Param #

Conv2D (None, 48, 48, 128) 1280
BatchNormalization (None, 48, 48, 128) 512

MaxPooling2D (None, 24, 24, 128) 0
Dropout (None, 24, 24, 128) 0
Conv2D (None, 24, 24, 256) 295,168

BatchNormalization (None, 24, 24, 256) 1024
MaxPooling2D (None, 12, 12, 256) 0

Dropout (None, 12, 12, 256) 0
Conv2D (None, 12, 12, 512) 1,180,160

BatchNormalization (None, 12, 12, 512) 2048
MaxPooling2D (None, 6, 6, 512) 0

Dropout (None, 6, 6, 512) 0
Conv2D (None, 6, 6, 1024) 4,719,616

BatchNormalization (None, 6, 6, 1024) 4096
MaxPooling2D (None, 3, 3, 1024) 0

Dropout (None, 3, 3, 1024) 0
Conv2D (None, 3, 3, 1024) 9,438,208

BatchNormalization (None, 3, 3, 1024) 4096
MaxPooling2D (None, 1, 1, 1024) 0

Dropout (None, 1, 1, 1024) 0
Flatten (None, 1024) 0
Dense (None, 512) 524,800

BatchNormalization (None, 512) 2048
Dropout (None, 1024) 0

Dense (None, 256) 131,328
BatchNormalization (None, 256) 1024

Dropout (None, 256) 0
Dense (None, 7) 1799

Total params: 16,307,207
Trainable params: 16,299,783

Non-trainable params: 7424

Table 4. Applied parameters and hyperparameters for the five-layer model.

Parameter/Hyperparameters Value

Image size 48 × 48 × 1
Batch size 32

Epochs 100
Kernel size 3 × 3

Max pooling 2 × 2
Activation function ReLU (Rectified Linear Unit)

Dropout 25% (in CONV layers) & 50% (in FCL of 5 layer
model)

Adam optimizer 0.001
Loss function Categorical Cross-Entropy

Output layer activation function Softmax

4.2. Six-Layer Model

The six-layer CNN model was composed in a similar manner as the previous model,
with the exception of an additional layer, as well as the use of global average pooling (GAP)
instead of fully connected layers (FCL). The architecture of the six-layer model is presented
in Table 5. Table 6 shows the parameters and hyperparameters used for the six-layer model.
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Table 5. The six-layer CNN model architecture.

Layer (type) Output Shape Param #

Conv2D (None, 48, 48, 128) 1280
BatchNormalization (None, 48, 48, 128) 512

MaxPooling2D (None, 24, 24, 128) 0
Dropout (None, 24, 24, 128) 0
Conv2D (None, 24, 24, 256) 295,168

BatchNormalization (None, 24, 24, 256) 1024
MaxPooling2D (None, 12, 12, 256) 0

Dropout (None, 12, 12, 256) 0
Conv2D (None, 12, 12, 512) 1,180,160

BatchNormalization (None, 12, 12, 512) 2048
MaxPooling2D (None, 6, 6, 512) 0

Dropout (None, 6, 6, 512) 0
Conv2D (None, 6, 6, 1024) 4,719,616

BatchNormalization (None, 6, 6, 1024) 4096
MaxPooling2D (None, 3, 3, 1024) 0

Dropout (None, 3, 3, 1024) 0
Conv2D (None, 3, 3, 1024) 9,438,208

BatchNormalization (None, 3, 3, 1024) 4096
MaxPooling2D (None, 1, 1, 1024) 0

Dropout (None, 1, 1, 1024) 0
Conv2D (None, 1, 1, 2048) 18,876,416

BatchNormalization (None, 1, 1, 2048) 8192
MaxPooling2D (None, 1, 1, 2048) 0

Dropout (None, 1, 1, 2048) 0
GlobalAveragePooling2D (None, 2048) 0

Dense (None, 7) 14,343
Total params: 34,545,159

Trainable params: 34,535,175
Non-trainable params: 9984

Table 6. Applied parameters and hyperparameters for the six-layer model.

Parameter/Hyperparameters Value

Image size 48 × 48 × 1
Batch size 32

Epochs 100
Kernel size 3 × 3

Max pooling 2 × 2
Activation function ReLU (Rectified Linear Unit)

Dropout 25%
Adam optimizer 0.001

Loss function Categorical Cross-Entropy
Output layer activation function Softmax

4.3. Transfer Learning Models

Transfer learning (TL) is a method of using already pretrained models in the same or a
similar task. This can improve the performance, as well as save time and resources while
training, as the resulting new model utilizes the knowledge previously learned [38,39].
The pretrained models were based on the VGGFace [40] and VGGFace2 [20] datasets
(containing 2.6 and 3.31 million images, respectively), which refer to the related topic
of facial recognition. For both models, only the convolutional layers were preserved, as
they are responsible for feature extraction and are capable of transferring the learned
patterns to the new problem, making the classification layers more efficient. Due to the
input specification of these models, the images were resized and channel replication was
performed accordingly. Their architectures are presented in Tables 7 and 8.
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Table 7. A simplified pretrained VGG16 model architecture without the four last convolutional layers.

Layer (Type) Output Shape Param #

VGG16 base model
Conv2D (None, 14, 14, 128) 589,952

BatchNormalization (None, 14, 14, 128) 512
MaxPooling2D (None, 7, 7, 128) 0

Dropout (None, 7, 7, 128) 0
Conv2D (None, 7, 7, 256) 295,168

BatchNormalization (None, 7, 7, 256) 1024
MaxPooling2D (None, 3, 3, 256) 0

Dropout (None, 3, 3, 256) 0
Conv2D (None, 3, 3, 512) 1,180,160

BatchNormalization (None, 3, 3, 512) 2048
MaxPooling2D (None, 1, 1, 512) 0

Dropout (None, 1, 1, 512) 0
Conv2D (None, 1, 1, 1024) 4,719,616

BatchNormalization (None, 1, 1, 1024) 4096
MaxPooling2D (None, 1, 1, 1024) 0

Dropout (None, 1, 1, 1024) 0
GlobalAveragePooling2D (None, 1024) 0

Dense (None, 7) 7175
Total params: 16,794,823

Trainable params: 6,795,911
Non-trainable params: 9,998,912

Table 8. A simplified pretrained RESNET50 model architecture.

Layer (Type) Output Shape Param #

RESNET50 base model
Flatten (None, 2048) 0
Dense (None, 2048) 4,196,352
Dense (None, 7) 14,343

Total params: 27,771,847
Trainable params: 27,718,727

Non-trainable params: 53,120

The input images had a size of 224 × 224 × 3. Both models were trained on 100 epochs,
with a batch size of 32. As in the five-layer and six-layer models, the network was charac-
terized by

• Adam as the optimizer, with a learning rate of 0.0001;
• Categorical cross-entropy as the loss function;
• Softmax as the output layer activation function.

In the case of added parts of the networks, the kernel size, max pooling, activation
function, and dropout were not changed and were the same as in Tables 4 and 6.

4.4. Binary Models

Binary models tend to achieve better performance in individual classes than multi-class
models. When the quantity of possible labels is reasonable, binary models can be used in
multi-class classification problems. However, with the increase of the number of classes the
inference time becomes slower and the resource utilization becomes higher [41]. The com-
bination of several binary models is called one-vs-rest (OVR) or one-vs-all (OVA) [42]. Its
simplified architecture is presented in Figure 5.

The proposed binary models were the same as those used in the multi-class classifica-
tion but correspondingly converted to identify only a particular class or those representing
the rest. The last dense layer of each binary model had the value of (None, 1). Parameters
and hyperparameters were the same as before except
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Figure 5. An overview of the simplified OVR architecture.

• Loss function was changed to binary cross-entropy;
• Output layer activation function was changed to Sigmoid, instead of the previously

used Softmax;
• Transfer Learning models were also trained on 100 epochs, but for the binary imple-

mentations of five-layer and six-layer models, the number of epochs was increased to
200 each.

Binary models were built for three networks (five-layer, six-layer, and RESNET50) for
each of the seven emotions. In total, 21 separate models were prepared and every one of
them was trained on the corresponding binary dataset.

4.5. Ensemble Models

Ensemble models are a combination of multiple networks, as presenten on Figure 6.
Each was trained separately and achieved satisfactory results. To further improve the
overall performance, the model ensembling method was introduced, which consists of
unweighted averaging of predictions from all ensemble members and then evaluating the
final result. In this research, various combinations of such model ensembling are presented.
During all experiments, the five-layer and six-layer models were combined only with each
other. The same principle was applied for the transfer learning models. This method was
used for both the original, filtered, and balanced dataset versions.

Figure 6. An overview of a simplified ensemble model architecture.
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During the training of all models, the method of reducing the learning rate (LR) on the
plateau was used.The validation accuracy was selected as the monitored quantity. In the
case of learning stagnation (no model performance improvement for 5 epochs), the LR was
decreased by a factor of 0.4. For the balanced datasets of the five-layer and six-layer models,
both the original and filtered, the learning rate was reduced after 10 epochs of stagnation.
While training, the method of creating checkpoints was also used for capturing the model
with the highest validation accuracy. For each training, automatic Keras augmentation
was used in the same manner as in the balanced datasets (in the case of balanced datasets,
the Keras augmentation took place after the previous augmentation).

5. Experiments and Evaluation

The proposed CNN models were trained on Google Colab with a Tesla T4 GPU, with
the use of Keras [43] and TensorFlow [44] as the backend. In order to provide the best
evaluation, certain metrics were taken into consideration. At first, to compare the obtained
results with other research, the accuracy was measured, as this seems to be the most popular
metric for this task. The following formula was used:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

To measure the number of correctly predicted emotions for the given sample from all
the samples with a given emotion, the recall metric was introduced. Then, the precision
metric was applied, which calculates the percentage of individual emotions predicted
correctly among all other samples with the same predicted emotion. Due to the presence of
both balanced and imbalanced datasets, the F1-score was also considered as the harmonic
mean of the previously mentioned precision and recall. The formulas for precision, recall,
and F1-score are as follows:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(4)

To measure the inference time for each model, a set of 1000 randomly selected test
images was prepared. Images were served in batches of 32. For predictions, the default
Keras method—predict was singularly invoked 50 times, and its execution times were
collected. Finally, the average of these iterations was computed, giving the resulting mean
inference time. In order to present the model performance for each particular emotion, a
normalized confusion matrix [45] was used, which can show the numeric prediction error
between classes (Figures 7 and 8).

Below, the performance of each configuration is presented. Each table consists of
the results for the particular models trained and evaluated on a particular dataset. First,
the results on the original dataset (both the imbalanced and balanced version) are shown
(Tables 9–13). Then, the performance of models trained on the filtered FER2013 is pre-
sented (Tables 14–18). Finally, an evaluation of the binary models is shown. The obtained
results of the ensemble models made from networks presented in each table are also fea-
tured in Tables 10, 12 and 13 for the original FER2013 and Tables 15, 17 and 18 for the
filtered FER2013.
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Table 9. The obtained results on the original FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer 0.6769 0.7248 0.6185 0.6646 0.6408
6-layer 0.6763 0.7216 0.6136 0.6603 0.7547

RESNET50 0.7272 0.7321 0.7227 0.7273 3.8706
VGG16 0.7022 0.7419 0.6530 0.6926 4.8951

Table 10. The obtained results of ensemble models based on the original FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer +
6-layer 0.6885 0.7305 0.6161 0.6653 1.0837

RESNET50 +
VGG16 0.7353 0.7606 0.7119 0.7348 7.7931

Table 11. The obtained results on the balanced, original FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer 0.6977 0.7231 0.6639 0.6911 0.6245
6-layer 0.6902 0.7085 0.6610 0.6830 0.7521

RESNET50 0.7283 0.7339 0.7282 0.7310 3.8749
VGG16 0.6944 0.7356 0.6467 0.6864 4.9040

Table 12. The obtained results of ensemble models based on the balanced, original FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer +
6-layer 0.7008 0.7384 0.6650 0.6984 1.0892

RESNET50 +
VGG16 0.7425 0.7678 0.7197 0.7425 7.8611

Table 13. The obtained results of the ensemble of all models based on the original FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

4 custom
models

ensemble
0.7041 0.7592 0.6504 0.6976 1.8862

4 TL models
ensemble 0.7506 0.7837 0.7155 0.7470 14.6228

Table 14. The obtained results on the filtered FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer 0.7009 0.7472 0.6404 0.6875 0.7841
6-layer 0.7061 0.7318 0.6620 0.6940 1.1109

RESNET50 0.7477 0.7508 0.7449 0.7478 3.9211
VGG16 0.7254 0.7579 0.6908 0.7218 4.8313

Table 15. The obtained results of ensemble models based on the filtered FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer +
6-layer 0.7117 0.7537 0.6527 0.6975 1.5949

RESNET50 +
VGG16 0.7591 0.7775 0.7434 0.7597 7.5938



Electronics 2023, 12, 2707 14 of 21

Table 16. The obtained results on the balanced, filtered FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer 0.7143 0.7357 0.6875 0.7101 0.6266
6-layer 0.7111 0.7331 0.6880 0.7092 0.7503

RESNET50 0.7447 0.7482 0.7437 0.7459 3.9906
VGG16 0.7178 0.7596 0.6710 0.7109 4.9960

Table 17. The obtained results of the ensemble models based on the balanced, filtered FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer +
6-layer 0.7251 0.7491 0.6913 0.7180 1.1110

RESNET50 +
VGG16 0.7561 0.7727 0.7416 0.7565 7.8754

Table 18. The obtained results of the ensemble of all models based on the filtered FER2013.

Accuracy Precision Recall F1-Score Inference
Time [s]

4 custom
models

ensemble
0.7289 0.7625 0.6767 0.7154 2.2653

4 TL models
ensemble 0.7690 0.7970 0.7422 0.7678 14.6672

5.1. Original FER2013

As shown in Table 9, the highest accuracy achieved on the original imbalanced
FER2013 by a single network was 72.72%, with the use of the RESNET50 (2.5% more than
the VGG16). The 5-layer and 6-layer models performed similarly, with a slight advantage
for the first, obtaining an accuracy around 67.66% ± 0.03%.

When it comes to the original balanced FER2013, the transfer learning models did not
improve the performance (slightly better performance for the RESNET50 model and slightly
worse for the VGG16 model). However, a significant performance improvement was
noticed for the five-layer (+2.08%) and six-layer models (+1.39%). It is worth mentioning
that the five-layer model trained on the balanced FER2013 was able to achieve a quite high
result (69.77% accuracy) as a single network, and taking into account its considerably small
architecture, the inference time of 0.6245s per 1000 test images is the lowest in the ranking.

As presented in Tables 12 and 13, the model ensembling method proved to be effi-
cient in terms of achieving even higher accuracies but at a cost of inference time. Model
ensembling was carried out in pairs - separately for the five- and six-layer models and
transfer learning models. First, separate ensembles of five- and six-layer models and trans-
fer learning models of the original imbalanced dataset were conducted. Then, the same
approach was applied for the balanced original dataset. In general, the highest accuracy on
the original FER2013 was achieved by an ensemble of four models (a pair of RESNET50 and
VGG16 trained separately on balanced and imbalanced datasets). This approach achieved
the best performance (75.06% accuracy) on the original FER2013 in this paper. Its confusion
matrix is presented in Figure 7.

As shown in the confusion matrix in Figure 7, the “happy” and “surprise” emotions
were the most recognizable. The highest misclassification error occurred between “angry”
and “disgust”, as well as “neutral” and “sad”. The “fear” emotion was the least recognizable.
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Figure 7. The confusion matrix of the transfer learning model ensemble (75.06% accuracy) for the
original FER2013.

5.2. Filtered FER2013

As described in Section 3.3, the FER2013 was filtered by removing non-face images and
subjectively relabeling clearly wrongly labeled images. This resulted in an improvement of
the obtained performance. Considering the imbalanced dataset, 5-layer, 6-layer, RESNET50,
and VGG16 gained 2.4%, 2.98%, 2.05%, and 2.32%, respectively.

In terms of the balanced dataset, a similar behavior as for its original version was
noticed. A performance boost occurred for the five-layer and six-layer models, whereas
for transfer learning models it was slightly worse. The highest accuracy achieved on this
particular dataset was obtained in the same way as for the original one, by ensembling
4 transfer learning models, achieving 76.90%, which gives a +1.84% advantage over the
original FER2013. A confusion matrix of this model is presented in Figure 8.

Compared to the most efficient model based on the original FER2013, a significant
improvement was noticeable for the “angry” (±5%), “disgust” (±9%), and “sad” (±5%)
emotions, whereas the rest of the emotions did not show any meaningful gain, while the
inference time also did not change.
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Figure 8. The confusion matrix of transfer learning models ensemble (76.90% accuracy) for the
filtered FER2013.

5.3. Binary Datasets Based on the Filtered FER2013

Due to the results obtained in the previous tests, as well as the time and resource
utilization, the VGG16 model was selected to be excluded from this experiment. The
datasets used for this experiment were described in Section 3.5. Table 19 presents the
accuracy obtained by each classifier for each base model.

Table 19. The obtained accuracies of the binary models for each base model.

5-Layer Inference
Time [s] 6-Layer Inference

Time [s] ResNet50 Inference
Time [s]

Angry Classifier 0.7753 0.6513 0.7665 0.7690 0.8326 4.7803
Disgust Classifier 0.9018 0.6558 0.9018 0.7724 0.8750 4.7764

Fear Classifier 0.6946 0.6582 0.6731 0.7649 0.7774 4.7910
Happy Classifier 0.9173 0.6574 0.9249 0.7663 0.9343 4.7819
Neutral Classifier 0.8206 0.6547 0.8197 0.7686 0.8490 4.7758

Sad Classifier 0.7952 0.6610 0.7858 0.7763 0.8271 4.8075
Surprise Classifier 0.9072 0.6572 0.9059 0.7675 0.9227 4.7847

Considering only the two-class (positive and negative) classification problem, the
binary models performed more accurately compared to their equivalents shown in the
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confusion matrix in Figure 8. However, when the models were put together, in the sense of
their results being concatenated without any voting, the performance decreased. Table 20
presents the obtained results.

Table 20. The obtained results of the ensemble of all binary models for each base model.

Accuracy Precision Recall F1-Score Inference
Time [s]

5-layer 0.6547 0.6196 0.6532 0.6238 0.9639
6-layer 0.6591 0.6045 0.6484 0.6076 0.9863

RESNET50 0.7278 0.7245 0.7160 0.7195 19.1138

Due to the fact that binary datasets were built based on the imbalanced, filtered
FER2013, the comparison was conducted with results obtained on the same dataset and
presented in Table 14. The 5-layer, 6-layer, and RESNET50 models showed a decrease of
4.62%, 4.70%, and 1.99%, respectively. Regarding the inference time, the five-layer and
six-layer models were comparable with their equivalents. However, a huge difference
was noticeable when it comes to RESNET50, whose inference time almost quadrupled.
The ensemble of seven transfer learning models significantly increased the latency of the
full model.

5.4. Comparison of Methods

Considering the fact that, in this research, the FER2013 was split randomly several
times, the models were evaluated on different test sets. All came from the original FER2013
and were about the same size. A cross-validation technique was used, in order to achieve
the most accurate results. The methods were compared based on the accuracy metric only,
mainly due to the fact that the majority of other researchers did not apply additional metrics.
The inference times for particular models were also not provided in the literature. Moreover,
the inference time would have be difficult to obtain due to the lack of one, standardized
computing platform among the researchers. The comparison of methods based on the
original FER2013 is presented in Table 21.

Table 21. The comparison of methods based on the original FER2013.

Method Type Accuracy Auxiliary Data

Human Accuracy [5] - 65 ± 5% ×
“null model” [5] Ensemble of 4 65.50% ×
Fard et al. [31] RESNET50 68.25% ×

Kusuma et al. [22] Single-model 69.40% ×
Minaee et al. [27] Attentional CNN 70.02% ×

Porus, niuc et al. [19] RESNET50 71.25% ×
Jia et al. [24] Ensemble of 3 + SVM 71.27% ×

Fard et al. [31] RESNET50 + Ad-Corre 71.48% ×
Hua et al. [18] Ensemble of 3 71.91% ×
Fard et al. [31] Xception + Ad-Corre 72.03% ×

Vulpe-Grigoras, i et al. [29] Single-model 72.16% ×
Kim et al. [15] Ensemble of 36 72.72% ×

Nguyen et al. [11] Single MLCNN 73.03% ×
Khaireddin et al. [28] Single-model 73.28% ×

Connie et al. [16] Ensemble of 3 73.40% ×
Jun et al. [17] Single-model 73.06% ×
Riaz et al. [23] eXnet 73.54% ×

Nguyen et al. [11] Ensemble of MLCNNs 74.09% ×
Khanzada et al. [25] Ensemble of 7 74.80% ×

Pham et al. [26] Single-model 74.14% X
Pecoraro et al. [30] Single-model 74.42% ×
Proposed Method Ensemble of 4 75.06% ×
Zhang et al. [13] Multi-task model 75.10% X

Pramerdorfer et al. [14] Ensemble of 8 75.20% ×
Khanzada et al. [25] Ensemble of 7 75.80% X

Pham et al. [26] Ensemble of 6 76.82% X

As shown in Table 21, the proposed method achieved a competitive accuracy of 75.06%
as an ensemble of 4 models and without the use of extra training data.



Electronics 2023, 12, 2707 18 of 21

Pramerdorfer et al. [14], similarly to this paper, did not apply any face registration
and auxiliary data. However, the accuracy of 75.2% was obtained in their research as an
ensemble of 8 models in total, which is twice as many as the proposed method. Considering
the fact that their ensemble of eight models was composed of, among others, the VGG
and RESNET networks, it seems highly likely that its inference time would be significantly
higher than that of our method on comparable hardware. The two best models, which
obtained accuracies of 76.82% and 75.8% were ensembles with a higher number of models
and also utilized auxiliary training data, using additional FER datasets (as well as the
model with the accuracy of 75.1%). This feature of the cited research made a comparison
challenging. The latter, without the use of extra training data, achieved an accuracy of
74.8%, which is comparable with the proposed method and indicates possible future
developments, in order to boost the prediction performance even higher.

Due to the fact that the proposed method utilized a lower number of models compared
to the higher placed solutions with similar architectures presented in Table 21, it can be
concluded that it is less complex and more time-efficient. Furthermore, as previously
mentioned, it does not incorporate additional datasets, which is the main limitation of this
study. The introduction of such supplementary training data constitutes a huge advantage
over methods that do not make use of such. However, our main interest in this research
was to utilize only the FER2013 dataset.

6. Discussion

Facial emotion recognition outside the laboratory environment has proven to be a
quite challenging task. Different head poses, illuminations, and intensities of the expressed
emotion, as well as samples presenting people of different ages, races, and genders, make
the proposed solution more generalized and able to perform in real-life conditions.

We showcased the proposed methods, not only within the scope of the achieved
performance in terms of correct predictions, but also within the scope of the obtained
inference time, which can be crucial in modern real-time applications. This paper proposes
a variety of approaches, including high-accuracy models with longer inference times and
those whose classification performance is satisfactory but whose latency is more efficient.

The method of ensembling two models trained on an imbalanced dataset and the
same two models trained on a balanced dataset resulted in achieving excellent accuracies
of 75.06% and 76.90% on the original and filtered FER2013, respectively.

The fastest network in terms of inference time was the 5-layer model trained on the
balanced original FER2013, obtaining a satisfactory accuracy of 69.77% as a single model
(its equivalent trained on the balanced, filtered FER2013 achieved an accuracy of 71.43%
with almost the same inference time).

In each case, the model ensembling technique improved the accuracy, but at a cost of
latency. Dataset filtering increased the performance of each model even further. The final
result of q 76.90% accuracy was higher than any presented in Table 21. The binary models
performed exceptionally well as separate classifiers. However, the performance decreased
after evaluation on the multi-class dataset (with concatenated results from each separate
classifier). In future, this method will be further investigated to make the most of each
particular binary model. For now, only basic result concatenation was utilized, without
any voting.

7. Conclusions

This paper presented many approaches to the topic of facial expression recognition
(FER) and utilized the FER2013 dataset, and FER2013 is one of the most widely used
benchmark datasets. However, the original dataset suffers from many inconveniences,
making its use challenging. In order to overcome these obstacles, various methods of data
preprocessing were proposed. Starting with balancing datasets using data augmentation
techniques, filtering the dataset to remove invalid or wrongly annotated images, or even
creating binary datasets.
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As for the models, four different types of CNN network were proposed, along with
many combinations between them as ensembles. Model ensembling proved to be a highly
performance-boosting technique, which made it possible to achieve an accuracy of 75.06%
on the original FER2013 and 76.90% on the filtered FER2013. It is also worth mentioning
that our proposed methods exceeded the capabilities of humans, who tended to correctly
recognize emotion on the FER2013 dataset with a 65% accuracy.

The main limitation of this research is that it utilized only the FER2013 dataset. As can
be seen in Table 21, the models obtaining higher accuracies than our solution mostly
made use of additional training data coming from other datasets, which proved to be
very beneficial for the resulting accuracy. What is more, this indicates that the proposed
method would be able to achieve even higher performance by implementing such a strategy.
However, in this paper, we focused only on making the best of the FER2013 dataset, without
the use of extra training data.

This paper also took into consideration a binary classification, which has rarely been
presented and discussed in existing studies. Our research proved that separate classifiers
are worth considering, due to an increased accuracy compared to their equivalents in multi-
class classification. Furthermore, an ensemble composed of such individual classifiers was
examined. We did not observe any accuracy gain in this case; however, the use of more
sophisticated voting might bring some performance benefits.

The prepared models obtain very good results in terms of prediction performance.
Table 21 contains only the ultimate method presented in this paper; however, many other
proposed solutions could also occupy a high place in this ranking. The custom CNNs
proved to be capable of achieving accuracies around 70%, but at a much lower inference
latency. Eventually, the final ensemble obtained an excellent result and was able to compete
with the best models produced to date. Not only it is less complex, due to the utilization of
a lower number of networks than other methods of similar architecture, but it also does not
incorporate auxiliary training data. This proved that, besides the model choice (VGG16 and
RESNET50 networks), the training strategy is also relevant. As opposed to other research,
where several models were trained on the same dataset before ensembling, this paper
presented a quite different approach. Each individual network was trained separately
on differently preprocessed variants of the same dataset. More specifically, imbalanced
and balanced versions of the FER2013 training set were prepared. It is worth noting that
the test sets were uniform in both scenarios. As a result, each model branched into two
independent ones, which were then further combined. Hence, the final ensemble did not
consist of distinct networks but enabled the reuse of already prepared high-performing
ones. Such a strategy allowed obtaining a favorable performance and utilizing a lower
number of models in the final solution.

In this paper, a variety of results were obtained, presenting a wide range of achieved
prediction accuracies, as well as the evaluation time of each model. Therefore, the trade-off
between performance and inference latency was presented, allowing one to make more
informed decisions on which model is best suited for a particular case. This allows a greater
ability to properly apply the proposed methods to real-life scenarios.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
FER Face Emotion Recognition
SGD Stochastic Gradient Descent
SVM Support Vector Machines
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