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Abstract: Text emotion recognition (TER) is an important natural language processing (NLP) task
which is widely used in human–computer interaction, public opinion analysis, mental health analysis,
and social network analysis. In this paper, a deep learning model based on XLNet with bidirectional
recurrent unit and attention mechanism (XLNet-BiGRU-Att) is proposed in order to improve TER
performance. XLNet is used to build bidirectional language models which can learn contextual
information simultaneously, while the bidirectional gated recurrent unit (BiGRU) helps to extract
more effective features which can pay attention to current and previous states using hidden layers
and the attention mechanism (Att) provides different weights to enhance the ’attention’ paid to
important information, thereby improving the quality of word vectors and the accuracy of sentiment
analysis model judgments. The proposed model composed of XLNet, BiGRU, and Att improves
performance on the whole TER task. Experiments on the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) database and the Chinese Academy of Sciences Institute of Automation (CASIA)
dataset were carried out to compare XLNet-BiGRU-Att, XLNet, BERT, and BERT-BiLSTM, and the
results show that the model proposed in this paper has superior performance compared to the others.

Keywords: text emotion recognition; XLNET; BiGRU; attention; BERT

1. Introduction

The area of text emotion recognition has garnered significant interest in recent years,
largely due to the proliferation of digital communication devices. Text emotion recognition
involves analyzing the emotions expressed within text to gain a more comprehensive un-
derstanding of its contents, including its underlying sentiment, purpose, and expression [1].
This technology has been widely adopted across different industries, including business,
education, and communication [2].

The underlying principle behind detecting emotional content in text is rooted in
natural language processing, an expanding research domain that has gained tremendous
momentum in the wake of a burgeoning volume of online comments. The core operation
in recognizing emotional content in text involves a systematic text preprocessing phase
that entails segmenting words, annotating parts of speech, and analyzing syntactic and
semantic structures, among others [3]. The subsequent stage is text feature extraction,
in which quantized word vectors derived from the text and fed into the classifier to
categorize emotions [4,5]. These extracted features are represented in a format amenable to
recognition by computer algorithms. Currently, numerous widely employed algorithms
exist for extracting statistical features [6]. One-hot encoding is an encoding technique that
yields a binary representation of classified values, and has proven moderately effective [7].
Another commonly used text representation technique is the Term Frequency–Inverse
Document Frequency (TF-IDF) method, which explores word frequency to create a simple
and rapid representation of text [8–10]. In summary, this technology serves as a means
of mitigating noise by assigning weights to different elements. The algorithm involves
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calculating the frequency of words or phrases in a particular text and the frequency of
those same elements across the entire corpus. While the idea behind the algorithm is
relatively straightforward, particular attention must be paid to selecting effective features,
determining feature weights, and designing classification algorithms. Recent proposals
in the literature include a novel network structure comprising a Bidirectional Long Short
Term Memory (BiLSTM) model and hierarchical attention mechanism [11,12]. Within this
structure, data are encoded and transmitted to the BiLSTM using a single key, then the
output is stratified. Finally, the processed features are classified using a softmax classifier.
Experimental results demonstrate the structure’s high accuracy in text classification.

The Bidirectional Encoder Representations from Transformers (BERT) pre-trained
model, has been hailed as a breakthrough in Natural Language Processing (NLP) due
to its superior level of language comprehension [13]. However, there are certain limita-
tions associated with the BERT model, such as its fixed input length size and word piece
embedding issues, as well as computational complexities [14,15]. To address these con-
cerns, several new pre-trained models such as Generalized Auto-regression Pre-training for
Language Understanding (XLNet) [16], Robustly optimized BERT pre-training Approach
(RoBERTa) [17], and DistilBERT [18] have been proposed. The effectiveness of BERT and
its variants in the field of NLP has led researchers to shift their focus towards exploring
text emotion recognition using this methodology [19,20]. This article presents an enhanced
model of XLNET utilizing this approach for the purpose of accurately recognizing emotions
within text.

In summary, to improve recognition accuracy based on existing text emotion recog-
nition technologies, we need to optimize several problems. First of all, when processing
information, we need to integrate and understand contextual information. secondly, we
need to optimize the model to reduce dependence on long text. Thirdly, we need to enhance
the representation and extract more effective features of text. Finally, it is better to reduce the
complexity of the model. Based on the above objectives, we proposed a model composed
of XLNet, BiGRU and Att. XLNet can process short sentences and obtain relatively rich
semantic information by using context information to achieve effective representation of
text. BiGRU can also combine the context bidirectional semantic information to effectively
extract semantic features, while the parameter quantity is significantly reduced compared
to LSTM. The attention mechanism can further allocate the importance of each feature
through weights, achieving effective emotional classification output. In this paper, the
proposed model for TER is presented in detail, comparative experiment is performed and
the result is discussed.

2. Materials and Methods
2.1. Dataset

In this research, text data from two emotion datasets, namely, CASIA and IEMOCAP,
were utilized to verify the model proposed.

The CASIA Chinese emotional corpus was initially curated by the esteemed Institute
of Automation at the Chinese Academy of Sciences. The repository comprises of recordings
by four proficient speakers and encompasses six distinct emotional states (anger, happiness,
sadness, fear, surprise, and neutrality), totalling an impressive 9600 pronunciations. A
noteworthy aspect of the corpus is that while it contains 300 identical texts, the different
emotional renderings of each exhibit diverse acoustic and rhythmic performances when
subjected to precise comparative analysis. In addition, the corpus features 100 distinct
texts which the literal meaning suggests as having inherent emotional leanings, facilitating
more consistent and accurate emotion depiction. For our experiment, we handpicked the
identical texts in corpus for use a experimental data, with the first 200 readings assigned
to the training set and the residual 100 allocated for testing. Furthermore, the experiment
involved partitioning of the dataset [21].

The Interactive Emotional Binary Motion Capture Database (IEMOCAP) was collected
by the Speech Analysis and Interpretation Laboratory (SAIL) of the University of Southern
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California (USC). This database is an invaluable resource for research and modeling in
the field of multimodal and expressive human communication; it contains over twelve
hours of data recorded from ten actors engaged in binary conversation scenes along with
detailed motion capture information that identifies the subjects’ facial expressions and hand
movements. Additionally, the database includes interactive settings stimulating specific
emotions such as happiness, anger, sadness, and depression in emotionally scripted and
naturally occurring conversation scenarios [22].

2.2. Text Emotion Recognition Model Based on XLNet

This paper proposes a novel approach to enhance the accuracy of sentiment analysis
through the development of a model based on XLNet with bidirectional recurrent unit
and attention mechanism (XLNet-BiGRU-Att). The proposed methodology addresses the
challenges associated with vectorization of short text sentiment analysis. Unlike traditional
language models that only consider unidirectional information, the proposed XLNet model
is a two-way modeling language model that simultaneously captures information in context
both above and below, making the resulting word vectors more semantically rich. In
addition, the BiGRU-Attention network layer effectively filters important information
within limited text space and assigns different weights to filtered word vectors in order to
enhance their “attention power”. These measures collectively improve the performance of
the sentiment analysis model. The architecture of XLNet-BiGRU-Att is shown in Figure 1,
which is mainly composed of thr input layer, XLNet-BIGRU-Att model layer, and output
layer. In the input layer, every word in the input sentence is transferred into a word
vector by the embedding function, where the raw word vectors [x1, x2, · · · , xt] represent
the input of XLNet. In XLNet, the raw word vectors are processed by two-stream self-
attention and the vectors are calculated concurrently in two channels: the content stream
h(2)T , and the query stream g(2)T . As the query stream contains the position information, it is
used as the output of XLNet during the prediction process. The BiGRU layer is used for
extraction of deep emotional features; it contains both forward and backward GRUs, as
shown in Figure 1, where h is the hidden state. Through BiGRU, word vectors can be used
to more fully learn the relationships between contexts and perform semantic encoding. The
attention layer assigns corresponding probability weights to different word vectors in order
to further extract text features and highlight the key information of the text. In the end,
the output layer is a fully connected layer and a softmax function is used to provide the
emotional classification result.

XLNet is a state-of-the-art model for pre-training in semantic understanding. It builds
upon previous models such as mask language models and autoregressive (AR) language
models, and addresses specific challenges in the pre-training stage of BERT. One key
advantage of XLNet is its ability to handle inconsistencies between the mask flag and the
fine-tuning process. Additionally, it effectively resolves the dependency problem between
masked words. This is achieved through a unique approach that reconstructs the input
text in a permutation and composition manner. Unlike BERT, XLNet applies this approach
during the fine-tuning stage, using the Transformer attention mask matrix and double-flow
attention mechanism to achieve different combinations and permutations. This allows for
the integration of contextual features into the model training process.

XLNet is based on the autoregression (AR) language model. XLnet uses the idea
of random sorting to solve the problem of AR models being unable to introduce two-
directional text information. The random sorting process simply sorts the sequence number
of each position randomly. After sorting, the words prior to each individual word can be
used to predict its probability. Here, the previous words may be drawn from either the
words prior to the current word in the original sentence or from the words after it, which is
equivalent to using the bidirectional sequence information.
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Figure 1. The XLNet-BIGRU-Att architecture.

First, the Permutation Language Model (PLM) is constructed, which disrupts the order
of the original word vectors. Assuming that the original sequence is x(x1, x2, x3, x4), then
its arrangement is (1, 2, 3, 4) and the word order is fully arranged as (1, 3, 4, 2), (2, 4, 3, 1),
(3, 2, 4, 1), etc. Figure 2 presents an example of the prediction of x3 based on the different
orders produced by sequential factorization.

In Figure 2, xi represents the input word vectors, mem(0) is the hidden state of the
input layer, mem(1) is the hidden state of the first layer, h(1)i is the predicted result of the ith

word in the first layer, h(2)i is the predicted result of the ith word in the second layer, and
x3 is the output predicted result, which can be understood as a word vector encoding. As
shown in Figure 2a, when the factorization order is (3, 2, 4, 1), the prediction of x3 cannot
involve attention to any other words, and can only be predicted based on the previous
hidden state mem. As shown in Figure 2b, when the factorization order is (2, 4, 3, 1), the
semantics of x3 can be predicted according to the meaning of x2 and x4. Unlike the AR
language model, this method captures the contextual semantic information of x4, which
achieves the purpose of obtaining contextual semantics.
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Figure 2. Different orders produced by sequential factorization: (a) factorization order 3, 2, 4, 1 and
(b) factorization order 2, 4, 3, 1.

Second, all the factorization orders should be sampled. For a given length T of text
sequence x, T! results can be obtained by fully sorting the sequence. However, when the
text sequence is too long, the complexity of the algorithm increases. The random sorting
language model needs to randomly sample T! results to remove useless sequences. Random
sampling of all the factorization orders of the text sequence is realized by Equation (1):

max
θ

Ez∼ZT

[
T

∑
t=1

lg pθ(xZt |xz<t)

]
(1)

In Equation (1), ZT is the set of sequences with length T composed of sequences
arranged from the original sequence, z is the sequence sampled from ZT , zt is the value at
the position of t in sequence z, z < t represents the tth element and the preceding (t− 1)
elements in sequence z, and Ez∼ZT is the expectation of the sampling result.

Finally, the later words in the sequence are predicted; for example, the original lan-
guage sequence is arranged in the order (1, 2, 3, 4) and the language sequence after it is
fully arranged as (2, 3, 4, 1) and (1, 4, 2, 3). When the predicted position is x3, the word
order (2, 3, 4, 1) can only be used to obtain the semantic information of x2, while when
the word order is (1, 4, 2, 3), the semantic information of x1, x4, and x2 can be obtained.
Therefore, the model prefers that the predicted words be located at the end of the sentence,
as this can provide better contact with the context semantic information.

2.2.1. Attention Mask in XLNet

The principle of the attention mask mechanism is to cover the part to be predicted
inside the transformer to ensure that it does not play any role in the prediction process.
For example, the original language sequence arrangement is (1, 2, 3, 4) and the sampling
sequence order is (2, 4, 3, 1). The first line of the mask is used to predict x1, the second
line of the mask is used to predict x2, and so on. The white dot means that the word in
this position is masked, while the black dot means that the information of the word in
this position can be contacted. As shown in Figure 3, when the semantic information of
x3 is predicted, the context of x2 and x4 can be used; thus, the positions of x2 and x4 in
the third line of the mask are shaded. Because the sequence order is (2, 4, 3, 1) and x2 is
first in the sequence, there is no reference information available for x2 and the second
line is fully masked. Following this theory, the mask matrix of the sequence (2, 4, 3, 1) is
shown in Figure 3. Black circle indicates the available data, and white circle means the data
is masked.

The attention mask approach is used in PLM to realize random sorting and predict
word vectors in different sequence orders. On the one hand, PLM solves the shortcoming of
AR language models with respect to contacting the contextual semantics; on the other hand,
PLM uses a mask matrix to replace the [mask] tag in the BERT model while maintaining the
dependency between multiple predictors. For example, for a given sequence (x1, x2, x3, x4,
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x5, x6, x7), for XLNet, to predict x5 and x3 the random sampling sequence can be selected as
(1, 4, 2, 3, 5, 7, 6). Then, the probability of x5 and x3 is p(x5|x1, x2, x3, x4) + p(x3|x1, x2, x4).
When the model predicts the semantics of the word x3, the information of x5 does not affect
the prediction of x3. When the semantic information of x5 is predicted, however, the model
can use the semantic information of x3, thereby solving the problem that in other models
all of the semantic information is independent and cannot be connected. This makes PLM
an important theoretical foundation for the excellent performance of XLNet.

Figure 3. Mask matrix of the sequence (2,4,3,1).

2.2.2. Two-Stream Self-Attention Mechanism

While PLM can allow XLNet to relate to the context semantics, the original AR lan-
guage model does not consider the location information of the words used in prediction.
For example, given a sequence (x1, x2, x3, x4), one of the permutations is (2, 4, 3, 1). When
the predicted statement is x3, its probability is p(x3|x2, x4). The second arrangement order
is (2, 4, 1, 3). When the predicted word is x1, its probability is p(x1|x2, x4). At this time, the
semantic equivalent probability of the two is predicted; in fact, however, the semantic con-
tent of x1 and x3 is largely different. The main reason for this problem is that AR language
models predict words based on the content before the predicted word, and as such do not
need to consider the position information of the words in the word order. On the other
hand, the random sorting language mechanism requires the word order to be rearranged
completely. After the position information of the words is disrupted, the model cannot de-
termine the position information of the predicted words in the original sequence. Therefore,
we proposed solving this problem using the two-stream self-attention mechanism.

The two-stream self-attention mechanism can solve the problem of the position of
the target prediction word being ambiguous due to the random disordering of the word
order by the random sorting language model. Two-stream attention consists of the content
stream and query stream. The objective function of the traditional AR language model for
a sequence with length T is shown in Equation (2):

Pθ(Xzt= x|xz<t ) =
exp

(
e(x)Thθ(xz<t)

)
∑ x′ exp

(
e(x)Thθ(xz<t)

) (2)

In the equation, z is the sequence obtained by full array random sampling from
a sequence x with length T, zt represents the sequence number of the position of t in
the sampling sequence, x is the word to be predicted, and e(x) is the embedding of x.
The content hidden state hθ(xz<t) encodes the content of x and additionally encodes the
above information, while not containing any location information, while pθ(Xzt |xz<t)
demonstrates that for the prediction of words in position t in the sorting sequence, the
probability is calculated from the words corresponding to the sequence number before the
position of t. Because PLM disrupts the sequence order, it is necessary to “explicitly” add
the location information of the word to be predicted into the original sequence, meaning
that Equation (2) is updated as Equation (3):

Pθ(Xzt= x|xz<t ) =
exp

(
e(x)Tgθ(xz<t, zt)

)
∑ x′ exp

(
e(x)Tgθ(xz<t, zt)

) (3)
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In the equation, z represents the query implicit state, including the words before t
position and the position information of the word x to be predicted; it only encodes the
context and location information of the prediction word x, and does not encode the content
information of x. The updating processes of the content hidden state hθ(xz<t) and query
hidden state g(xz<t, zt) are shown in Equations (4) and (5), respectively, where m represents
the number of layers in the network layer. Usually, the query hidden state g(0) is initialized
as a variable w in layer 0 and the content hidden state h(0) is initialized as the embedding
of the word, that is, e(x). The first layer of data is calculated according to layer 0 and then
calculated layer by layer, with Q, K, and V being the results of linear transformation of the
input data according to different weights.

h(m)
zt ← Attention

(
Q = h(m−1)

zt , KV = h(m−1)
z≤t ; θ

)
(4)

g(m)
zt ← Attention

(
Q = g(m−1)

zt , KV = h(m−1)
z≤t ; θ

)
(5)

The purpose of the two-stream self-attention mechanism is to obtain the location
information of xt without obtaining the content information when predicting a word xt. For
words other than xt, the location information and content information should be provided.
For example, if the given sequence is (x1, x2, x3, x4) and the sampling sequence is assumed
to be (3, 2, 4, 1), the probability of the word with sequence number 1 can be predicted and
then its probability can be calculated according to x3, x2, and x4. The working principle
used for calculating the probability of x1 using the content stream and query stream is
shown in Figure 4.

Figure 4. Schematic diagram of content stream and query stream: (a) content stream and (b) query
stream.

As shown in Figure 4a, the content stream encodes both the context information,
and the self-information of the predicted word. As shown in Figure 4b, the query stream
encodes the location information of the predicted word and other content information with
the exception of the self-information of the predicted word.

Figure 5 shows the principle of two-stream self-attention when the sampling order of
the sequence (x1, x2, x3, x4) is (3, 2, 4, 1). From the bottom to the top of Figure 5, starting
from layer 0, the content stream h and query stream g are initialized by e(x) and w,
respectively. The first layer output h(1) and g(1) are respectively calculated through the
content mask and query mask, then the second layer output is calculated in the same way.
It can be observed from the mask matrix on the right that calculating the content stream
is a standard transformer calculation process. When predicting the semantics of x1, the
semantic information of all words can be used, and when predicting the semantics of the
word x4, the semantic information of x2, x3, and x4 can been used. In the content stream, the
semantic information of the word itself can participate in predicting itself. When calculating
the query stream, the attention mask functions somewhat differently. When predicting the
semantic content of word x1, its own content is masked, and the word is predicted only
through the semantic content of x2, x3, and x4. Similarly, when predicting x2, only use
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the semantic information of x3 can be used. According to the above explanation, it can
be deduced that in the query stream the information of the predicted word itself is not
used for its own prediction. The difference between the content stream and query stream is
whether the self-semantic information of the predicate itself.

Figure 5. Schematic diagram of the two-stream self-attention mechanism.

2.3. Bi-Directional Gated Recurrent Unit

A gated recurrent unit (GRU) is a type of lightweight recurrent neural network that
differs from other neural networks due to its internal gate structure. This unique structure
enables the network to determine which data are relevant and which data can be discarded
based on their relationship. This structure facilitates effective data transmission within the
network while effectively controlling redundant information. As a result, the GRU partially
addresses the issue of long-term dependence in neural networks. As shown in Figure 6, the
structure of the GRU consists of three main components: the reset gate (rt), update gate
(zt), and hidden state (ht); these work together to extract temporal information and obtain

long-term dependencies. In addition, ht−1 is the hidden state of the prior time point and
∼
ht

is the candidate hidden state. The individual functions of these gates and hidden states are
described in further detail below, while the structure of the GRU is displayed in Figure 6.

Figure 6. Structural diagram of a gated recurrent unit.
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The input for the reset and update gates is obtained through the fully connected
layer that operates on the current input xt and the hidden state of the previous time point
ht−1. The reset gate rt is calculated by Equation (6), and σ is a Sigmoid function which is
used as an activation function. Thus, the result of the reset gate is a vector with a value
between 0 and 1 which is similar to the gate in circuit. This value is then used to determine
the relevancy of the hidden state of the previous time point. The candidate hidden state
∼
ht is determined by the input xt, reset gate rt, and prior hidden state ht−1, as shown in
Equation (7); the prior hidden state contains the information of both the current time and
previous time, and is an important component of the current hidden state, although it is
not the real current hidden state.

rt = σ(xtwxr + ht−1whr + br) (6)

In the above equation, t is the current time point, t− 1 is the last time point, xt is the
input vector of the current time, ht−1 is the hidden state of the previous time point, whr and
wxr make up the weight matrix of the reset gate, and br is the bias of the reset gate.

∼
ht = tanh(xtwxh + (rt � ht−1)whh + bh) (7)

Here, wxh and whh make up the weight matrix of the candidate hidden state and bh is
the bias of the candidate hidden state.

The update gate rt is calculated using Equation (8) and σ is a Sigmoid function which
is used as an activation function. Thus, the result of the reset gate is a vector with a value
between 0 and 1, which is then used to determine the element of the previous hidden state
that should be updated by the current candidate hidden state. For this reason, it is called
the update gate.

zt = σ(xtwxz + ht−1whz + bz) (8)

In this equation, xt is the current input vector, ht−1 is the hidden state of the previous
time point, wxz and whz make up the weight matrix of the update gate, and bz is the bias of
the update gate.

The hidden state is the output of the GRU calculated using the candidate hidden state
and the previous hidden state in Equation (9):

ht = zt � ht−1 + (1− zt)�
∼
h
t

(9)

Here, zt is the update gate, ht−1 is the previous hidden state,
∼
ht is the current candidate

hidden state, and ht is the current hidden state, which is the ouput of the GRU.
For the GRU, the output is only affected by the current input and the previous hidden

state, and is not related to the subsequent state, making the GRU a unidirectional model.
However, in order to extract effective features it is necessary to pay attention to the current
information, the previous information, and the the subsequent information. It can be easily
understood that combining these contexts makes it easier to understand textual information.
Based on this idea, BiGRU is proposed to combine forward GRU and backward GRU,
making the output result the combination of the two GRUs by weight matrix. The structure
of BiGRU is presented in Figure 7; it is composed of an input layer, forward GRU, backward

GRU, and output layer. In the figure,
→
ht is the hidden state of the forward GRU,

←
ht is the

hidden state of the backward GRU, xt represents the input vectors of BiGRU, ht is the
ouput hidden state of BiGRU, and xt ∈ Rk×d, where k is the batch size and d is the length

of the input vectors. The forward hidden state
→
ht ∈ Rk×d and the backward hidden state

←
ht ∈ Rk×d are calculated using Equations (10) and (11).
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Figure 7. Structural diagram of the bidirectional gated recurrent unit [23].

→
ht = GRU(xt,

→
ht−1) (10)

←
ht = GRU(xt,

←
ht+1) (11)

In the above equations, GRU means the calculation process of the unidirectional GRU,

xt is the input vector,
→

ht−1 is the hidden state of the forward GRU, and
←

ht+1 is the hidden
state of the backward GRU.

The final output hidden state of the BiGRU combines the outputs of the forward and
backward GRUs using a weight matrix calculated by Equation (12):

ht = w→
ht

→
ht +w←

ht

←
ht +bt (12)

In the equation, w→
ht

and w←
ht

make up the weight matrix of the output layer and bt is

the bias of the output layer.

3. Results

The XLNet-BiGRU-Att model was compared with the BERT-BiLSTM, BERT, and XLNet
emotional analysis models. The parameter settings of each model are shown in Table 1. In
the table, Batch Size is the amount of data for each parameter update, Epochs is the number
of iterations in the training process, Embedding is the word vector dimension, and Lr is
the learning rate set by the model. The parameters for XLNet-BiGRU-Att proposed in this
paper are provided at the bottom of the table.

Table 1. Values of model parameters.

Model Batch Size Epochs Embedding Lr

BERT-BiLSTM 128 50 100 0.001
XLNet 256 50 100 0.001

Bert 64 300 768 0.001
XLNet-BIGRU-Att 256 300 768 0.001

Batch size is an important parameter for the training process, for which sizes of 2, 4,
8, 16, 32, 64, 128, 256, 512. . . , are typically used. Within the appropriate range, the larger
the batch is, the more accurate the descent direction is. Smaller batch sizes cause larger
vibration, while larger batch sizes reduce the convergence speed, meaning that more epochs
are needed, and may cause memory overflow. Convergence experiments with different
batch sizes of 64, 128, and 256 were conducted; the learning curve is shown in Figure 8.
It can be seen that the learning curve has the highest vibration with a batch size of 64.
Although it reaches the minimum loss very fast, the loss begin to increase after 100 epochs.
Therefore the training process with a batch size of 64 is not stable over 400 epochs. When
the batch size is 128, the loss decreases slowly, and the model does not reach the best state
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after 400 epochs. When the batch size is 256, the learning curve reaches convergence in
about 250 epochs, and the vibration is smaller than with batch sizes of 64 or 128. With
a batch size of 512 the training process would cause memory overflow. Thus, the best
parameters are a batch size of 256 and 300 epochs.

Increasing the dimension of embedding can enhance the richness and meticulousness
of text representation to an extent. The embedding dimension of BERT has two versions, 768
and 1024. In order to ensure a fair comparison with BERT, the same embedding dimensions
were selected for XLNet-BiGRU-Att. As the 1024 version has three times the parameters of
the 768 version, the latter was selected in order to reduce the computational burden.

Figure 8. Learning curves with different batch sizes.

BERT and XLNet are the basic models which are usually used for text representation,
and their results can be directly used for emotion classification with a fully connected
network and softmax function. Another approach is to add feature extraction models on
top of BERT or XLNet for classification, such as BERT-BiLSTM and the XLNet-BiGRU-Att
model proposed in this paper. Therefore, the experimental performance of BERT, XLNet,
BERT-BiLSTM, and XLNet-BiGRU-Att were compared on the two datasets introduced in
Section 2.1. The experimental results on IEMOCAP are shown in Table 2, and a bar chart is
used for visual comparison in Figure 9.

Table 2. Evaluation results of different models on the IEMOCAP dataset.

Accuracy Precision Recall F1-Measure

BERT-BiLSTM 87.92 87.25 86.26 86.75
XLNet 88.64 88.35 87.52 87.93

Bert 85.86 86.11 85.64 85.87
XLNet-BIGRU-Att 91.71 89.23 89.24 89.23
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Figure 9. Performance comparison on the IEMOCAP dataset.

The same experiments were carried out on the CASIA dataset. The detailed results are
shown in Table 3, and a bar chart is shown in Figure 10.

Table 3. Evaluation results of different models on the CASIA dataset.

Accuracy Precision Recall F1-Measure

BERT-BiLSTM 81.92 79.91 83.64 81.73
XLNet 83.64 79.75 82.41 81.05

Bert 79.86 76.27 80.43 78.29
XLNet-BIGRU-Att 85.71 80.60 84.60 82.55

Figure 10. Bar chart showing the evaluation results of different models on the CASIA dataset.

From the experimental results, it can be seen that the pre-trained models can calculate
effective word vectors for TER, and they all perform well on the both datasetsto calculate
the word vector. However, compared to the others, the model proposed in this paper has
the best accuracy on the IEMOCAP and CASIA datasets, reaching 91.17% and 85.71%,
respectively.

4. Discussion

Upon examining the respective datasets, it is apparent that the IEMOCAP dataset
provides superior performance results in comparison to the CASIA dataset. IEMOCAP
contains nine distinct emotions: Neutral, Happy, Sad, Angry, Surprise, Fear, Disgust,
Excited, and Other. Nonetheless, the distribution of sample categories in the nine-emotion
dataset is noticeably imbalanced, with the majority of samples belonging to the four
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fundamental emotions (Happy, Sad, Angry, and Neural). As a consequence, many academic
studies concentrate solely on these basic emotions. To enable a more accurate comparison
of the results, this paper similarly focuses on the four basic emotions within the IEMOCAP
dataset. On the contrary, the CASIA dataset comprises six emotions, thereby posing a
greater challenge for model classification. Hence, based on the inherent difficulty of the
classification problem, it is established that the IEMOCAP dataset yields more favorable
results than the CASIA dataset.

The experiment primarily focused on a comparison of two models, BERT and XLNet,
with regard to text emotion recognition. The absolute values of the results indicate that
both models are proficient in this area. However, the relative results suggest that XLNet
outperforms BERT due to its employment of attention, larger hidden layers, and additional
positional encoding elements. On the other hand, BERT-BiLSTM primarily prioritizes
optimization of the bidirectional LSTM network structure, attention mechanism, and long-
term dependency modeling, resulting in better performance than BERT on related tasks.
Our experiments indicate that the performance of BERT-BiLSTM is comparable to that
of XLNet.

Although both BERT and XLNet perform well on tasks involving semantic representa-
tion of textual information, our experiments show that their performance when directly
applying semantic representation results to emotion classification is not as good as that at-
tained by models with additional feature extraction capability. For example, BERT-BiLSTM
performs better than BERT on both datasets; similarly, XLNet-BILSTM-Att performs better
than XLNet. Therefore, the above experiments demonstrate that the semantic representa-
tions of BERT and XLNet involve general natural language understanding. When dealing
with specialized tasks such as emotion recognition, adding specific feature extraction
modules can improve the performance of models.

This paper presents enhancements to XLNet achieved by incorporating bidirectional
gate recurrent units and an attention masking mechanism into its architecture. The bidi-
rectional transmission feature of BiGRU serves to effectively process long sequence data,
making the model better suited for text mining applications. Additionally, the attention
mask mechanism connects contextual semantics and maintains the dependency of multiple
word predictions, which improves overall model accuracy. The performance of XLNet
is boosted when supported by bidirectional gate recurrent units and attention masking
mechanisms, as shown by our experimental results. Specifically, the proposed XLNet-
BiGRU-Att model achieved the highest accuracy of all tested models, reaching at 91.71%
on the IEMOCAP dataset and 85.71% on the CASIA dataset.

5. Conclusions

Text emotion recognition is a crucial aspect of natural language understanding that
finds extensive application in domains such as human–computer interaction, public opin-
ion analysis, mental health analysis, and social network analysis. The development of
advanced technologies in the fields of computing, the internet, and artificial intelligence has
considerably amplified the significance of this field. In this paper, the XLNet-BiGRU-Att
model is proposed, building on XLNet by leveraging BiGRU and Att to achieve enhanced
performance. This paper has presented and analyzed the structure of the model and de-
scribed the experiments we carried out on the IEMOCAP and CASIA datasets. The results
show that our proposed XLNet-BiGRU-Att model outperforms BERT, BERT-BiLSTM, and
XLNet, achieving an accuracy of 91.71% on IEMOCAP and 85.71% on CASIA. The theoreti-
cal and experimental analysis and discussion presented in this paper confirm the suitability
of XLNet-BiGRU-Att for text emotion recognition.
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