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Abstract: Advancements in wearable medical devices using the IoT technology are shaping the
modern healthcare system. With the emergence of the Internet of Healthcare Things (IoHT), efficient
healthcare services can be provided to patients. Healthcare professionals have effectively used
AI-based models to analyze the data collected from IoHT devices to treat various diseases. Data
must be processed and analyzed while avoiding privacy breaches, in compliance with legal rules
and regulations, such as the HIPAA and GDPR. Federated learning (FL) is a machine learning-based
approach allowing multiple entities to train an ML model collaboratively without sharing their data.
It is particularly beneficial in healthcare, where data privacy and security are substantial concerns.
Even though FL addresses some privacy concerns, there is still no formal proof of privacy guarantees
for IoHT data. Privacy-enhancing technologies (PETs) are tools and techniques designed to enhance
the privacy and security of online communications and data sharing. PETs provide a range of
features that help protect users’ personal information and sensitive data from unauthorized access
and tracking. This paper comprehensively reviews PETs concerning FL in the IoHT scenario and
identifies several key challenges for future research.

Keywords: privacy-enhancing technologies; Internet of Healthcare Things; federated learning;
security; privacy

1. Introduction

Advances in communication technology have substantially increased the presence of
Internet of Things (IoT) devices in domains such as healthcare [1], smart transportation [2],
smart buildings [3], and smart cities [4]. In healthcare, IoT technology has shown its capabili-
ties and applications in collecting patient data. It enables healthcare professionals to analyze
the data for better and more efficient treatment of diseases. These devices are designed
to collect, send, receive, and store data automatically over the network for the proactive
management of patients’ diagnoses or treatment in and out of the healthcare systems.

The IoHT is a branch of the IoT oriented to e-health that combines devices such as smart
watches, wearable trackers, and other smart connected devices to record physiological
variables, such as heart rate, body temperature, and blood pressure [5]. The considerable
amount of information collected from IoHT devices and applications may be employed
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in data analytics. Users are then empowered with artificial intelligence (AI) and machine
learning (ML) models to mine such information and improve healthcare decision making.

Traditionally, healthcare organizations use centralized ML-based models in clouds or
data centers to train the data generated by IoHT devices, aiming to make reliable decisions
in the healthcare domain. However, such models usually suffer from performance issues
as a result of insufficient data being available on the centralized server for training due to
direct access restrictions and regulations (HIPAA and GDPR). Consequently, the resulting
models can become biased and untrustworthy [6,7]. Additionally, even with sufficient data,
the training procedure in a centralized server is resource-demanding, increasing the costs
and discouraging deployment in most hospitals and research centers [8].

The federated learning (FL) approach has been proposed as a promising way for
eHealth systems to overcome data privacy concerns relating to the IoHT [9]. FL is a
distributed ML-based approach that keeps patients’ data restricted to their devices while
training ML models collaboratively on multiple clients’ health data from hospitals or IoHT
devices in a decentralized network [10,11]. However, under certain conditions, FL alone
cannot guarantee proper preservation of privacy [12].

Privacy-enhancing technologies (PETs) are tools and techniques designed to enhance
the privacy and security of online communications and data sharing. PETs provide a
range of features that help protect users’ personal information and sensitive data from
unauthorized access and tracking. The development of PETs can offer a reliable pathway
toward data-driven technologies, such as ML-based models, while preserving privacy.
PETs are a group of methods, procedures, and techniques used to extract value from data
and simultaneously reduce the privacy and security risks for private information [13]. PETs
are crucial, especially in some areas such as unmanned aerial vehicles (UAVs) [14] and the
healthcare domain, where sensitive data are extensively collected and used. In healthcare,
the gathered patient data allow researchers and healthcare professionals to distinguish
diseases, assist drug development, and improve public health. For instance, vaccine
development research during the COVID-19 pandemic illustrated the importance of data
for public health [15].

Various PETs can be utilized to improve privacy in FL. Secure multi-party compu-
tation (SMPC) [16]; syntactic anonymization, such as k-anonymity [17]; homomorphic
encryption [18]; zero-knowledge proofs [19]; differential privacy [20]; and blockchain tech-
niques [21] are some of the techniques that are aligned with the FL framework and are
discussed in this paper.

To the best of our knowledge, this is the first research paper to provide a comprehensive
survey of FL for the IoHT from a PET perspective. In addition, it is the first work that
reviews the integration of FL and blockchain techniques alongside other technologies that
enhance privacy; thus, it is an important contribution. We comprehensively review PET
and FL integration in smart healthcare environments, addressing privacy and FL in smart
healthcare systems. Initially, we review the privacy requirements and the causes of privacy
leakages and violations in FL. Then, we review the PET approach in terms of four PETs
that have been applied to FL. Finally, we summarize the PETs that have been applied to FL
and present some open issues.

The remainder of this paper is organized as follows. Section 2 summarizes the surveys
related to ours while highlighting the differences. Section 3 presents IoHT devices and
various security vulnerabilities. Section 4 provides the general principles of FL and the
different versions of this technique used in smart healthcare environments. Section 5
provides the motivations for using privacy-preserving FL in smart healthcare. Section 6 is
dedicated to a complete literature review of work pertaining to PETs. Section 7 presents
PETs’ application to FL in the smart healthcare environment. Section 8 presents open
issues related to PETs in FL. Section 9 provides the concluding remarks. Figure 1 depicts a
systematic outline of this survey paper.
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Figure 1. Outline of the paper.

2. Related Work

This section discusses the most recent work related to our survey. Other review papers
cover security and privacy challenges in FL environments. However, these papers are
either dedicated to other domains or cover security and privacy issues at the general level.

Aledhari et al. [22] provide an overview of FL, highlighting protocols, platforms,
algorithms, market implications, and real-life use cases in terms of software and hardware.
Privacy-related advantages brought by FL are presented, although this is not the paper’s
primary focus. Some use cases related to health applications are also discussed. Nonethe-
less, there are no discussions of the IoHT. Indeed, the authors state that IoT technologies
are outside the scope of their paper.

Zhang et al. [23] provide a formal definition of FL and review previous papers. These
papers are evaluated in terms of different aspects, and privacy mechanisms are one of them.
Three mechanisms are considered: model aggregation, homomorphic encryption, and differential
privacy. In our survey, we focus on privacy and consider a different approach, classifying
four techniques: anonymization, cryptography, the perturbation method, and blockchain. Simi-
larly to Aledhari et al., Zhang et al. [23] address use cases related to health applications.
However, there are no comments about the IoHT.

Mothukuri et al. [24] review the FL paradigm specifically regarding security and
privacy. Different implementations are evaluated. Some FL security and privacy threats
are similar to those in our paper. Some of the applications are oriented to the IoT but they
authors do not address the IoHT specifically.
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Nguyen et al. [25] focus on the IoT domain only. Similarly to Zhang et al. [23],
a formal definition of FL is presented. Although healthcare applications are considered,
the comparison and analysis of the work do not specify which privacy attacks are tackled
nor the datasets used by them.

Novikova et al. [26] assess several privacy-preserving mechanisms adopted for FL
frameworks and their application to vehicle activity recognition. In this study, the authors
examine the open-source FL frameworks FATE and PFL. They discover that the FATE frame-
work uses homomorphic encryption to secure computations and input data. In contrast, PFL
uses SMPC and differential privacy to protect the processing of vertically partitioned data
and train neural networks for horizontally partitioned data. Similarly to Aledhari et al. [22],
Zhang et al. [23], and Mothukuri et al. [24], there are no comments about the IoHT.

In another study, Nguyen et al. [27] provide a summary of FL in the Internet of Medical
Things (IoMT). This study discusses a federated EHR management system, a federated remote
monitoring system, a federated COVID-19 detection system, and a federated medical imaging
system. Innovative FL designs for IoMT are investigated, including secure FL, resource-aware
FL, and incentive-aware FL. Furthermore, the authors explore privacy-enhanced FL to en-
hance security, although this is not the paper’s primary focus. Similarly to Novikova et al. [26],
a differential privacy method is considered among the privacy-enhancing mechanisms. In
contrast, our survey examines four different technologies that enhance privacy.

To the best of our knowledge, this work is the first survey specifically focused on
reviewing FL applications in the IoHT from the perspective of PETs. A side-by-side
comparison of the work is presented in Table 1.

Table 1. Comparison to the related work (A “X” means that the aspect in the column is considered
by the work in the line. A “×” means that the aspect in the column is not considered by the work in
the line. This same nomenclature is adopted in the next tables).

References IoHT Environment Healthcare Domain
Privacy Mechanisms

Anonymization Cryptography Perturbation Blockchain

Aledhari et al. [22] × X × × × ×

Zhang et al. [23] × × × X X ×

Mothukuri et al. [24] × × × X X X

Nguyen et al. [25] X X × × X X

Novikova et al. [26] × × × X X ×

Nguyen et al. [27] X X × × X ×

Our work X X X X X X

3. IoHT Devices and Security Vulnerabilities

In the healthcare industry, the IoHT is playing a significant role by expanding the
number of smart devices, which facilitate efficient interactions between patients and doctors.
One of the best examples of the beneficial role of IoHT devices can be seen in telemedicine
and online real-time monitoring. For instance, implantable IoHT devices are medical
devices that can be implanted into a patient’s body. Pacemakers, insulin pumps, glucose
monitoring systems, and blood pressure monitoring systems are some of the most common
devices in this category [28].

3.1. Glucose Monitoring System

A glucose monitoring system helps people with diabetes disease. Blood glucose
(sugar) levels grow gradually with diabetes. Modern lifestyles make it difficult for patients
to undergo blood glucose testing in labs or hospitals. This problem inspired scientists to
develop an IoHT device that can track a person’s blood glucose level and then assist the
patient in obtaining the proper diet and medicine [29].
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3.2. Smart Insulin Pumps

Insulin pumps are helpful for highly diabetic patients who require insulin to control
their diabetes levels. This is an expensive task and requires additional nursing support
to give the correct insulin dose. These challenges motivated researchers to develop smart
IoHT devices that help patients take appropriate amounts of insulin [30].

3.3. Pacemaker

Pacemakers are implanted IoHT devices that support patients with heart rhythm
disorders. A pacemaker powered by an internal battery is implanted in the patient’s chest
in order to assist the heart in beating at a normal rate and rhythm. It is well-known that
people who suffer from heart rhythm disorders have a higher risk of developing depression
than people who do not suffer from heart rhythm disorders. These challenges motivated
researchers and organizations to develop smart pacemakers that help patients maintain a
normal heartbeat [31].

3.4. Monitoring of Oxygen Levels

One of the key responsibilities of intelligent healthcare services is the monitoring of
oxygen levels. Therefore, it is necessary to use intelligent monitoring tools or software
to keep track of individuals’ oxygen levels. For instance, it was essential to routinely
check patients’ oxygen levels during the COVID-19 pandemic. These difficulties drove
researchers and organizations to create intelligent IoHT devices that continuously track
patients’ oxygen levels [32].

3.5. Security Vulnerabilities in the IoHT

Several security vulnerabilities are known in existing implementations of the IoHT,
such as network and system vulnerabilities, as well as vulnerabilities associated with
communication protocol implementations.

3.5.1. IoHT Device Operating System Vulnerability

Due to the specialized requirements of IoHT devices, as well as the limitations of the
existing operating systems, it was necessary to create specialized operating systems to
service these devices. However, complex encryption and authentication techniques cannot
be implemented on these devices because of their limited computational capacity, memory,
and power, which may result in increasing resource consumption and add extensive latency.
As a result, these devices are susceptible to network and system attacks [33].

3.5.2. Communication Protocol Vulnerability

In IoHT devices, there are fewer safety checks, and it is their firmware that has the
security vulnerabilities that make them vulnerable, such as hardcoded keys. Furthermore,
because of the urgency of preparing the IoHT platform and limited experience, it is challeng-
ing to provide a common security protocol for the diverse and heterogeneous IoHT devices,
which creates issues concerning how to quickly identify and fix security vulnerabilities in
IoHT devices [34].

3.6. Data Leakage in IoHT Devices

IoHT devices store data in their memory. In many of these devices, the configuration
of the security is weak because data are stored in an unencrypted format, so an attacker
can exploit these vulnerabilities to access the data and steal them.

The majority of IoHT devices used by medical staff to monitor and process patient
data are portable. Attacks that take advantage of memory leaks can affect these devices.
This group of devices, such as laptops and mobile phones, are designed to monitor medical
data. The fact that these devices communicate directly with IoHT data servers makes them
extremely susceptible to various security assaults. Due to the communication between
various devices, the impact from one compromised device can spread to different layers.
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Furthermore, in IoHT implementations, information is transported from devices to servers
using a variety of networking tools and protocols. IoHT devices are generally battery-
focused and lightweight and have low computation capacities, and for these reasons, they
use low-range protocols with weak security. Additionally, intermediate devices, such as
mobile phones connected to wearable devices, collect data from end devices using a specific
protocol to convert them into a different format that can be understood by the next device.
These intermediate devices communicate with the IoHT and monitoring devices via a
variety of protocols that have security issues and can cause data leakage [35].

3.7. Summary

The IoHT is significantly contributing to the growth of smart devices in the healthcare
sector and enables effective communication between medical staff and patients. The health-
care industry has been significantly changed by the use of IoHT devices in telemedicine
and online real-time monitoring. For instance, a glucose monitoring system can track a
diabetic patient’s blood glucose levels, and if the patient requires insulin, a smart insulin
pump can inject the appropriate dosage; glucose monitoring systems can also assist the
patient in creating an adequate diet. Pacemakers help patients maintain a healthy heart
rhythm. Oxygen-level monitoring systems check the blood’s oxygen level and take ap-
propriate action if necessary. These IoHT devices, however, can be the targets of several
security attacks, including those relating to operating system and communication protocol
vulnerabilities. Furthermore, IoHT devices use weak security configurations and store
data in non-encrypted forms. Additionally, security weaknesses in communication proto-
cols can cause data leakage because IoHT devices communicate with other devices using
intermediate devices that transform data using protocols that have security issues.

4. Federated Learning for Healthcare

This section discusses the overall principle of FL and the many types of FL in the
e-healthcare context.

4.1. Principles of FL for Smart Healthcare

Privacy breaches have become a major concern in users’ data management. Govern-
ments have established policies to prevent privacy leakages and preserve users’ data privacy.
The need to comply with these policies led to the development of FL in 2016 [36,37]. FL, or
collaborative learning, consists of training a global ML model without explicitly exchanging
data from multiple parties. In contrast, local ML models are trained on local datasets in the
clients’ devices. Instead of sharing data to train a model in a centralized server, parameters
such as gradients or model weights from these local models are exchanged to produce a
global model. In general, the FL process for IoHT consists of the following steps:

• Initialization. The aggregation server selects data generated by IoHT devices, such as
blood sample readers or human motion detection devices, to perform a prediction or
classification task. Furthermore, the central server chooses a group of participants to
participate in the FL process;

• Local model training. The server sends an initial model to the devices for distributed
training after choosing the IoHT devices for feeding the model. Each device computes
its updated model by training a local model with its own dataset that is stored locally.
Finally, each device sends its updated model to the central server, which is responsible
for aggregating all the updated models;

• Model aggregation. After receiving the parameters from each IoHT device in the FL
process, the aggregation step combines all parameters to generate a global learning
model. The federated averaging (FedAvg) algorithm [36] is an averaging model that
can be used to calculate the global model and send it to all IoHT devices to update the
local models.
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4.2. FL Types for Smart Healthcare

FL methods can be categorized into horizontal FL, vertical FL, and federated trans-
fer learning.

In horizontal FL, or sample-based FL, the datasets of different healthcare clients have
the same feature space but different sample spaces. Since the local data are in the same
feature space, local healthcare participants can train the local model using their local
data with the same AI model, such as the neural network model. Afterward, the global
model can be updated by combining all the local models transmitted from local healthcare
organizations or institutions [38]. An example of horizontal FL in smart healthcare would
be multiple implanted medical devices with different hospitals as clients that collect very
similar data but have little to no overlap in patients [39].

In vertical FL, the datasets of different healthcare organizations have similar sample
spaces and different feature spaces. This method can be used to address overlapping
samples with distributed clients. Vertical FL usually utilizes entity alignment techniques
to collect the overlapping samples from the hospitals. Then, the overlapping data can be
applied to the local training model integrated with encryption techniques [40]. An example
of vertical FL in IoHT applications would be a learning model shared between hospitals and
cardiologists. Both hospitals and cardiologists, two groups that have patients with similar
sample spaces and various data features, can use vertical FL to train an AI model by utilizing
their respective historical medical records and data for smart healthcare decisions [41].

Federated transfer learning integrates transfer learning into FL to handle datasets with
various sample and feature spaces. Transfer learning is a way to transfer knowledge from
one particular problem to another to decrease the distribution divergence between different
domains [42]. An example of federated transfer learning in healthcare organizations would
be disease diagnosis by collaborating countries through numerous hospitals with various
patients and therapeutic programs [27].

4.3. Summary

Privacy violations have grown to be a serious concern in user data management.
In order to stop privacy leaks and protect user data privacy, governments have adopted
policies and regulations. In 2016, FL was created as a result of the requirement to comply
with these regulations and policies. FL is a distributed learning model that trains a global
ML model without sharing raw data with multiple organizations. There are three types of
FL in the healthcare industry: horizontal FL, vertical FL, and federated transfer learning.
In fact, FL uses local datasets that are stored on IoHT devices to train the local ML models.
In general, the central server selects the IoHT devices to participate in the FL process
and then the server sends an initial model to the devices to train the model using local
data. Each device sends its updated local model to the server with the corresponding
parameters and weights. Finally, the central server uses the FedAvg algorithm to aggregate
all parameters, calculate the global model, and distribute it to all IoHT devices.

5. Motivation for Using Privacy-Preserving FL in Smart Healthcare

For IoHT devices, privacy requirements are more stringent than for typical IoT in-
frastructures. IoHT healthcare systems have various privacy requirements, such as data
privacy protection [43]. Data privacy protection is a way to protect personal data from
unauthorized use and manipulation. While collecting and storing patient data, we must
continually consider ethical privacy regulations throughout the entire data lifecycle. For in-
stance, privacy policies such as the GDRP and HIPAA are laws for preserving privacy at
the data level [44]. According to privacy policies, only authorized individuals can access
patient health data.

Thus, to protect the privacy of patient data, the IoHT system should be designed to
guarantee the following principles [45]:

• Preserving the privacy of patients and the confidentiality of patient healthcare data
(i.e., preventing unauthorized access to health information);
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• Ensuring the integrity of healthcare data (i.e., preventing unauthorized data manipulation);
• Granting access to health data to authorized people.

The next two sections summarize the benefits and potential threats of using FL in
smart healthcare.

5.1. Benefits of FL in IoHT

Various characteristics of FL, such as collaborative learning in a distributed data
environment, bring many advantages to the IoHT domain, which are discussed briefly in
the following sections.

5.1.1. Improving the Privacy of User Data

With the increasing numbers of IoHT devices and publicly available medical datasets
generated by IoHT devices, privacy concerns are also growing regarding e-healthcare
systems. According to data privacy protection legislation, private patient data are the
most sensitive and restricted by government laws. Data collected from IoHT devices, such
as heartbeat, blood pressure, and glucose level, are more sensitive than other data types.
To address data privacy challenges in the e-healthcare domain, FL offers a decentralized
training mechanism where each client or institution can control private data and define a
privacy-preservation policy [46]. In the FL framework, the raw health data are stored in a
medical device or at a local site and do not leave the IoHT devices during the federated data
training process. During model training, only the local updates, such as model gradients,
need to be sent to the central server, which reduces the risk of sensitive and personal data
leakage, thus ensuring the privacy of patient data [47].

5.1.2. Less Biased Model

As a centralized model can only be trained using limited data from a single hospital,
the result may be biased in the predictions. Therefore, mitigation bias has recently gained
much attention in relation to modern ML techniques for e-healthcare [48]. More data must
be used for models to be more generalizable, which can be achieved through data sharing
between organizations. However, exchanging patients’ electronic health data between
hospitals raises security and privacy issues because healthcare data are sensitive [49].
Under these circumstances, FL has emerged as an option for building collaborative learning
models for healthcare data. The trained models are less biased and smarter as different
datasets from various sources are integrated into the learning process [50].

5.1.3. Improving Scalability

In a centralized paradigm, uploading all healthcare data to the centralized server
wastes computing resources and violates privacy. It puts more pressure on the wireless
communication network, reducing its scalability. FL’s distributed nature improves the
scalability of IoHT networks that rely on ML [51]. FL can use the computational resources
located in multiple IoHT devices across different hospitals localized in distinct geographic
regions in a parallel manner. When new hospitals or healthcare institutions participate,
they add more computational resources to the federated learning process. Therefore,
these greater computational resources allow FL to enhance performance. Moreover, the FL
architecture avoids sending massive amounts of gathered IoHT data to the cloud, which can
save significant network bandwidth and drastically reduce communication costs [52,53].

5.2. Privacy Leakage and Threats in FL

Although FL provides a privacy-aware framework to train global models without
sharing data and allows clients to use the framework with their local datasets, recent work
has shown that FL can still face privacy breaches and information leakage.

The FL frameworks restrict the sharing of data on local devices with third-party or
central servers. Nonetheless, it is possible to obtain sensitive information through the back-
tracing of gradients and the analysis of the updates to the communication models through
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the training process [54,55]. Previous studies have shown how sharing the gradients can
easily leak private training data. For example, Zhu et al. [56] introduced deep leakage from
gradients (DLG), which demonstrated that malicious attackers can steal the training data
in a few iterations. Similarly, Aono et al. [57] reported that accessing a small portion of
the original gradients may cause leakage of the local training data. Although FL models
with decentralized data sources have shown promising results concerning preserving data
privacy, they are still vulnerable to several types of attacks, such as poisoning attacks [58],
inference attacks [59], and backdoor attacks [60].

In a poisoning attack, which occurs during the training time, an attacker tries to
manipulate the training data sample by injecting designed samples to compromise the
whole learning process [61]. In poisoning attacks, including data poisoning attacks [62] and
model poisoning attacks [63], the ultimate goal of the attackers is to change the behavior of
the target model. A data poisoning attack aims to mislead the global model by manipulating
the local training data. The attacker flips the training data labels and adds noise in order
to degrade the quality of the models [64]. Figure 2 shows how an attacker can change
a trained model by flipping the data labels. In the model poisoning attack, the attacker
attempts to manipulate local model updates before sending the models to the server. This
method includes various techniques to manipulate the FL local training procedure, such as
direct gradient manipulation and changing the learning rule [65].

Figure 2. An illustration of poisoning attacks against FL.

In an inference attack, the attacker aims to exchange gradients during the FL training
process, which can result in serious leakage of information about clients’ training data
features. Inference attacks include inferring class representatives [66], inferring member-
ship [67], inferring data properties [68], and inferring samples/labels [69]. In the inference
of class representatives, the adversary creates samples that are not in the original training
dataset. Attackers use these false samples to learn sensitive information about the training
dataset [70]. The inference of memberships tries to determine whether a given data sample
has been used for model training [71]. In the property inference attack, the attacker aims
to infer the property information for the training dataset [72]. In the inferring samples,
the attacker recreates labels from the gradients and recovers the original training samples
used during training [73]. Figure 3 shows an example of inference attacks.
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Figure 3. An illustration of inference attacks against FL.

In a backdoor attack, the attacker’s goal is to destroy the global FL model and replace
the actual global FL model with the attacker’s model [74]. This attack can also be classified
as a model poisoning attack but it is more harmful than poisoning attacks [60]. The attacker
compromises the devices of one or several participants, trains a model using backdoor data,
and submits the resulting model. After federated averaging, the global model is replaced
with the backdoored model, as shown in Figure 4. In a backdoor attack, the adversary can
be hidden and have no impact on the performance metrics of the global model with the
validation dataset. Consequently, it is not easy to distinguish a backdoor attack [75,76].

Figure 4. An illustration of backdoor attacks against FL.

5.3. Summary

In terms of AI, FL offers several advantages, including the preservation of privacy,
a less biased model, and scalability. However, FL has not gained much popularity in indus-
tries such as healthcare, primarily because of privacy and security deficiencies. Although FL
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offers more privacy protection than traditional machine learning methods by not trans-
mitting data directly to the central server, there are still some insecure issues in particular
real-world applications that require more research and solutions. There are several different
attack types that can affect FL, and various attack classification criteria have been used
in previous studies. Several studies have shown that certain private information can be
inferred from the transfer of data. Moreover, using the trained model, the member inference
attack can determine whether a sample is a part of the relevant training set. For instance,
in some circumstances, disease classification models in the medical industry can reveal
private information. In poisoning attacks, including data poisoning and model poisoning
attacks, an attacker changes the parameters of the target model directly, leading to errors in
the global model. Backdoor attacks are even more harmful than poisoning attacks as they
add malicious data to the training set instead of modifying it, training a model using this
data and then replacing the actual global FL model with the backdoor one.

6. Privacy-Enhancing Technologies

PETs are tools and techniques that protect individuals’ privacy. PETs are designed
to enable companies to embed privacy-by-design principles into their data governance
practices to minimize the amount of personal data they collect, use, and share while maxi-
mizing data security and privacy. In this context, we aim to explore how PETs can enhance
privacy preservation in FL to improve patient data privacy in relation to IoHT devices
and e-healthcare. Four broad categories of PETs are used to improve privacy protection:
(i) anonymization techniques [77]; (ii) cryptographic techniques [78]; (iii) perturbation
techniques [79]; (iv) blockchain techniques [80].

6.1. Anonymization Techniques

Anonymization techniques are broadly used for privacy enhancement and involve
changing the state of a dataset and removing any subject identifiers while preserving
the dataset’s usability [81]. Anonymity technology can better avoid leaking sensitive
patient data and provide a more secure environment for smart healthcare systems. Various
anonymization technologies are appropriate for big medical data, and they are based on
three categories of widely used anonymity protection techniques: k-anonymity, l-diversity,
and t-closeness models [82].

The idea of k-anonymity is to anonymize the quasi-identifier in the dataset that
attackers can use to identify sensitive information about individuals. After selecting the
quasi-identifiers, k-anonymity is applied to each sample in the dataset, which can guarantee
that each sample cannot be re-identified from at least k − 1 samples [83]. l-diversity is an
extension of the k-anonymity mechanism to enhance privacy against homogeneity attacks
and background knowledge attacks on k-anonymity [84]. l-diversity ensures at least l “well-
performing” values for the sensitive attributes and protects against attribute disclosure [85].
Finally, t-closeness has been proposed to reduce attacks against k-anonymity and l-diversity
approaches and solve the attribute disclosure problem [86].

6.2. Cryptographic Techniques

Cryptographic techniques have been used to avoid the disclosure of individuals’
private data in FL [87]. These methods consist of homomorphic encryption, secure multi-party
computation, and zero-knowledge proofs.

Homomorphic encryption is a form of encryption for enhancing privacy in FL that
prevents information leakage during the the parameter-exchanging process among clients.
This method encodes parameters before adding or multiplying operations [88]. There
are two widely used homomorphic encryption types: fully homomorphic and partially
homomorphic. Fully homomorphic encryption supports both additive and multiplicative
operations on ciphertext, while partially homomorphic encryption only supports either ad-
ditive or multiplicative operations on the ciphertext. Compared to partially homomorphic
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encryption, fully homomorphic encryption provides more robust encryption, and both can
be applied to horizontal and vertical FL [89].

Secure multi-party computation (SMPC) [90] is a sub-field of cryptographic schemes
for the protection of private information. SMPC can address the problem of collaborative
computing between parties such that no party learns anything about other participants’
data [91]. The application of SMPC allows multiple participants to concentrate on safely
calculating a function for various participants without the requirement for trusted third
parties or the need to reveal inputs. However, due to the additional encryption and
decryption operations, SMPC suffers from the need for computational overhead [92].

Zero-knowledge proofs (ZKPs) [93] are cryptographic systems designed to achieve
input privacy and verifiability, which are essential features in FL [94]. A ZKP involves a
prover and a verifier that distinguishes the validity of a given statement. ZKP can be an
appropriate method for the verification of sensitive healthcare data among collaborators
because it allows sharing data securely and privately between multiple participants [95].

6.3. Perturbation Techniques

A perturbation method protects private data and models by adding random noise to
the original data. By adding noise to the model parameters or data, the data can be made
differentially private [96,97], and the parties cannot determine whether an individual record
participates in the learning process or not. The differential privacy technique is a widely
used perturbation method implemented in the FL frameworks in medical applications. It is
one of the PET methods that guarantees privacy [98] by using statistical probability models
to mask sensitive private data in a dataset [99] and protect healthcare data against inference
attacks on FL frameworks.

Differential privacy techniques may be classified as global differential or local differential.
In the global differential privacy (GDP) setting, a trusted curator applies careful random
noise to the real values returned for a particular query [100]. Unlike GDP, a local differ-
ential privacy (LDP) technique does not need a trusted third party. LDP allows users to
perturb the input data locally. It often produces overly noisy data, as noise is applied to
achieve individual record privacy [101]. As an advantage, the differential privacy technique
makes datasets more secure because attackers cannot distinguish what information is valid.
Therefore, the amount and quality of noise added to the sensitive data directly relate to
how complex it is for an attacker to recognize correct information about individuals in the
dataset [102].

6.4. Blockchain Techniques

Blockchain technology benefits many non-financial industries, such as healthcare,
due to its cryptographic security, immutability, and accountability [103]. Researchers
have recently started implementing blockchain technology to decentralize traditional data
management systems. For instance, blockchain-based data management prevents security
breaches and assures GDPR compliance [104]. Therefore, blockchain-based PET solutions
can be used in the IoHT to safeguard individuals’ rights over their data [105]. Additionally,
blockchain technology is a promising technique to improve the security and scalability of
the FL system.

An improved level of security may be achieved in healthcare by integrating blockchain
technology into FL to maintain the trained parameters [106]. The blockchain-based system
is adequate for decentralized FL training without any central server, which can mitigate
the risks of single-point failures [107]. To provide IoHT data provenance, blockchain
technology also provides permission control for the participants, enhancing the security
and privacy of parameters in FL.

Blockchain technology has gained popularity for ensuring the trustworthiness and
provenance of trustworthy federated nodes and their datasets, as well as the models’ accu-
racy and the immutability of the global model [108]. A blockchain method includes public
(permissionless), private, and consortium (permissioned) aspects. A public blockchain
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system allows any client to participate in the decentralized process without authorized
permission. Only a client with authorized permission can be involved in private and
consortium systems’ block validation and confirmation process.

6.5. Summary

The techniques and tools that protect individual privacy are known as PETs. The pur-
pose of PETs is to give companies the ability to integrate privacy techniques with their data
in order to increase data security and privacy. Anonymization techniques, cryptography
techniques, perturbation techniques, and blockchain techniques are the four main kinds
of PETs that are utilized to increase privacy protection in the FL framework. Anonymiza-
tion techniques improve privacy by altering a dataset’s state and removing any subject
identities while maintaining the dataset’s usability. Furthermore, numerous cryptography
methods are widely used as PETs in FL frameworks for healthcare applications, including
homomorphic encryption, secure multi-party computation (SMC), and zero-knowledge
proofs. In cryptography approaches, each client encrypts the data before sending them to
the cloud server and then decrypts the updates to generate a new global model. A third
method, known as perturbation, adds random noise to the original data to protect sensitive
information or model parameters. By including noise, it is possible to prevent the parties
from knowing if a given record actively contributes to the learning phase. The differen-
tial privacy approach, which can be categorized as global differential or local differential,
is a commonly used perturbation technique in FL frameworks for medical applications.
Blockchain technology is a novel technology with several benefits, such as immutability,
accountability, and cryptographic security, that has been used in numerous non-financial
industries, especially in the healthcare domain.

7. Applying PETs in FL

This section discusses the security and privacy issues in FL from the perspective of
PETs. The PETs used in FL can be classified into the following categories, described in the
next sections: anonymization, cryptographic, perturbation, and blockchain.

7.1. Anonymization Methods

Much research has been published that integrates anonymization techniques and
FL [109–111]. Some of these studies attempt to evaluate the incorporation of FL and
anonymization methods in a smart healthcare environment [112].

Choudhury et al. [113] proposed a syntactic anonymity approach to guarantee data pri-
vacy in FL that complies with legal regulations. The authors used anonymization based on
a (k, kn) algorithm. This approach comprised two steps. In the first step, the anonymization
method was applied to the original private data, which included relational and transactional
attributes at the local site. These anonymized data were fed to a global model. The second
step was a global anonymization mapping process, which could be used for the prediction
process in the FL global model. The authors took into consideration the two key tasks of
predicting patient mortality and drug reactions. For patients admitted to the intensive care
unit (ICU), in particular, accurate and timely prediction of these outcomes can greatly en-
hance the standard of care. The authors evaluated the proposed method using the Medical
Information Mart for Intensive Care (MIMIC III) (https://registry.opendata.aws/mimiciii/
(accessed on 1 June 2023)) dataset for mortality prediction and the Limited MarketScan
Explorys Claims—EMR Data (LCED) dataset for adverse drug prediction, which was gath-
ered from 3.7 million patients. The results demonstrated high model performance and a
high level of de-identification that could be defended under current privacy regulations
compared to the differential privacy method for FL.

Similarly, Grama et al. [114] presented an adaptive privacy-preserving FL method
for healthcare data. In order to enhance privacy, they used the k-anonymity method and
differential privacy on top of the FL, which could protect data through anonymization.
Although anonymization based on this data protection method can cause information

https://registry.opendata.aws/mimiciii/


Electronics 2023, 12, 2703 14 of 28

loss, the proposed k-anonymity method from this paper decreased data loss. Similarly
to Choudhury et al. [113], the authors evaluated the performance of the proposed ap-
proach with two health datasets related to predicting diabetes mellitus onset (https://www.
kaggle.com/datasets/uciml/pima-indians-diabetes-database (accessed on 1 June 2023))
and heart failure diseases (https://archive.ics.uci.edu/ml/datasets/heart+disease (ac-
cessed on 1 June 2023)). Compared to differential privacy, their results showed that the
k-anonymity method using k = 4 demonstrated a lower error rate, and it could improve
the robustness of aggregation and provide more healthcare data protection if applied to a
large dataset.

Alsulaimawi [115] presented a federated PF-NMF framework. This FL framework
contained multiple local privacy filters (PFs), which were used to remove sensitive data
to minimize the risk of private data leakage. In the training phase, the PF acted as an
encoder. The framework included a decoder in the testing phase and fed the test data into
the autoencoder. The author evaluated the proposed approach with the MNIST (https:
//www.tensorflow.org/datasets/catalog/mnist (accessed on 1 June 2023)) and HARUS
(human static and dynamic activities gathered by wearable devices) (http://archive.ics.
uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones (accessed on
1 June 2023)) datasets. The results showed that federated learning with two PF-NMF
frameworks achieved better accuracy and enhanced the privacy protection of sensitive data
compared to a single PF-NMF model.

Cui et al. [116] proposed a new method called federated machine learning with
anonymous random hybridization (FeARH) to mitigate privacy issues in an untrustworthy
central analyzer. A more detailed explanation is that the suggested approach was designed
to be used against active adversaries, where the main unreliable party may violate the
protocol and maliciously alter model parameters in order to obtain private training data.
Therefore, the hybridization algorithm added randomization into the parameter sets shared
with other parties. With the hybrid algorithm, the medical data replaced by randomized
parameters did not need to be shared with other institutions. The authors evaluated
the proposed approach with the eICU dataset (https://eicu-crd.mit.edu/ (accessed on
1 June 2023)), which includes the medicine taken by each patient and the mortality of each
patient. The results showed that FeARH achieved similar performance compared to FL and
centralized the ML method. Similarly to Alsulaimawi [115], the authors used anonymized
data in the training phase.

Table 2 summarizes the representative work on anonymization techniques applied for
FL in smart healthcare.

Table 2. Summary of anonymization techniques applied in FL for the smart healthcare environment.

Ref. Aim Dataset Dataset
Available Open-Source Privacy

Attack

Privacy-
Enhancing

Method

Choudhury et al. [113] Maximize data utility
and model performance

MIMIC III and
LCED X × Inference

attack
Syntactic

anonymization

Grama et al. [114]
Applying data privacy
engineering without

reducing the accuracy

Pima Indians
diabetes and

Cleveland heart
disease

X × Poisoning
attack k-anonymity

Alsulaimawi [115] Preserving private data
with high accuracy

MNIST and
HARUS X × -

Non-negative
matrix

factorization

Cui et al. [116]

Avoiding an attack from
an untrustworthy

central analyzer in FL,
obtaining similar

performance compared
to a centralized model

eICU X × Inference
attack

Anonymous
random

hybridization

https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
https://archive.ics.uci.edu/ml/datasets/heart+disease
https://www.tensorflow.org/datasets/catalog/mnist
https://www.tensorflow.org/datasets/catalog/mnist
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
http://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
https://eicu-crd.mit.edu/


Electronics 2023, 12, 2703 15 of 28

7.2. Cryptographic Methods

Cryptographic methods are widely used in several FL methods to preserve data privacy
when exchanging intermediate parameters during the FL training process [117–119]. Simi-
larly to Cui et al. [116], whose work falls into the smart healthcare domain, Zhang et al. [120]
presented an FL mechanism for the IoHT. They applied a cryptographic masking scheme
based on homomorphic encryption and SMPC to protect private medical data against
reconstruction or model inversion attacks. In this masking scheme, the standard weight
calculation method based on the quantity of data was replaced with a weighted average
algorithm based on the data quality. Additionally, the authors used Diffie–Hellman key
exchange and the Shamir secret-sharing algorithm to provide a dropout-tolerable and
participant collusion-resistant solution for the proposed scheme. To evaluate the efficiency
of the proposed FL model and the validity of the privacy-enhancing masking scheme,
the authors used real skin cancer datasets (https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/DBW86T (accessed on 1 June 2023)). The results showed
that the proposed model improved the privacy protection for medical data and achieved
reliable accuracy in skin cancer detection.

Ma et al. [121] proposed a novel privacy-enhancing FL-based environment in a smart
healthcare scenario for detection of falls among the elderly. The authors used the UP-FALL
Detection dataset (http://sites.google.com/up.edu.mx/har-up/ (accessed on 1 June 2023)).
Similarly to Zhang et al. [120], they applied a homomorphic encryption scheme to prevent
privacy leakage and achieve secure encryption and decryption in the FL system. The pro-
posed xMK-CKKS multi-key homomorphic encryption scheme utilizes an aggregated
public key to encrypt the model updates before sharing them with a server for aggregation.
They proposed an aggregated public key that would, in particular, be used to encrypt
the sum of all individual public keys. The model’s secure decryption occurs after clients
shared information about their secret keys. During the secure decryption, devices calculate
the decryption share, which consists of information about the aggregated ciphertexts and
individual secret keys. As a result, the xMK-CKKS scheme provides robust security and
prevents more interactive decryption mechanisms. The results showed that the proposed
FL scheme using multi-key homomorphic encryption was effective in terms of communica-
tion, computational cost, and energy consumption while ensuring the implementation of
secure FL on IoHT devices.

Stripelis et al. [122] combined FL and fully homomorphic encryption (FHE) to de-
velop a novel, secure FL framework for biomedical data analysis. They used the CKKS
homomorphic encryption scheme based on ciphertext packing and rescaling, similarly
to Ma et al. [121]. Three crucial steps (encryption, encrypted aggregation, and decryp-
tion) are included in the proposed environment. Participants encrypt the locally trained
models with an HE scheme using the public keys and send the encrypted models to
the controller. The controller uses encrypted weighted aggregation to obtain the new
encrypted model without decrypting any of the participant models. Finally, the con-
troller distributes the new encrypted model to the participants. The participants then
decrypt it using the private key and train the decrypted model with their local data.
The authors evaluated the performance of the proposed FL model using a large-scale
3D brain MRI dataset (https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:
10.7910/DVN/2RKAQP (accessed on 1 June 2023)), aiming to predict brain age in a se-
cure environment. The results showed that integrating an FL framework and encryption
scheme did not reduce the efficiency of FL, although it improved the privacy of the patients’
private data.

Rachakonda et al. [123] provided a secure and scalable FL framework to implement
AI across hospital sites, collaborators, and edge devices. Similarly to Zhang et al. [120],
they integrated the proposed FL framework with an SMPC algorithm to address privacy
challenges and avoid reverse engineering data leakage attacks via model updates. Each
client’s weight is encrypted using SMPC before being transmitted to the server. Using
encrypted weights prevents the original weights from being retrieved, which can prevent

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/DBW86T
http://sites.google.com/up.edu.mx/har-up/
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/2RKAQP
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/2RKAQP


Electronics 2023, 12, 2703 16 of 28

reverse engineering of model updates and reduce communication and computation costs.
They evaluated the performance of the SMPC method in FL using the Philips ICU dataset.
The results demonstrated that the developed FL framework with an SMPC algorithm could
be used in a large ecosystem consisting of the IoHT and healthcare hospital sites. Moreover,
the proposed framework could effectively protect medical data privacy.

Heiss et al. [124] proposed a model for blockchain-based FL that leverages verifiable
off-chain computations (VOCs) using ZKPs. The architecture enables the computational
correctness of local learning processes verifiable on the blockchain and provides globally
verifiable management of global learning parameters. The proposed system has a unique
characteristic. Smart contracts are used to manage the global model, which is stored on
the blockchain. This feature uses the system guarantees of the underlying blockchain to
enable public verifiability. The authors evaluated the architecture’s performance through
an in-home health monitoring system where sensitive data were used as inputs to the
FL system. They used the Daily and Sports Activities dataset (https://archive.ics.uci.
edu/ml/datasets/daily+and+sports+activities (accessed on 1 June 2023)). The results
showed that VOC using ZKPs enhanced privacy in decentralized applications. Similarly
to Zhang et al. [120] and Rachakonda et al. [123], the authors integrated ZKPs with FL in
order to enhance privacy in the IoHT ecosystem.

Table 3 summarizes the cryptographic methods applied for FL in smart healthcare.

Table 3. Summary of cryptographic algorithms applied in FL for the smart healthcare environment.

Ref. Aim Dataset Dataset
Available Open-Source Privacy Attack Privacy-Enhancing

Method

Zhang et al. [120]

Preserving
privacy in skin

cancer detection
while ensuring

reliable accuracy

HAM10000 X × Inference attack

Homomorphic
encryption and

secure multi-party
computation

Ma et al. [121]
Securing the FL

environment with
IoHT devices

UP-FALL X × Inference attack

xMK-CKKS
multi-key

homomorphic
encryption

Stripelis et al. [122]
Enhancing

patients’ data
privacy

3D brain MRI X × Membership
inference attack

Fully homomorphic
encryption (FHE)

Rachakonda et al. [123]

Protecting
medical data
privacy with
IoHT devices

eICU X ×
Reverse

engineering
attack

Secure multi-party
computation

Heiss et al. [124]

Privacy-
enhanced

decentralized
applications

Daily and Sports
Activities X ×

Global
aggregation and
poisoning attack

Zero-
knowledge proofs

7.3. Perturbation Methods

Next, we discuss the perturbation methods. Similarly to Ma et al. [121], Kerk-
ouche et al. [125] proposed a bandwidth-efficient FL framework for the IoHT environ-
ment. The framework ensures privacy for the FL using differential privacy (DP). The
authors acknowledged that exchanging the model updates from many IoHT devices re-
quires significant bandwidth. Therefore, they proposed the FL-SIGN-DP scheme to reduce
communication costs and enhance privacy. Participants in the FL-SIGN-DP scheme only
transmit the updated models’ signs to the aggregation server. The authors proposed a
model that guarantees differential privacy with practical utility, even in the case of highly
imbalanced training datasets. The FL-SIGN-DP technique ensures that the patient data
utilized by hospitals cannot be stolen by any internal or external adversary who has
access to the final model, intermediate updates, or the messages exchanged during the

https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
https://archive.ics.uci.edu/ml/datasets/daily+and+sports+activities
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training process. They used the electronic health records (https://www.premierinc.com/
newsroom/education/premier-healthcare-database-whitepaper (accessed on 1 June 2023))
of roughly a million patients to assess the performance of the proposed scheme in terms
of the in-hospital mortality rate. The proposed scheme was compared with centralized
learning, FL-SIGN without standard FL, DP, and DP with standard FL. The results showed
that the FL-SIGN-DP consumed less bandwidth and could guarantee privacy protection.

Islam et al. [126] proposed an FL model to analyze patients’ genomic data and
identify the risk of heart failure. To enhance the privacy preservation of patients’ pri-
vate data while sharing them among collaborating healthcare organizations in the FL
framework, the authors applied DP mechanisms by using feature selection based on
statistical methods to increase scalability and accuracy in federated settings where data
are vertically partitioned. The authors utilize the highest correlation value technique
to select the features of the dataset. Then, they apply the differential privacy method
to add noise to the selected data. The noisy data are sent to the central aggregator
server. Finally, a trustworthy central aggregator server creates the final global model
using the received noisy data to predict heart failure possibilities. The authors evalu-
ated the performance of the proposed FL framework using the IQVIA and BC-TCGA
datasets (https://data.mendeley.com/datasets/v3cc2p38hb/1 (accessed on 1 June 2023)).
The IQVIA dataset was used to predict the causes of inevitable heart failures, and the
BC-TCGA dataset addressed cancer prediction. The results demonstrated that the proposed
model could obtain better accuracy with the highest privacy for the IQVIA and BC-TCGA
datasets in a federated training setting.

Zhao et al. [127] proposed federated adversarial learning (FAL) with biomedical named
entity recognition (BioNER). The DP technology was also used to ensure data security and
privacy by adding Gaussian noise during the local training and model aggregation process.
Only the noised parameters with DP are transferred between the server and the client.
Therefore, the data leakage possibility decreases on the local client’s side. A dataset collected
from five departments of a tumor hospital was employed to examine the performance
of the proposed scheme. The results showed that the training impact of the federated
learning technology was comparable to centralized training when it came to unbalanced
data from the five hospital departments. This demonstrates how the federated learning
approach suggested in this work can successfully overcome data islands and the ethical
issues brought about by data exchange between departments of a medical institution.

Similarly to Kerkouche et al. [125], Li et al. [128] proposed a cost-effective and privacy-
preserving FL framework for an IoHT Alzheimer’s disease detection scheme. They pre-
sented an FL-based privacy-preserving smart healthcare system named ADDetector for
the detection of Alzheimer’s disease. Moreover, they implemented a DP mechanism for
the user data to avoid patient data leakage while transferring data to the client and en-
hance the privacy level against attackers. The proposed FL-based framework and the
DP-based mechanism employ audio from smart devices to detect Alzheimer’s disease.
They system has three layers: the cloud layer, the detecting client layer, and the user layer.
The data collection module requests the user prepare voice samples for AD detection in
the user layer, and the feature extraction module extracts features from both linguistic
and auditory characteristics. At the user level, the FL framework enables the preserva-
tion of raw data, while DP is used to protect communication between the user layer and
the detecting client layer. Finally, in order to ensure the confidentiality and integrity of
communication between the cloud layer and the detecting client layer, an asynchronous
privacy-preserving aggregation module is implemented. The ADReSS Challenge dataset
from INTERSPEECH 2020 (https://luzs.gitlab.io/adress/ (accessed on 1 June 2023)) was
used to evaluate the performance of the ADDetector FL-based scheme. The experimental
results showed that the ADDetector FL-based framework achieved better accuracy and a
low average time overhead with strong privacy and security protection.

Nguyen et al. [129] proposed an FL framework called FedGAN to facilitate COVID-19
detection by enhancing privacy among medical institutions in edge cloud computing.

https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
https://www.premierinc.com/newsroom/education/premier-healthcare-database-whitepaper
https://data.mendeley.com/datasets/v3cc2p38hb/1
https://luzs.gitlab.io/adress/
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The framework aims to create realistic COVID-19 X-ray data and detect the disease au-
tomatically without sharing COVID-19 images with parties. Additionally, the authors
integrated DP at each hospital site to increase and guarantee data privacy in the federated
COVID-19 data training. They used differentially private stochastic gradient descent and
a gradient perturbation technique to apply DP. They also added Gaussian noise to the
gradient during the training. Additionally, they used the FedGAN blockchain-based system
for safe COVID-19 data analysis. To evaluate the performance of the proposed FedGAN
model, they used two popular COVID-19 X-ray datasets for simulations: the DarkCOVID
(https://github.com/ieee8023/COVID-chestxray-dataset (accessed on 1 June 2023)) and
the ChestCOVID (https://github.com/ieee8023/covid-chestxray-dataset (accessed on
1 June 2023)) datasets. The results demonstrated that the FedGAN framework enhanced
the performance of COVID-19 detection and provided a high level of privacy.

Table 4 summarizes the perturbation methods for FL in smart healthcare.

Table 4. Summary of perturbation methods applied in FL for the smart healthcare environment.

Ref. Aim Dataset Dataset
Available Open-Source Privacy Attack Privacy-Enhancing

Method

Kerkouche et al. [125]
Enhancing privacy

and bandwidth
efficiency

Two real-world
electronic health

records
X X Inference attack Differential privacy

Islam et al. [126]
Preserving privacy
and predicting risk

of heart failure
BC-TCGA X × - Differential privacy

Zhao et al. [127]
Avoiding medical

data leakage during
data exchange

Dataset from a
tumor hospitals × × Adversarial

attack Differential privacy

Li et al. [128]

Privacy-preserving
IoHT and

Alzheimer’s disease
detection

ADReSS X ×
Man-in-the-

middle
attack

Differential privacy

Nguyen et al. [129]

Preserving privacy
and improving

COVID-19
detection

DarkCOVID and
ChestCOVID X × - Differential privacy

7.4. Blockchain Methods

Blockchain methods have been widely used in many FL frameworks to provide privacy
and security in the IoHT and smart healthcare systems.

For smart healthcare systems, Samuel et al. [130] proposed an infrastructure called
FedMedChain based on secure FL and blockchain technology to predict COVID-19 for IoMT
scenarios, similarly to Nguyen et al. [129], who proposed a privacy-preserving FL-based
scheme for the analysis of COVID-19 data in a secure environment. An FL system was
suggested for this model to address the issues of data privacy and ineffective COVID-19
prediction. The blockchain is used to assure data immutability, availability, and security,
as well as trust between entities. For the proposed model, a new consensus protocol for
the blockchain system was developed based on the idea of a reinforcing addition game.
Block genesis and miner selection both take place using the suggested consensus process.
The proposed system could improve public communication and address the challenges of
giant data silos and data security. Furthermore, information security and privacy analyses
showed that the proposed infrastructure was robust against privacy breaches and could
improve information security.

Similarly to Samuel et al. [130], Aich et al. [131] presented a model based on FL
and blockchain technology to address privacy concerns. The model was used to predict
COVID-19 symptoms and how the disease spreads, speeding up the use of the medical data
in research and treatment. In addition, the combination of FL and blockchain technology
could be helpful for real-time environments and organizations that do not want to share

https://github.com/ieee8023/COVID-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset


Electronics 2023, 12, 2703 19 of 28

sensitive data with third parties because of privacy concerns. In the proposed blockchain
service, users register on the platform and request access to a certain resource, and the smart
contract determines whether the resource is available in the ledger. The smart contract
notifies the user and reserves the requested data if they are available, and the user then
signs the contract. After validation, the user receives a usage token. After analyzing the
combination of blockchain and FL solutions, the authors concluded that the proposed
solution securely protected data access and could help to build a robust model.

In the same context, Lakhan et al. [132] proposed a privacy-preserving FL framework
for an IoMT system. It includes an FL-BETS model—an FL-based, privacy-enhancing,
malware-detection, and blockchain-enabled IoMT system—for different healthcare work-
loads. This study aimed to preserve data privacy and protect against fraud in the local
fog nodes and remote cloud network with minimum energy consumption and delay. The
proposed model contains different layers, such as an application layer including ECG heart-
beat, E-hospital, and blood pressure data, that share data for processing in the network. To
prevent any attack on the storage in between different transactions, the local fog-node layer
includes several federated and fraud blockchain fog nodes in order to train the models
at different nodes. The top layer, known as the fog-cloud agent (FCA) layer, is responsi-
ble for scheduling all task requests to the global federated learning model using shared
models. Compared to other ML and blockchain methods in malware analysis, the FL-BETS
framework showed the best performance in terms of fraud analysis, data validation, energy
efficiency, and delay constraints for healthcare applications. The model decreased energy
consumption by 41% and delay by 28%.

Similarly to Samuel et al. [130] and Lakhan et al. [132], Singh et al. [133] proposed a
model integrating blockchain and FL-enabled approaches to provide a secure architecture
for privacy preservation in smart healthcare systems. In this model, blockchain-based IoT
cloud apps enhance security and privacy by combining FL and blockchain technologies. In
the proposed architecture, the blockchain technology records the data usage behavior and
ensures authenticity for data aggregation. When a data user utilizes a target set of data,
the system handles it, processes it, and then returns the results to the data user. By separat-
ing data ownership and permissions, the blockchain makes the data rotation process safe
and secure. Therefore, the proposed model can provide secure data sharing for the IoHT
environment with privacy preservation. Organizations can use a federated learning-based
blockchain cloud architecture without sharing sensitive and private healthcare system data
in the cloud.

Kumar et al. [134] developed an FL blockchain-based approach to train a global model
for COVID-19 detection based on computed tomography (CT) slices while preserving the
privacy of patients’ private data and that of the organization. There are two important parts
of the proposed model: the local model and the federated learning based on blockchain
technology. Using blockchain-based federated learning, the proposed framework aggre-
gates the weights received from the different local models while maintaining the privacy of
the hospitals’ data. In the case that a new hospital provides the data, a transaction is stored
in the block to verify that the hospital owns the data. In fact, the blockchain stores two
types of transactions in the blockchain ledger: data-sharing transactions and data retrieval
transactions. The authors use a permissioned blockchain for the management of data
accessibility in order to ensure data privacy. One of the key advantages of a permissioned
blockchain is that it creates a record of all transactions, allowing the data to be retrieved
from a global model. The proposed model was used to evaluate real-life COVID-19 patients’
data (https://paperswithcode.com/dataset/cc-19 (accessed on 1 June 2023)) collected from
various hospitals with different types of CT scanners and made publicly available to the
research community. The results showed that the blockchain-based FL detected COVID-19
with good performance using CT scans from various hospitals while preserving sensitive
data privacy.

Table 5 summarizes the blockchain methods applied for FL in smart healthcare.

https://paperswithcode.com/dataset/cc-19
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Table 5. Summary of blockchain methods applied in FL for the smart healthcare environment.

Ref. Aim Dataset Dataset
Available Open-Source Privacy

Attack
Privacy-Enhancing

Method

Samuel et al. [130]

IoMT privacy
preservation and

prediction of
COVID-19

- × ×
Backdoor and

inference
attacks

Blockchain

Aich et al. [131]
Preserving data

privacy and
predicting COVID-19

- × × - Blockchain

Lakhan et al. [132] Fraud detection for
the IoHT

ECG heartbeat
E-heart videos
Blood pressure

× × Fraud attack Blockchain

Singh et al. [133] Privacy preservation
for the IoHT in clouds Healthcare data × × Replay attack Blockchain

Kumar et al. [134]

Preserving patients’
privacy and detecting

COVID-19 from
CT scans

CC-19 X X - Blockchain

7.5. Summary

There are four types of PETs used in FL, which can be classified into the following
categories: anonymization, cryptography, perturbation, and blockchain. Anonymization
methods and FL have been integrated in various studies published in the literature; more-
over, there are some studies that have combined FL and anonymization techniques in
smart healthcare systems. In [113], the author proposed a syntactic anonymity approach
for FL for predicting patient mortality and drug reactions and ensuring data privacy.
Grama et al. [114] presented a k-anonymity method for FL to implement data privacy engi-
neering without reducing accuracy. In [115], the authors presented a federated PF-NMF
framework to minimize the risk of private data leakage. In the training phase, the PF
acts as an encoder. The framework includes a decoder in the testing phase and feeds the
test data into the autoencoder. Cui et al. [116] proposed a new method called federated
machine learning with anonymous random hybridization (FeARH) to mitigate privacy
issues in an untrustworthy central analyzer and obtained similar performance compared to
a centralized model.

Several FL methods use cryptographic methods for protecting data privacy when
exchanging intermediate parameters. Zhang et al. [120] presented a cryptographic masking
scheme based on homomorphic encryption and SMPC to protect private medical data
during skin cancer detection with reliable accuracy. Ma et al. [121] applied an xMK-CKKS
multi-key homomorphic encryption scheme to achieve secure encryption and decryption
in the FL system and prevent privacy leakage with IoHT devices. In [122], the authors
combined FL and the CKKS homomorphic encryption scheme based on ciphertext pack-
ing and rescaling to define a novel, secure FL framework for biomedical data analysis.
Rachakonda et al. [123] combined a proposed FL framework for the protection of privacy
in IoHT devices with an SMPC algorithm to avoid reverse engineering data leakage attacks
via model updates. In [124], the authors proposed a model for blockchain-based FL that
leverages verifiable off-chain computations (VOCs) using ZKPs to enhance privacy in
decentralized applications.

Perturbation methods are widely used in FL to protect data privacy in the IoHT
environment. Kerkouche et al. [125] proposed the FL-SIGN-DP framework to enhance
privacy and bandwidth efficiency in the IoHT environment. The framework ensures privacy
for FL using differential privacy (DP). In [126], the authors applied DP mechanisms through
feature selection based on the statistical methods in the FL model to enhance privacy,
analyze patients’ genomic data, and identify the risk of heart failure. Zhao et al. [127]
applied the DP technology in FL to ensure data security and privacy by adding Gaussian
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noise during the local training and model aggregation process. Li et al. [128] developed
a cost-effective and privacy-preserving FL framework by implementing the DP method
for an IoHT Alzheimer’s disease detection scheme. In [129], the authors proposed an FL
framework called FedGAN to facilitate COVID-19 detection and enhance privacy using
differentially private stochastic gradient descent.

A wide range of FL methods use blockchain technology to provide privacy and
security in the IoHT and smart healthcare applications. For smart healthcare systems,
Samuel et al. [130] proposed an infrastructure called FedMedChain based on secure FL and
blockchain technology to predict COVID-19 in IoMT scenarios. Aich et al. [131] presented
a model based on FL and blockchain technology to address privacy concerns. The model
was used to predict COVID-19 symptoms and how the disease spreads, speeding up the
use of the medical data in research and treatment. Lakhan et al. [132] proposed a privacy-
preserving FL framework for an IoMT system. It is an FL-BETS model—an FL-based,
privacy-enhancing, malware-detection, and blockchain-enabled IoMT system—that can be
used for different healthcare workloads. Singh et al. [133] proposed a model integrating
blockchain and FL-enabled approaches to provide a secure architecture to enhance privacy
for the IoHT in the cloud. In [134], the authors developed an FL blockchain-based approach
to train the global model for COVID-19 detection based on computed tomography (CT)
slices while preserving the privacy of patients’ private data.

8. Key Challenges for Future Research

While PETs in FL have yielded promising results, some challenges can be highlighted.
This section discusses the most prominent of these challenges.

8.1. Computation Costs

One of the main challenges in FL is represented by privacy enhancements to prevent
data leakage. As shown by Rachakonda et al. [123], SMPC is one way to protect data
privacy in FL. FL needs multiple iterations to develop the final global model. Therefore,
the number of training iterations directly increases the cost of the training model. Perform-
ing experiments with a different number of workers does not impact the computation cost.
However, increasing the number of training rounds significantly increases the computation
cost. Therefore, the trade-off between privacy risk and computation time is a good topic for
future research.

8.2. Privacy and Security

In Section 7.4, several studies were described that show that integration of the
blockchain method and FL is another way to enhance privacy in the IoHT. However,
there is an open issue that may lead to privacy leakage. In FL, only the central server has
information about the sources of the local model updates, and the addresses of the clients
are private. However, addresses in the blockchain are public, and using blockchain tech-
nology in FL allows other clients to communicate with each other and obtain the training
model based on the public information from the blockchain. Therefore, the risk of data
leakage among clients cannot be ignored.

8.3. Linkage Attacks

The k-anonymity technique is a way to preserve the anonymity of individuals. The
main idea is to modify the attributes of the dataset in such a way that each instance has at
least k − 1 other entities with identical quasi-identifiers. Therefore, an identifiable record
would link to multiple records in the anonymous dataset. However, k-anonymity cannot
avoid privacy leakage resulting from linkage attacks where a sensitive attribute is shared
among individuals with the same quasi-identifier.
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8.4. Storage Cost

Local model updates in a traditional FL model are stored in the aggregator, whereas
local model updates in a blockchain-based FL model are stored in the blockchain. With
blockchain technology, each client is also able to store a local copy of the blockchain and
update it regularly, which can increase storage costs. As a result, devices with limited
storage capacity may not be able to continue with the training as the amount of data stored
in the blockchain rises.

8.5. Energy Consumption

It is critical to remember that the majority of IoHT devices have constrained battery
life, which makes it challenging to implement training effectively and continually. One of
the major issues with homomorphic encryption is the resources needed to develop and
implement it. Typically, encrypted data are substantially larger than unencrypted data,
so processing encrypted data takes longer than processing unencrypted data. Therefore,
significant amounts of processing time and energy are required not only to encrypt, store,
and decrypt data while they are at rest and in transit but also when they are actually
being used.

8.6. Communication Latency

In order to implement FL with blockchain technology, it is important to meet stringent
latency requirements, especially when it comes to real-time healthcare analytics. How-
ever, FL and blockchain technology demonstrate communication latency, which limits the
advancement of these two technologies. In FL, communication latency can be reduced
without the need to offload raw data due to optimized training. However, the use of
blockchain technology imposes additional latency due to block mining, which presents a
new challenge for the FL system since it forces clients to wait for the mining process to be
completed before they receive an updated model and perform their next training iterations.

8.7. Summary

It is clear that PETs have succeeded in FL, but there are some challenges that cannot be
ignored despite the positive results. There are several ways to protect data privacy in FL,
including using SMPC. However, federated learning requires multiple iterations to reach
the final global model, which significantly increases the computation cost. Furthermore,
there are several open issues related to the integration of blockchain technology and FL
that can lead to privacy breaches, storage costs, and communication latency. One of the
major issues with the combination of FL and homomorphic encryption is the increasing
energy consumption because processing encrypted data requires more time and energy.
A linkage attack can also cause privacy leaks with the k-anonymity technique as a result
of the fact that a sensitive property may be shared by multiple people using the same
quasi-identifiers.

9. Conclusions

This survey reviewed representative work that has applied FL in the IoHT domain
in terms of privacy, including attacks and PETs. We demonstrated three potential privacy
leakages and threats in FL and presented four types of PETs: anonymization, cryptography,
perturbation, and blockchain technologies. Then, we investigated and summarized the cur-
rently available papers based on these four privacy-enhancing technologies. The datasets
used by these studies were also summarized, which will be helpful for researchers aiming
to reproduce the results. Although PETs are promising technologies that meet data privacy
requirements and have made rapid advancements in recent years, some open research
issues still exist, such as the trade-off between privacy risk and computational time, the risk
of data leakage among colluding clients, and the sharing of sensitive attributes. The cost
of storage, for instance, may increase with the integration of FL and blockchain technol-
ogy because the majority of IoHT devices have a finite amount of storage. Additionally,
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the combination of FL and homomorphic encryption is a significant challenge for IoHT
devices due to their battery limitations, as it increases the processing time and consumes
more battery power during data encryption and decryption. Therefore, researchers need to
find a way to address this challenge. Along with the current research efforts, we encourage
more work addressing the problems in this area and the open research issues identified in
this paper.
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