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Abstract: This research suggests a multi-level federated edge learning algorithm by leveraging the
advantages of Edge Computing Paradigm. Model aggregation is partially moved from a cloud center
server to edge servers in this framework, and edge servers are connected hierarchically depending
on where they are located and how much computational power they have. At the same time, we
considered an important issue: the heterogeneity of different client computing resources (such as
device processor computing power) and server communication channels (which may be limited by
geography or device). For this situation, a client and edge server selection algorithm (CESA) based
on a greedy algorithm is proposed in this paper. Given resource constraints, CESA aims to select
as many clients and edge servers as possible to participate in the model computation in order to
improve the accuracy of the model. The simulation results show that, when the number of clients
is high, the multi-level federated edge learning algorithm can shorten the model training time and
improve efficiency compared to the traditional federated learning algorithm. Meanwhile, the CESA
is able to aggregate more clients for training in the same amount of time compared to the baseline
algorithm, improving model training accuracy.

Keywords: federated learning; edge computing; edge server selection; client selection

1. Introduction

The risk of privacy breaches is increasing, as various Big-Data-driven programs are
able to analyze the data left on various smart devices [1], which may result in privacy viola-
tions [2]. To tackle this issue, Google proposed the federated learning computing paradigm
in 2017 [3]. The FL algorithm differs from traditional machine learning methods [4] in that
it does not rely on a shared local dataset. Instead, a shared model is sent by the cloud center
server to each client, who trains it locally using their own data and sends the trained model
back to the cloud center server [5]. Data privacy security is greatly enhanced because the
FL algorithm only requires the transfer of the model to the cloud center server, without any
data transfer involved.

Although the issue of data privacy leakage has been addressed, the transmission delay
of model data has greatly increased and the training efficiency has been greatly reduced
due to the uneven transmission distances of different clients, and the unpredictable and
unreliable communication with cloud center servers, which are limited by communication
resources [6]. The expansion of the client is a major issue when the training model needs
more clients, and sending more model data also somewhat slows down the processing
speed of the cloud center server. A new paradigm known as edge computing transfers
part of the computing and aggregation tasks from the cloud center server to a group of
edge servers that are close to it [7]. This greatly reduces the computational burden on the
cloud center server and shortens the communication distance. Meanwhile, as the edge
servers can perform preliminary aggregation on the model information sent by clients
before sending the aggregated model information to the cloud center server, the cloud
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center server can receive model information from a larger range of clients for training [8].
Therefore, introducing the benefits of edge computing into FL can greatly compensate
for the problems of traditional FL in the scalability of clients. The majority of the current
federated edge computing is built with three levels: a cloud center server, numerous edge
servers and clients [7]. However, there is still a restriction on the number of visits to
clients. Meanwhile, traditional FL algorithms (such as FedAvg) randomly select a certain
proportion of clients to participate in learning, without considering factors such as client
computing power and channel transmission capacity. As a result, once clients are chosen to
take part in model training, some of them are unable to upload the model information in a
timely manner because of faulty channels or subpar transmission capabilities, which results
in a lengthy and ineffective model training process. Table 1 summarizes the advantages
and disadvantages of two-level and three-level federated learning.

Table 1. Summary of the advantages and disadvantages of two-level and three-level federated learning.

Advantages Disadvantages

Two-level
Federated Learning

Faster training speed with
fewer clients

Weak device scalability. Large
training delay when there are

many clients.

Three-level
Federated Learning

Strong device scalability,
while reducing training

latency and
energy consumption.

Usually designed as three tiers
and has not been explored for

model training over larger
geographic areas.

A multi-level federated edge learning algorithm based on client and edge server
selection (MFLCES) is suggested in this study as a result of this. These are the unique
contributions that this paper makes:

1. A multi-level federated edge learning algorithm is proposed based on geographic
location and distribution of client computing power. Compared to the current three-
level federated learning, the algorithm significantly increases the scalability of the
system by fully utilizing the edge server’s capacity to accept additional clients and
train a model across a wide geographic area. Simultaneously, the number of com-
munications with the cloud center server is reduced, thus improving the efficiency
of model training and reducing the energy loss from communication with the cloud
center server.

2. A client and edge server selection algorithm were designed. Specifically, we have
developed a greedy algorithm that sets a deadline for edge server model aggregation
and client model updates and uploads. Starting from the cloud center server and
moving down each level, the algorithm selects edge servers that can complete model
aggregation and upload within the specified time. Similarly, in the second layer,
clients who can complete model updates and upload them within the specified time
are selected to participate in model training. Compared to the traditional way of
randomly selecting a fixed number of devices to participate in training, this algorithm
enables the system to aggregate as many edge servers and clients as possible in the
same time frame to participate in model training and updates, thereby improving the
training accuracy of the model.

3. We conducted simulation experiments on the multi-level federated edge learning
algorithm and the client and edge server selection algorithm. The results show
that the multi-level federated edge learning algorithm can effectively reduce model
training time and improve efficiency as the number of clients increases. Furthermore,
compared to the baseline algorithm, the client and edge server selection algorithm
can aggregate more clients for training in the same time frame, thereby improving the
training accuracy of the model.
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The rest of the paper is organized as follows: Section 2 will introduce some related
work in FL. Section 3 will present the algorithm flow of the multi-level federated edge
learning algorithm and the computation of model updates, followed by a detailed introduc-
tion of our client and edge server selection algorithm. In Section 4, we conduct simulation
experiments and analyze the results. Finally, Section 5 summarizes the entire paper.

2. Related Work

In past few years, FL has produced more scientific research findings. As FL’s ground-
breaking work, ref. [9] addressed security issues, such as data silos and data leakage,
brought on by traditional machine learning that uploaded data to cloud center server and
thus proposed the classic FedAvg algorithm. The focus of research shifts as the study goes
from how to increase model training accuracy to how to decrease the time and energy loss
associated with it. Ref. [10] proposed a FedCS algorithm, which solves a client selection
problem with resource constraints, which allows the server to aggregate as many clients as
possible for updates, thus improving the accuracy of model training in the same amount of
time. Ref. [11] bridged the trade-off problem between FL time and energy consumption for
wireless channels by treating FL on wireless networks as an optimization problem FEDL,
and used the problem structure to decompose and transform the nonconvex FEDL into
three convex subproblem, which in turn led to a global optimal solution. Ref. [12] proposed
an adaptive enhancement method to improve the efficiency of FL. Ref. [13] introduced
the concept of learning efficiency as a new performance evaluation criterion. Additionally,
a closed expression for allocating communication resources and choosing a batch size
is suggested. Two effective radio resource management (RRM) solutions for combined
bandwidth allocation and client scheduling were developed by [14] after they examined
new avenues for energy-efficient radio resource management (RRM). To mitigate the
degradation caused by non-I ID data, ref. [15] proposed a hybrid learning mechanism that
allows a fraction of clients to upload their data to the server without compromising data
security, thus increasing the number of clients involved in FL training. The above work has
improved the efficiency of federated learning, but with the increase of intelligent devices, a
single server may experience transmission or computation delays due to excessive model
transmission and may even experience power overload when there is too much model data.

As technology advances, the Edge Computing Paradigm is put out, and it becomes
popular to use it for FL in order to increase the effectiveness of model training. Ref. [7]
presented the HierFedAvg algorithm and extended the cloud-client two-level FL model to
include edge servers, creating a client–edge–cloud three-level learning model. Not only
does the installation of edge servers increase model training accuracy, but also due to
fewer contacts with the cloud center server, it also significantly minimizes energy and
time loss at the same time. In order to track cumulative privacy losses, ref. [16] offered
a privacy-preserving technique for DP-based HFL architecture. It also developed a joint
computational and communication resource allocation and edge-association problem for
clients to accomplish global cost minimization. Ref. [17] integrated a lightweight proof-
of-knowledge (PoK) consensus mechanism and a blockchain knowledge-sharing architec-
ture into a hierarchical FL system. Comparing the layered framework to conventional
blockchain systems, it effectively minimizes computing usage. Ref. [18] considered the
impact of client inconsistency and the inconsistency of the information possessed on model
training and constructed an FL of inconsistent clients by means of client modeling. Ref. [19]
designed a local data evaluation mechanism in FL by considering non-I ID effects, and
developed two optimization strategies for energy service providers. In order to increase
the security of model information, ref. [20] suggested a privacy-preserving strategy based
on local differential privacy (LDP) theory based on hierarchical FL, in which clients add
noise to shared model parameters before uploading them to the edge and cloud center
server. Ref. [21] suggested a hierarchical federated deep reinforcement learning (HFDRL)
approach that makes use of FDRL techniques to anticipate client demands in the future
and choose the best content replacement strategies. Ref. [22] proposed a two-level resource
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allocation and incentive mechanism, and used evolutionary game theory to model the
dynamic clustering selection process. Ref. [23] used gradient sparsification and periodic av-
eraging in heterogeneous cellular networks to improve the communication efficiency of the
hierarchical federated learning framework. Ref. [24] separated clustering by introducing a
hierarchical clustering step that separates the local updates of clients from the similarity
of the globally federated model. Once separated, clusters are trained independently and
in parallel on dedicated models. In order to reduce the energy consumption and learning
time of resource competition, ref. [25] designed a decoupling algorithm to effectively opti-
mize the client selection and resource allocation problems separately. Ref. [26] established
an energy-aware device scheduling problem to allocate communication resources to the
optimal subset of edge nodes in order to minimize the global loss function. Ref. [27] pro-
posed an optimal resource allocation method based on federated learning that considers
both the delay and energy consumption. Ref. [28] proposed an adaptive asynchronous
federated learning (AAFL) mechanism that intelligently changes the number of locally
updated models for the global model aggregation at different times under different network
conditions. Ref. [29] designed a lightweight dual-server secure aggregation protocol that
utilizes two servers to achieve secure Byzantine robustness and model aggregation. The
above solutions added edge servers to the basic FL, but they are mostly based on three-level
learning models and have not explored the use of more hierarchical federated learning on
a larger geographical scale. Table 2 provides a summary of the research findings above.

Table 2. Summary of Research Findings.

Two-level Federated Learning [8–11,14,15,17]

Three-level Federated Learning [6,12,13,16,18–20,24–31]

Compared to the studies mentioned above, the multi-level federated edge learning
algorithm proposed in this paper explores model training at higher levels and over larger
geographic ranges, fully leveraging the advantages of edge computing and greatly increas-
ing the scalability of devices. Meanwhile, the proposed client and edge server selection
algorithm can greatly improve the efficiency of model training and enhance the accuracy of
model training.

3. System Model

In this section, we detail the MFLCES, and we layer all the client according to their
computing power as well as their geographical distribution. We therefore abstract the
actual client distribution, as shown in Figure 1.

From the outermost to the innermost levels, clients are distributed as 1, 2, . . . , Y. The
first level is the edge server level, where a large number of smart devices and various
sensors (e.g., smartphones, cameras, etc.) are assembled to receive data around them at
all times. They are trained by receiving models from the edge server. The second level,
which is next to the edge servers and is connected to a variety of different edge servers,
has stronger computation and communication capabilities than the client (e.g., routers,
gateways, etc.). The edge server, which is located in the third level and is connected to the
edge server in the second level, has higher computational power than the second level (e.g.,
base station, area server, etc.). Therefore, the final level consists of just one cloud center
server. Additionally, we are aware that in the majority of FL cases, clients participate in
FL while they are in static settings, such as when a battery is charging [10]. Consequently,
we assume that in this design, clients are stable during the learning process and that their
geographic position is nearly consistent during this time. However, when model training
is carried out, not all clients or edge servers may be able to deliver the trained models to
their upper edge servers within the allotted time due to the uncertainty of whether the
communication systems of the client can be connected successfully.
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Figure 1. Multi-level federated edge learning algorithm based on client and edge server selection.

3.1. Multi-Level Federated Edge Learning Algorithm Based on Client and Edge Server Selection

In this algorithmic framework, assume a set of mobile clients where N =
{

1, 2 . . . . . . Nj
}

,
and let Nj ⊆ N denote the j-th client of the first level. En

m denotes the n-th edge server
at level m (2 ≤ m < Y). Additionally, each client gathers a significant amount of data
with tags and creates its own local dataset Dk =

(
X1

k , Y1
k
)(

X2
k , Y2

k
)

. . . . . .
(

Xl
k, Yl

k

)
, where Xl

k

represents the l-th sample of the k-th client, Yl
k represents the matching tagged output, and

S represents the cloud center server at the Y-th level. Table 3 summarizes the key notations
used in this paper.

Table 3. Key notations.

Symbols Definition Symbols Definition

w Global model parameters γi:j Bandwidth allocation ratio for client Nj

N =
{

1, 2 . . . Nj

}
A set of clients an Achievable transmission rate of client Nj

Nj The j-th client of the first level N0 Channel background noise

Ei
2

The second-level i-th edge server
connected to the j− th client in the

first level.
pn Transmitted power

Em
n

The n-th edge server of the m-th level
(2 ≤ m < Y ) hn Channel gain of client Nj

Xl
k, Yl

k
The l-th sample of the k-th client and

its corresponding tagged output dj Data size of the client model parameter w

{1 . . . Y} System levels DEi
2

Dataset of all clients under edge server Ei
2

S Cloud center server τe Rate of edge server upload model

Dj The dataset owned by the j-th client tedge
Latency of edge servers to upload their

edge models

F(w) Global loss function D Dataset of all clients under the cloud
center server

Fj(w) Local loss function Tf inally Final cut-off time
g Updating the index of a step A The final accuracy to be achieved
α Gradient descent step Tedge Edge server selection deadline
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Table 3. Cont.

Symbols Definition Symbols Definition

θ
The required accuracy of the model

trained by the client Tc Client selection cut-off time

Q(θ) Number of client local iterations tagg
Time required for edge

server aggregation

β
A constant related to the number of

training iterations for a client cn CPU frequency assigned to client Nj

qn
Number of CPU cycles required for
client Nj to process one sample data tcmp

j Total delay of local iterations of client Nj

Bi Total bandwidth provided by Ei
2 tcom

j:i
Transmission delay of model parameters

uploaded by client Nj

The algorithm is divided into seven main steps.
Step 1: Global model initialization
The cloud center server first randomly initializes a global model parameter.
Step 2: Resource aggregation and analysis
The cloud center server cascades the specific requirements of the models that need to

be trained down through the edge servers, and all edge servers receive the requests. The
request is sent to all of the clients it manages once it reaches the edge server at this level
closest to the client. The client receiving the request informs the edge server managing
them of their resource information, such as wireless channel status, computing power (e.g.,
whether they can train the model using a CPU or GPU), and the size of the data resource
with the type of resource (e.g., if the cloud center server is training a gender recognizer,
the client needs to report whether it contains body information pictures and the number
of body information pictures it contains). The edge server then gives this information
for aggregation and uploads it level by level. At the same time, the edge servers in each
level need to pack their own channel status, computing power and other information in
turn; upload them to the upper level; and finally summarize this information in the cloud
center server.

Step 3: Edge server and client selection algorithm
Each edge server chooses which edge servers it oversees to take part in model updates

and aggregation based on the data gathered in Step 2. This process works from the top
down, starting with the cloud center server. The selected edge server in this level close
to the client likewise estimates the time required by the client it manages for the dataset
allocation, model update, and uploading steps based on the information from Step 2, and
determines which clients can participate in the next training (the specific CESA is described
in detail in the next section).

Step 4: Model downward distribution
The cloud center server transmits the initialized global model from top to bottom, over

wireless channels, to selected edge servers and clients at each level.
Step 5: Local Model training and transfer
This phase is divided into two parts: local model update, local model transmission.

• Local model update

For a local client, Nj, xj is the input of the client in the M-th round, and the matching
output is represented by yj. w is the actual vector of the machine learning model with
all parameters initialized at the cloud center server in the initial phase. f

(
xj, yj, w

)
is the

loss function corresponding to this data sample, which represents the error between the
prediction made by the model for the j-th data sample and the true value. Additionally, the
loss function of the dataset Dj for client Nj is F(w) [30], i.e.,

F(w) =
1∣∣Dj
∣∣∑|Dj |

j=1 f
(
xj, yj, w

)
=

1∣∣Dj
∣∣∑|Dj |

j=1 fM(w). (1)
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To lower the loss function and increase the precision of the model prediction, our
training task is repeatedly analyzing the client’s dataset.

The stochastic gradient descent algorithm is the one that is most frequently used in
machine learning to update model parameters. The index of the update step is denoted
by g, and the gradient descent step is denoted by α. The parameters of the model are then
adjusted as:

w(g) = w(g− 1)− α∇F(w(g− 1)). (2)

In FL, the dataset of all clients is D, which is distributed over N clients in the form of{
Dj
}N

j=1.The edge server, however, is unable to directly retrieve these datasets scattered
across the client. In order to calculate F(w) in Equation (1), also known as global loss, one
must instead use a weighted average across the client local dataset Dj along with a local
loss function Fj(w). Specifically, F(w) and Fj(w) are

F(w) =
∑N

i=1
∣∣Dj
∣∣Fj(w)

|D| , (3)

Fj(w) =
∑j∈Dj

fM(w)∣∣Dj
∣∣ . (4)

In order to achieve the common accuracy θ ∈ (0, 1) required by all local clients, the
number of local iterations required by each client is

Q(θ) = βlog(1/θ), (5)

where β depends on the size of the data and the task of machine learning [31].
The number of CPU cycles needed by client Nj to process one sample of data is

assumed to be qn. Since each sample (xj, yj) is the same size, qn
∣∣Dj
∣∣ is the total number of

CPU cycles required to complete one local loop. We use cn to represent the CPU frequency
associated with client Nj, where cn ∈

[
cmin

n , cmax
n
]
. Consequently, total delay tcmp

j of Q(θ)

local iterations of the client Nj can be represented as:

tcmp
j = Q(θ)

qn
∣∣Dj
∣∣

cn
, (6)

• Local model transmission

Client Nj will send local model parameters w to the associated edge server Ei
2 for

aggregation after completing Q(θ) local iteration. A transmission delay tcom
j:i will be gen-

erated in this process using the orthogonal frequency division multiple access protocol
(OFDMA). During model transfer, the edge server Ei

2 connected to this client provides the
total bandwidth Bi. Define γi:j as the bandwidth allocation ratio for client Nj so that client
Nj has an allocated bandwidth of γi:jBi. Let an denote the achievable transmission rate of
client Nj, which is defined as:

an = γi:jBiln
(

1 +
hn pn

N0

)
, (7)

where N0 is the background noise, pn is the transmitted power, and hn is the channel gain
of client Nj. Let dj stand for the data size of the model parameter w, and let tcom

j:i stand for

the communication time of client Nj transferring w to the edge server Ei
2 [32]. As a result,

tcom
j:i can be written as follows:

tcom
j:i = dj/an, (8)

Step 6: Edge server model aggregation
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This phase is divided into two steps: edge model aggregation, and edge model
transmission.

• Edge model aggregation

In this step, each edge server Ei
2 in the second level receives updated model parameters

from the connected client Nj and then performs aggregation:

wEi
2
=

∑Nj∈Ei
2

∣∣Dj
∣∣w∣∣∣DEi

2

∣∣∣ , (9)

where DEi
2
= ∪Nj∈Ei

2
Dj is the set of data sets of all client under the edge server Ei

2. Similarly,
the edge server models in the third level are aggregated:

wEk
3
=

∑Ei
2∈Ek

3

∣∣∣DEi
2

∣∣∣wEi
2∣∣∣DEk

3

∣∣∣ , (10)

The remaining levels follow the same pattern.

• Edge model transmission

τe stand for the rate at which the edge server En
m transmits its aggregated model data

to the edge servers to which it is linked, and de stand for the size of the model parameters
of the edge server En

m. Consequently, we determine an edge server upload latency for its
edge model as:

tedge =
de

τe
, (11)

Step 7: Cloud center server model aggregation
The edge server En

m conveys the model information to its connected edge server in
the upper level through the wireless channel for the next round of model averaging until
the model information is conveyed to the last level, i.e., the cloud center server. All of the
model data that is received is aggregated by the cloud center server as follows:

w =
∑D

Ei
Y−1
∈D

∣∣∣DEi
Y−1

∣∣∣wEi
Y−1

|D| . (12)

We disregard the aggregation time of the cloud center server because it is supported
by the model’s most computationally powerful device and has a short aggregation time
relative to the edge server and client. The computed model is then sent back from the cloud
center server to the client.

Algorithm 1 illustrates the precise algorithm flow. Up until the model achieves a
specific required performance or meets the final deadline, all steps aside from initialization
will be repeated numerous times on the cloud center server, which aggregates model
parameter changes in accordance with Algorithm 1.
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Algorithm 1: Multi-level federated edge learning algorithm based on client and edge
server selection.

1 Initialization: currLevel =Y, Tf inally, A
2 while T < Tf inally or currAccuracy < A do
3 while currLevel > 0 do
4 Resource aggregation and analysis;
5 currLevel --;
6 end while
7 while currLevel < Y do
8 Client and Edge server selection;
9 currLevel ++;
10 end while
11 While currLevel > 0 do
12 Model downward distribution;
13 currLevel --;
14 end while
15 While currLevel < Y do
16 Client Scheduled Update and Upload;
17 edge server Aggregation model in a certain time;
18 currLevel ++;
19 end while
20 While currLevel = Y do
21 S aggregate the model;
22 end while
23 end while

3.2. Client and Edge Server Selection Algorithm (CESA)

Although we are aware that an increase in clients improves the training accuracy of
the model, the longer it takes, the more data about the client model is pooled. Therefore,
how to make more clients join the model information training at the same time becomes
an increasing goal to be tackled by FL. At the same time, due to various practical factors
(whether the communication channel is corrupted, signal strength, channel distance of the
connected clients, etc.), each client as well as the edge server does not necessarily participate
in every model training and aggregation, some clients and edge servers also take a long
time uploading the models, which greatly reduces the efficiency of the model training. For
this case, we propose a client and edge server selection algorithm ( CESA). As stated in
Algorithm 2, our goal is to assemble more edge servers and clients to take part in the model
training simultaneously. In the second step of the system model, the cloud center server
and edge server have been informed about the channel situation, processor capacity and
the total amount of data from the client through the resource request and analysis of the
respective connected edge servers and client, and the information has been summarized at
the cloud center server. We will then choose clients and edge servers using this information.
Edge server selection and client selection are the two components of the CESA.

(1) Edge server selection:

The edge servers in level 3 to Y are tasked with receiving model information from
the edge servers above and below them, as well as receiving and aggregating the model
information from the edge servers below them to which they are connected. Assume that
the time used for aggregation of each edge server is tagg and the time used for model
transmission of the edge server is tedge, as pointed out in Equation (11). Additionally,
this element is disregarded because the client time cost for obtaining edge aggregation
model parameter w is less than its time cost for uploading edge model parameter w and is
nearly constant throughout each cycle. Therefore, the time required for each edge server in
training and tE is:

tE = tagg + tedge, (13)
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The goal of edge server selection is to obtain more edge servers to join the model
training in the same amount of time. Therefore, the time Tedge is set for each edge server. For
each edge server that can complete model aggregation and uploading within the deadline,
the algorithm adds it to the current model aggregation, and for those edge servers that
cannot perform aggregation and uploading within the deadline, they are discarded after
receiving the uploaded model information and are not added to the model aggregation
operation. As in lines 2 to 9 of the algorithm, from level Y down to level 3, each edge server
iteratively adds its connected edge servers that can complete the model aggregation and
uploads them to the model training task on the deadline.

(2) Client selection

Similar to the last example, this portion is disregarded because it takes less time for
the client to obtain the edge aggregation model parameters w than it does to upload the
local model parameters w and is essentially constant throughout each repetition. The client
local model training time is shown in Equation (6) as tcmp

n . The time required by the client
to upload the data model to the edge server they connected to is shown in Equation (8)
as tcom

j:i . Similarly, the time used for aggregation at each edge server is assumed to be tagg.
Therefore, the total amount of time spent during the training period for each client and
edge server in levels 1 and 2 is

tcmp
j + tcom

j:i +tagg, (14)

The goal of client selection is to select as many clients as possible to join the model
training task at the same time in order to improve the model training accuracy. As shown
in lines 10 to 18 of the algorithm, we designed a greedy algorithm that first sets a deadline
Tc and then selects the client with the shortest current response time. Let TNi

j
represent the

total amount of time spent during its training period. This time should be added to the
total amount of time used by the client who is now selected on the edge server where it
is located, TNj . The client is then added to the set of clients Ei

2 for the next model training
task if the total usage times of the presently used selected clients do not exceed the time
restriction Tc imposed by the algorithm. The edge server will keep repeating this process
until the cut-off time Tc is reached. Figure 2 provides a graphical representation of the
client selection process, and the edge server selection process is similar and will not be
further elaborated here.

Algorithm 2: Client and Edge server selection algorithm.

1 Initialization tagg, Tedge, Tc, SE = {}
2 If currLevel > 2 and currLevel < Y then
3 for Ei

2 in Ek
3 do

4 tE = tagg + tedge;
5 if tE < Tedge then
6 Add Ei

2 to SE;
7 end if
8 end for
9 end if
10 If currLevel = 2 then
11 for Nj in N do
12 TNi

j
← argmax

j∈K′
1

tcmp
j +tcom

j:i +tagg
;

13 TNj ← TNi
j
;

14 if TNj < Tc then
15 Add Ni

j to Ei
2;

16 end if
17 end for
18 end if
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Figure 2. The above figure shows the random selection of clients with a probability of C = 0.5 without
considering whether the clients can complete the model training task within a specific time TNj .
The figure below shows our client selection algorithm, which selects the client that can complete
the model training within the specified time TNj and with the shortest usage time TNi

j
to join the

current training.

4. Experiment
4.1. Simulation Settings

A simulation of a cellular network in a city was conducted, which utilized the MNIST
dataset consisting of 10 classes of handwritten digit images to train the model. The neural
network model used was LeNet, which included three convolutional levels, two pooling
levels, and one fully connected level. Each client utilized mini-batch stochastic gradient
descent (mini-batchSGD) with a batch size of 20, an initial learning rate of 0.01, and a decay
rate of 0.992 [7] for each learning rate. The three deadline settings were Tedge set to 3 min,
Tc set to 3 min, and Tf inally set to 360 min [11].

The experiments were conducted on a Windows 11 operating system with an AMD
Ryzen 7 5800H 3.2 GHz CPU (produced by Advanced Micro Devices (AMD), a company
based in the Santa Clara, CA, USA), GeForce RTX 3050 Ti GPU (produced by NVIDIA,
a company based in the Santa Clara, CA, USA), and 16 GB RAM. We used Python 3.9
and PyTorch on PyCharm 2022 version. to conduct our experiments. The following
models of wireless communication and local computing will be provided. Each edge
server has a maximum bandwidth range of [1, 10] MHz, and edge servers with different
channel transmission capabilities have different maximum bandwidths. The client has a
transmission power of 200 mW and a CPU frequency in the range [1, 10] GHz with a power
of 600 mW. The processing density of the learning task is [10, 100] cycle/bit. Similarly,
clients with different computing power have different CPU frequencies and processing
densities for learning tasks. The background noise is 10−8 W [16], the client training size is
[5, 10] MB, the updated model size is 25,000 nats, and the capacitance factor is 2× 10−28.

(1) The first step is to investigate the impact of different numbers of client on the
training of the two-level FL algorithm and the multi-level federated edge learning algorithm
proposed in this paper. The number of clients and servers corresponding to each training
for the two architectures are deployed as shown in Tables 4 and 5.



Electronics 2023, 12, 2689 12 of 17

Table 4. Number of servers used for training with different numbers of client in the multi-level
federated edge learning algorithm.

The number of clients 400 600 800 1000

The number of edge servers in the second level 40 60 80 100

The number of edge servers in the third level 20 30 40 50

The number of cloud center servers 1 1 1 1

Table 5. Number of servers used for training with different numbers of client in the two-level
federated learning algorithm.

The number of clients 400 600 800 1000

The number of cloud center servers 1 1 1 1

(2) Secondly, we will investigate the training accuracy of the edge and client selection
algorithms. For the multi-level federated edge learning algorithm, we designed a four-
level architecture with 400 clients in the first level, 40 edge servers in the second level,
20 edge servers in the third level, and one cloud center server in the fourth level. In
consideration of the fact that edge servers, such as routers and gateways, typically have
strong computing power and a stable energy supply in practical applications, we do not
take into account the edge model aggregation time and energy cost during model training
and optimization. Therefore, the time used by each edge server to aggregate the model, tagg,
is set to 0 [10]. Moreover, assuming that all clients have consistent channel conditions, the
model transmission time is also consistent. Thus, the decisive factor for the client’s model
training and transmission time is the client’s computing power, with stronger computing
power resulting in shorter computing time.

(3) Finally, we will investigate the impact of different levels of aggregation frequency
on training accuracy for the multi-level federated edge learning algorithm based on client
and edge server selection. The experimental settings are the same as in the second step.

4.2. Experimental Results and Analysis

(1) To train the two-level FL algorithm and multi-level federated edge learning algo-
rithm to a training accuracy of 0.7, for the multi-level federated edge learning algorithm,
each edge server in the second level selects its connected clients to participate in model
training at a ratio of C1 = 0.1. The third level and cloud center server select the connected
edge servers to participate in model training at a ratio of C2 = C3 = 0.1. Similarly, the
two-level FL architecture selects its connected clients to participate in model training at
a ratio of C1 = 0.1. For different numbers of client, the training time for each training is
as follows:

In Figure 3, the x-axis represents the number of clients, and the y-axis represents
the time required to reach the training accuracy. From the experimental results, it can be
seen that when the number of clients is small, the traditional two-level FL requires less
training time. However, as the number of clients gradually increases, the time required
for the multi-level federated edge learning algorithm becomes shorter compared to the
traditional two-level FL. This is because the introduction of edge servers shortens the model
transmission distance of local client, and the required transmission time is correspondingly
reduced. At the same time, for the same number of clients, compared to traditional two-
level FL, the multi-level federated edge learning algorithm has a reduced workload due
to the decreased amount of the model processed by the cloud center server. Therefore,
when the workload is the same, the multi-level federated edge learning algorithm can
aggregate the model information from more clients over a larger geographical range, greatly
increasing the scalability of the system.
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Figure 3. Time required for the two architectures to reach the same accuracy with different numbers
of client.

(2) The traditional FedAvg algorithm assumes the existence of a cloud center server
and client N, selecting clients to participate in model training with a proportional ratio
C in each training iteration. We slightly modify the traditional FedAvg algorithm and
apply it to the multi-level federated edge learning algorithm. Similarly, we randomly
select a proportion of C1 = 0.1 clients in the first level, and in the second level, we set
a deadline time Tc. If the selected client fails to transmit the model information to its
connected edge server within Tc, the model information transmitted by this client will be
discarded in the current model aggregation. In the second and third level, we randomly
select an equal number of edge servers with a ratio of C2 = C3 = 0.1. If the selected
edge server fails to transmit the model information to its connected edge server within
Tedge, the uploaded model information will be discarded and not included in the current
model aggregation. We name this modified FedAvg algorithm as “Multi-level traditional
federated learning ( MLTFL)”.

We ran MLTFL and MFLCES in the simulation settings 2 environment configurations,
setting 100 aggregations in the second level and one aggregation each in the third level
and cloud center server. We tested the system using LeNet and AlexNet, respectively,
and the results are shown in Figures 4 and 5. As can be seen from the figures, different
network models have a certain impact on the training accuracy of the algorithm. However,
regardless of which model is used, our CESA can aggregate more client participation in
model training in the same amount of time. Moreover, as the number of aggregations
increases, the training accuracy of MFLCES is higher than that of the MLTFL algorithm.
As can be seen from Figures 6 and 7, our algorithm has lower training loss than the
baseline algorithm for different network model parameters, indicating that our algorithm
has better robustness.

(3) We tested the impact of different aggregation times in the second, third, and cloud
center level on training accuracy. Similarly, each edge server in the second level selects
its connected clients to participate in model training at a ratio of C1 = 0.1. For the third
level and cloud center server, they select the connected edge servers to participate in model
training at a ratio of C2 = C3 = 0.1. Let the number of aggregations in the second level be
a, the number of aggregations in the third level be b, and the number of aggregations in the
cloud center server be c, such that a ∗ b ∗ c = 100. We change only two of the variables at a
time while keeping the third variable constant, i.e.,:

(1) c = 1, b ∗ a = 100

(2) b = 1, a ∗ c = 100
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(3) a = 1, b ∗ c = 100

The results are shown in Figure 8, where the x-axis represents the training iterations of
the three levels, and the y-axis represents the training accuracy:
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From Figure 8, it can be seen that the training accuracy gradually decreases when
decreasing the number of second level aggregations and increasing the number of third-
or fourth-level aggregations, The training accuracy is the highest when the number of
second level aggregations is the highest, and the training accuracy is the lowest when
the number of third- or fourth-level aggregations is the highest. However, when the
number of aggregations in the second level remains the same and only the number of
aggregations in the third and fourth levels are changed, the training accuracy fluctuates
less, the training accuracy is also smaller. This result demonstrates that for this model
system, the training accuracy will be greatly improved when increasing the number of
aggregations close to the client and decreasing the number of aggregations close to the
cloud center server. This significantly reduces the time required for model training and
increases efficiency because communicating with the cloud center server typically takes too
much time. Moreover, communication with the cloud center server is expensive in terms
of energy consumption, this model system algorithm can significantly reduce the energy
consumption for communication with the cloud center server compared to the traditional
FL algorithm that frequently communicates with the cloud center server.

5. Conclusions

Based on the geographical location and distribution of different computing client, this
article proposes a multi-level federated edge learning algorithm that fully leverages the
advantages of edge servers and can train a model over a large geographical area, effectively
improving the scalability of the system. Through simulation experiments, it was found
that when the number of clients is large, our algorithm can save more time compared to
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traditional two-level architecture when training to the same accuracy, greatly improving
the efficiency of model training. At the same time, increasing the aggregation frequency
closer to the client can effectively improve the training accuracy of the model. This not
only reduces the number of communications with the cloud center server, but also reduces
the energy consumption from communications. Finally, a client and edge server selection
algorithm are proposed on this architecture, which can significantly improve the training
accuracy of the model compared to the baseline algorithm. Although the multi-level
federated edge learning algorithm based on client and edge server selection have shown
some advantages in model training accuracy, there are still some shortcomings in certain
aspects. For example, we have not further explored the impact of different network models
on the algorithm, and the impact of imbalanced client data on model accuracy and loss.
Future work will further study these aspects.
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