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Abstract: FPGAs are gaining favor among researchers in fields including artificial intelligence
and big data due to their configurability and high level of parallelism. As the packing methods
indisputably affect the implementation performance of FPGA chips, packing techniques play an
important role in the design automation flow of FPGAs. In this paper, we propose a quantitative
rule for packing priority of neural network circuits, and optimize the traditional seed-based packing
methods with special primitives. The experiment result indicates that the proposed packing method
achieves an average decrease of 8.45% in critical path delay compared to the VTR8.0 on Koios deep
learning benchmarks.
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1. Introduction

In recent years, Field Programmable Gate Array (FPGA) chips are being widely used in
the acceleration of neural networks (NNs). NN applications such as image classification [1],
object detection [2], and natural language processing [3] can take full advantage of the
reconfigurable parallelism of FPGA architectures.

FPGAs typically consist of two-dimensional reconfigurable arrays, including Con-
figurable Logic Blocks (CLBs), Block RAMs (BRAMs), Digital Signal Processing blocks
(DSPs) [4,5], etc., and all these tiles are connected through programmable wires and
switches. The back-end optimization of FPGAs is restricted by the pre-placed computing
primitives and the pre-routed clock tree. As the packing methods indisputably affect the
implementation performance of FPGA chips, packing techniques play an important role in
the design automation flow of FPGAs.

Nowadays, the most commonly used packing algorithms are Seed-based algorithms,
which pack the look up tables (LUTs) and flip-flops (FFs) together to implement the
designated logic function. Seed-based algorithms construct new tiles by seeding each with
an unpacked primitive and greedily absorbing its surrounding primitives according to
attraction functions. However, emerging heterogeneous FPGA architectures present a new
challenge to the traditional packing methods; heterogeneous IP Blocks, such as the BRAMs
and DSPs, make traditional packing methods inefficient due to the unevenly distributed
wiring topology.

In this paper, we propose an improved packing algorithm. The main contributions
of this paper are as follows: (1) A quantitative rule for packing priority of neural network
circuits is proposed. (2) The traditional seed-based packing methods with special primitives
is optimized. Compared with Verilog-To-Routing(VTR) [6], the proposed packing method
achieves an average reduction of 8.45% in latency at the cost of a 0.58% increase in resource
consumption and a 7.55% increase in runtime for the optimized circuits without affecting
other circuits.
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2. Related Work

Previous algorithms for FPGA packing can be loosely categorized into seed-based
packing and partitioning-based packing.

VPACK [7] is the first seed-based packing approach. It packs LUTs and FFs into
BLE, and then into CLBs. T-VPACK [8] reduces the critical path delay of the circuit by
modifying the attraction function. DPACK [9] adds the Manhattan distance to the attractive
function of T-VPACK, which reduces the bus length by 16% and the critical path delay
by 8% after placement and routing. For more complex logic blocks, ref. [10] proposes the
AAPACK algorithm, which packs primitives into molecules and assemble clusters from a
set of molecules. RSVPACK [11] is a packing algorithm for the XILINX V6 architecture that
bridges the gap between academia and industry. DPPACK [12] adopts distributed parallel
packing, which shortens the runtime by 1.4–3.2 times with acceptable quality degradation
compared to AAPACK. [6] is an update to AAPack, optimized for seed selection and
attraction functions.

PPFF [13] applies partition-based packing to FPGAs as a sub-step of placement.
PPack [14] explores partition-based packing, which adds a significant amount of runtime
compared to T-VPACK. PPack2 [15] is an improved version of PPack. Compared to T-
VPack, PPack2 has an 11.2% reduction in critical path delay. PartSA [16] is a multi-threaded
parallel packing algorithm that reduces runtime but increases wire length by 26%.

A summary of FPGA packing algorithms is shown in Table 1. Partitioning-based
algorithms are effective at packing simple FPGAs, but they can struggle to handle the
constraints present in commercial devices. Conversely, seed-based algorithms perform
better in packing heterogeneous FPGAs. The seed-based algorithm adopts the same packing
rule for tiles with different areas, which will affect the wire length around some tiles and
even the delay of the critical path. This is more prominent in neural network circuits. This
paper proposes improved seed-based packing algorithms for neural networks, which can
reduce the critical path delays in the packing process.

Table 1. Summary of FPGA Packing Methods.

Packing Methods Advantages Disadvantages

partitioning-based
packing [13–16] effective struggle to handle packing of

heterogeneous clusters

seed-based packing [6–12] excel at packing
heterogeneous FPGAs

the influence of tiles of
different sizes on wirelength

was ignored

3. User Netlist

After circuit synthesis and mapping, a primitive-level user netlist is generated. It is
composed of primitives and necessary connectivity.

3.1. Primitives

Primitives are fundamental units that cannot be separated, and their internal structure
is usually treated as a black box. Each primitive contains one or more ports, including input
and output ports, with each port having one or more pins. For example, the input port of a
LUT usually has four to eight pins. In modern FPGAs, three frequently used primitives are
DSPs, RAMs, and adders, which were not present in earlier generations of FPGA products.
The features of these three types of primitives in application circuits are described below.

3.1.1. DSPs and RAMs

DSPs and RAMs are embedded reconfigurable IP blocks in FPGAs. However, the use
of primitives inherently introduces significant latency. In advanced neural networks, about
80–90% of the operations are matrix multiplication [17], which means that the critical
path often includes DSPs or RAMs. Consequently, reducing the delay of the network
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connected by these primitives has become a pressing issue that requires immediate attention
in the field.

3.1.2. Adders

Adders typically implement carry chains and are generally located in CLBs. In real-
world applications, adders typically consist of multiple cascaded CLBs. Since adders re-use
the LUT routing pins, a smaller number of LUT pins is required for CLBs with adders.
Taking the Intel Stratix_10 architecture as an example, a CLB without adders can absorb a
6-bit LUT, while for CLBs with adders, the maximum number of input pins is four.

3.2. Connectivity

The connectivity between primitives in the user netlist is implemented through net-
works. Primitives are connected to a network through pins. A connected network is usually
interconnected to the pins of multiple primitives, among which only one pin is an output
pin. A network with a large number of primitives connected to it is commonly referred to
as a high fan-out network, while a network with a smaller number of primitives is typically
known as a low fan-out network.

There are three types of connectivity between primitives: direct connectivity, indirect
connectivity and high fan-out connectivity. Direct connectivity refers to the connectivity
between primitives through a low fan-out network. Indirect connectivity is the connection
between primitives through different networks of the same tile. A high fan-out connectivity
refers to the connectivity between primitives through a high fan-out network. The modes
of connection are shown in Figure 1.

FF1

FF2

LUT1

RAM1

RAM2

RAM3

FF3

LUT2

FF4

LUT3

FF5 FF6

FF7

Figure 1. There are three types of connectivity between primitives. LUT1 is the seed, FF1 is a directly
connected primitive, FF5 and FF6 are indirectly connected primitives, and FF3 is a high fan-out
connected primitive.

Packer is designed to absorb the primitives of direct connections in order to reduce
the number of external networks on the tile, which serves to reduce the overload of routing
and computing. For primitives of indirect connections, packing them into the tiles can
reduce the number of external connections of the tiles, which increases the relevancy of the
connected tile.

4. Packing Methods

The path delay of FPGAs is affected by two factors: the internal delay of logic blocks
and the delay introduced by programmable routing. The delay of logic blocks is fixed,
while the delay of programmable routing is influenced by the wire length of nets. In order
to minimize the delay of the nets that are connected to DSPs and RAMs, it is essential to
reduce the length of these nets. However, since the area occupied by DSPs and RAMs
is much larger than that of CLBs, some pins on DSPs and RAMs may be located far
apart. As a result, even tiles that are situated around a DSP or RAM may be distant from
the pins of the corresponding connection. Figure 2 shows the result of placement and
routing in VTR8.0. In the figure, o1 stands for the DSP, o2 stands for the CLB. And two
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primitives indirectly connected through o1 are grouped in o2, resulting in two nets between
o1 and o2. Figure 2a shows two routing networks connected with DSP pins at the same
coordinates, while Figure 2b shows two routing networks connected with DSP pins at
different coordinates. It can be seen from Figure 2 that absorbing primitives indirectly
connected through pins in the same location can reduce wire length. This is in contrast to
absorbing primitives indirectly connected through pins in different locations. To minimize
the delay of the nets that are linked to DSPs and RAMs, the packer prioritizes absorbing
the primitives that are indirectly connected through pins in the same location based on
the pin distribution of tile. This approach avoids absorbing primitives that are indirectly
connected at different locations, thereby reducing the length of the nets connected by DSP
and RAM after placement and routing.

(a) (b)

Figure 2. Connections between a CLB and a DSP via two nets (VTR8.0 visualization).

When a CLB is connected to multiple DSPs or RAMs, the average wire length between
the CLB and these tiles tends to be high, as shown in Figure 3. This issue becomes more
prevalent if there is a higher proportion of RAMs and DSPs in the circuit, as it increases the
likelihood of multiple connections between the same CLB and these tiles. In contrast, if
the circuit design incorporates a high proportion of adders, there will be fewer options for
packers, and primitives in different positions will be absorbed. Moreover, the cascading of
adders considers multiple CLBs as a single unit, which is often connected to multiple DSPs
or RAMs. This interconnection can significantly impact the overall packing result.
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Figure 3. A CLB connects multiple DSPs (VTR8.0 visualization).

Table 2 presents a comparison between wire lengths and wiring segments utilized in
connecting DSPs and CLBs. As the table illustrates, the connection relationships between
CLBs, DSPs, and RAMs significantly impact wire length and wiring segment consumption.
Therefore, it is essential to give priority to circuits that are indirectly connected via DSPs
and RAMs. In this study, we refer to DSPs and RAMs that satisfy the specified requirements
as special primitives, while referring to other primitives as normal primitives.

Table 2. Three types of connections between DSP and CLB.

Types of
Connections

Total
Wirelength

Maximum Net
Length

Total Wiring
Segments Used

Maximum
Segments Used

by a Net

Figure 2a 14 5 6 2
Figure 2b 21 9 8 3
Figure 3 47 12 17 5

The process of the packing algorithm in this paper is shown in Algorithm 1. First, the
packer analyzes the proportion of various primitives in the user netlist to determine whether
to use DSP and RAM as special primitives or not. The packer then groups the primitives
into molecules, calculates the seed gain for each molecule and selects the molecule with the
highest gain as the seed. After the seed is selected, the packer will absorb the molecules
around the tile until the constraints of the tile are no longer satisfied or the surrounding
molecules are all packed. The above process is repeated until all molecules are packed. Our
packing algorithm is composed of three stages: primitive classification, seed selection, and
molecule selection.
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Algorithm 1 Pack algorithm.

Input: f pga_architecture and netlist
Output: packed_netlist

1: if number(DSP, RAM, adder) < threshold then
2: DSP, RAM ∈ special tiles
3: else
4: DSP, RAM ∈ normal tiles
5: end if
6: moles← atom2molecule(netlist)
7: while unpacked_mol 6= ∅ do
8: seed← get_highest_seed_gain(moles)
9: cur_clus← creat_cluster(seed)

10: while have_spcace(cur_clus) do
11: next_mol ← get_highest_gain(moles)
12: if next_mol = ∅ then
13: break
14: end if
15: cur_clus← add_mole(moles, cur_clus)
16: end while
17: end while
18: return packed_netlist

4.1. Primitive Classification

In this paper, the algorithm considers the proportion of DSPs, RAMs, and adders in
the circuit as the quantitative rule for special primitives. The formula used for this purpose
is as follows:

SP =

{DSPs, RAMs}, num(DSPs) + num(RAMs) + num(adders)
num(total)

< thre

∅, otherwise
(1)

where SP is a set of special primitives, num(DSPs) is the number of DSPs in the netlist,
num(RAMs) is the number of RAMs in the netlist, num(adders) is the number of adders in
the netlist, num(total) is the total number of primitives in the netlist, and thre is the threshold.

4.2. Seed Selection

The selection of the seed impacts the order in which different parts of the netlist will
be clustered. In VTR8.0, the criteria of the selection of seed are determined by the number
of primitives in the molecule, the number of molecular pins, and the delay information
of the molecule. When the molecules are packed, the packer can determine the type of
connectivity between the pins of the tile and the network. In this paper we seek to raise the
priority of molecules with special primitives as seeds through the use of seed_gain as the
criterion for seed selection. The molecule with large seed_gain is preferentially selected as
the seed. The model of seed_gain is as follows:

seed_gain = w1× num(in) + w2× num(used_in)

+ w3× num(block) + w4× crit + w5× i(SP)
(2)

where num(used_in) is the normalized number of input pins used, num(in) is the normal-
ized number of input pins, and num(block) is the normalized number of primitives in the
molecule, crit is the delay of the primitive pins, i(SP) is used to determine whether the
current primitive is a special primitive, w1 ∼ w5 is the weight.
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4.3. Molecule Selection

Once a seed molecule has been chosen and a new tile is opened, the packer begins
searching for unclustered molecules to add. The next molecule to be grouped into the
current tile is determined by attraction functions, which are influenced by the connectivity
between the molecule and the current tile.

For the attraction function of direct connectivity, our packing algorithm adopts the
same attraction function as VTR8.0.

A f f (p, B) = (1− β)× c_gain(p, B) + β× t_gain(p, B) (3)

where c_gain(p, B) is the connection benefit of the molecule p to the tile B, and t_gain(p, B) is
the Criticality of the network connection between p and B. c_gain(p, B) formula is as follows.

c_gain(p, B) =
(1− α)× nets(p, B) + α× con(p, B)

num_pins(p)
(4)

where nets(p, B) is the number of shared nodes between the molecule p and the tile B,
and con(p, B) and the pins of p are closely related to the connection relationship of B; the
formula is as follows.

con(p, B) =
1

ext(p, B) + packed(p) + 1
(5)

where ext(p, B) is the number of pins of p that are not connected to tile B, and packed(p) is
the number of pins of p that are connected to the packed molecule.

Our packing algorithm considers two types of indirect connectivity: indirect con-
nectivity through special tiles and indirect connectivity through normal tiles. The packer
should preferentially absorb molecules that are indirectly connected to the current tile via
short-distance pins. Therefore, the molecules that are indirectly connected to the current
tile through the special tile are divided into three categories. The first type is molecules
that are indirectly connected through pins on the same side and at the same location, as
shown in Figure 4a. The second type is molecules that are indirectly connected on the
same side but at different locations, as shown in Figure 4b. The third type is molecules
indirectly connected by pins on different sides, as shown in Figure 4c. During packing, the
packer prioritizes first-type molecules into the same tile, and then considers second-type
molecules, and finally third-type molecules. The cost of the attractive function is as follows.

FF1

Tile

Port1(in)
Tile

Port1(in)

Port2(in)FF2

FF3

Tile

Port1(in)

Port3(out)

(a)first-type indirect 
connectivity

(b)second-type indirect 
connectivity

(c)third-type indirect 
connectivity

Figure 4. Three models of indirect connectivity.

A f f (p, B) = ∑
Ti∈Tiles

ind_gain(p, B, Ti) (6)
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Among them, Tiles is the set of tiles around tile B. ind_gain(p, B, Ti) is the attraction
of p indirectly connected to molecule tile B through Ti.

ind_gain(p, B, Ti) =

{
wport × numport + wdir × numdir + wrev × numrev, Ti ∈ SP
wnor × nnor, otherwise

(7)

Among them, wport is the weight of the first type of molecules, wdir is the weight of the
second type of molecules, wrev is the weight of the third type of molecules, numport, numdir
and numrev are the connection times of the three indirect connection molecules, wnor is
the weight of molecules indirectly connected through normal tiles, and nnor is the number
of times primitives are indirectly connected through normal tiles. The formula for wdir
is as follows:

wdir =
wport

ndir
(8)

Among them, ndir is a positive integer.
If both directly connected and indirectly connected molecules are packed, and the

tile to be packed does not meet the constraints, then the molecules connected by the high
fan-out network are selected for clustering.

5. Experimental Results

The experiments are performed on a workstation with an AMD EPYC 7302P (16 cores,
3 GHz) with 64 G of memory. The FPGA architecture used in this paper is the k6FracN10LB
_mem20K_complexDSP_customSB_22nm architecture provided by VTR. Its blocks are
Agilex-like, but the routing architecture is Stratix-IV-like [18]. The circuits used in this
paper are from the Koios benchmark [19]. The Koios benchmark contains 20 deep learning-
related circuits, all of which are medium- or large-size circuits, suitable for architecture
research and EDA algorithm research. This paper runs Koios with a channel width of
200 for medium-size circuits and 300 for large-size circuits.

Table 3 shows some parameters and parameter values used in this experiment, and
the values are obtained through verification in VTR8.0.

Table 3. Values of parameters.

Parameters Value

w1 0.5
w2 0.2
w3 0.2
w4 0.1

wnor 0.003
wrev 0.001

α 0.6
β 0.2

Figure 5 shows the impact of the proportion of DSPs, RAMs and adder on the critical
path delay in the Koios benchmark. It can be seen from Figure 5 that when the proportion
of DSPs, RAMs and adder in the circuit exceeds 20%, the packer uses DSPs and RAMs as
special primitives to cluster. This clustering results in a higher possibility of increasing the
critical path delay, as shown in the red zone on the left in Figure 5. If the proportion of DSP
in the circuit is less than 20%, eleven out of twelve benchmark circuits have successfully
reduced critical path delays, as shown in the blue zone on the right in Figure 5. So the
algorithm in this paper sets the thre as 20%.
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Figure 5. The influence of the proportion of DSPs, RAMs and adder in the circuit on the critical path
delay. The histogram is the proportion of DSPs, RAMs and adder in the circuit, corresponding to the
coordinates on the left. The line graph is the optimization rate of critical path delay, corresponding to
the coordinates on the right.

In the seed selection stage, the effect of different w5 in the seed_gain on the algorithm
of this paper was tested. For testing purposes, the medium circuits of the Koios benchmark
that meet the special primitive conditions are used as the test circuits, and the results of
these tests are shown in Figure 6. From the figure, it can be seen that the critical path delay
is optimized best when w5 is 0.1. In this paper, we set w5 to 0.1.

0 . 1 0 . 2 0 . 3 0 . 4 0 . 5
0

1

2

3

4

5

gai
n i

n c
riti

cal
 pa

th 
del

ay 
(%

)

w 5
Figure 6. Effect of variation of w5 in seed selection stage on critical path delay.

In the molecule selection stage, the attraction of directly connected molecules should
be greater than that of indirectly connected molecules. The attraction functions of indirectly
connected molecules are shown in Equations (7) and (8). In indirect connection, the
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attraction should meet the condition wport>max{wdir, wnor} and min{wdir, wnor}> wrev.
With the parameters of Table 3, the attraction of direct connection molecules is greater than
0.1. Therefore, this paper sets wport as 0.009, 0.03, 0.06 and 0.09, respectively, and observes
the impact of changes in wport on the critical path delay. As can be seen from Figure 7, in
the Koios benchmark, the circuits that meet the special primitive conditions achieve better
results when wport is 0.03 for critical path delay.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
- 2

0

2

4

6

8

gai
n i

n c
riti

cal
 pa

th 
del

ay(
%)

w p o r t

�������

�������

�������

�������

Figure 7. The impact of changes in wport on critical path delays.

When dealing with molecules indirectly connected through special tiles, the first type
of indirect connectivity should exhibit greater attraction than the second type. However,
if the attraction of the second type of indirectly connected molecules is too small, the
packer may end up neglecting these molecules and instead absorb those that are indirectly
connected through another special tile. In this paper, ndir is set to 2, 3, 6, and 9 respectively,
and the critical path delay changes are observed. It can be seen from Figure 8 that in the
Koios benchmark, the circuits that meet the special primitive conditions achieve better
results in critical path delay when ndir is 6.

1 2 3 4 5 6 7 8 9 1 0
- 2

0

2

4

6

8

gai
n i

n c
riti

cal
 pa

th 
del

ay(
%)

n d i r

 w p o r t = 0 . 0 0 9
 w p o r t = 0 . 0 3
 w p o r t = 0 . 0 6
 w p o r t = 0 . 0 9

Figure 8. The impact of changes in ndir on critical path delay.
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From Figures 9 and 10, it can be inferred that resource consumption is scarcely affected
by variations in wport and ndir. The variation range is within 0.24%. After rebalancing
resource consumption and critical path delay, this paper sets wport to 0.03 and ndir to 6.

0 . 0 0 0 . 0 2 0 . 0 4 0 . 0 6 0 . 0 8 0 . 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

res
our

ce 
con

sum
pti

on(
%)

w p o r t

 n d i r = 9
 n d i r = 6
 n d i r = 3
 n d i r = 2

Figure 9. The impact of changes in wport on resource consumption.

1 2 3 4 5 6 7 8 9 1 0
0 . 4 0

0 . 4 5

0 . 5 0

0 . 5 5

0 . 6 0

0 . 6 5

0 . 7 0

res
our

ce 
con

sum
pti

on(
%)

n d i r

 w p o r t = 0 . 0 0 9
 w p o r t = 0 . 0 3
 w p o r t = 0 . 0 6
 w p o r t = 0 . 0 9

Figure 10. The impact of changes in ndir on resource consumption.

Our proposed algorithm contrasts with the packing algorithm in VTR8.0 through a
modified packing rule for indirectly connected molecules. This modification results in a
rise in computational demand and extends the algorithm’s runtime. However, while fewer
options during the packing process translate into a slight increase in resource consumption,
the algorithm’s refinement leads to a shortened wirelength for nets around DSPs and RAMs.
The end result is a reduction in the critical path delay.

As can be seen from Table 4, compared with VTR8.0, our packing reduces the critical
path delay by 8.45% on average at the cost of a 0.58% increase in resource consumption and
a 7.55% increase in runtime. Among the circuits in the Koios benchmark suite that meet
the special primitive criteria, eleven out of twelve have successfully reduced critical path
delays. For circuits that do not meet the conditions of special primitives, the algorithm in
this paper does not divide the primitives around DSP and RAM, so resource consumption
and critical path delay are the same as VTR8.0.
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Table 4. The comparison between the packing method of the present invention and the results of
VTR8.0 after placement and routing.

Circuits
Blocks Runtime Crit Path Delay

VTR8.0 Ours VTR8.0 Ours VTR8.0 Ours

Eltwise_layer.v 478 478 6.48 6.08 6.69 5.75
Conv_layer.v 1323 1326 42.47 43.24 6.9 6.82

Softmax.v 570 570 10.13 10.44 8.62 9.08
Gemm_layer.v 2217 2217 17.54 17.73 6.05 5.48

Robot_rl.v 1438 1443 19.19 19.46 12.66 12.12
Conv_layer_hls.v 1749 1748 115.18 137.12 6.9 6.48

bnn.v 1409 1452 378.2 575.76 7.98 6.76
Tiny_darknet.med.v 18,315 18,380 3164.24 3890.84 13.68 12.33
Tpu_like.medium.v 5344 5436 787.39 682.35 12.34 10.67
Clstm_like.small.v 10,078 10,130 308.05 326.07 8.06 7.17
Clstm_like.med.v 19,087 19,172 617.4 629.25 9.22 8.34
Clstm_like.large.v 28,118 28,232 985.77 992.84 10.51 9.19

Average 1.000 1.0058 1.00 1.0755 1.00 0.9155

improve −0.58% −7.55% 8.45%

6. Conclusions and Future Work

This paper proposes a packing algorithm for FPGA improved by indirect connection,
which refines the packing guideline in two aspects. (1) It proposes the quantitive rules
of the special primitives by the proportion of DSPs, RAMs and adders. (2) It optimizes
the traditional seed-based packing methods with special primitives, such as the modified
criteria for seed and molecule selection. For circuits with special primitives, the proposed
packing algorithm reduces the critical path delay by an average of 8.45% compared to
VTR8.0. For circuits without special primitives, the critical path delay of our packing is the
same as that of VTR8.0.

For future work, we will primarily aim at utilizing parallel computing methods to
curtail the runtime of our proposed algorithm. We also plan to investigate the feasibility of
porting these algorithms to commercial FPGAs.
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