
Citation: Yu, X.; Yuan, W.; Wang, A.

X-ray Security Inspection Image

Dangerous Goods Detection

Algorithm Based on Improved

YOLOv4. Electronics 2023, 12, 2644.

https://doi.org/10.3390/

electronics12122644

Academic Editors: Byung Cheol Song

and Chiman Kwan

Received: 20 April 2023

Revised: 5 June 2023

Accepted: 10 June 2023

Published: 12 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

X-ray Security Inspection Image Dangerous Goods Detection
Algorithm Based on Improved YOLOv4
Xiaoyu Yu 1,2, Wenjun Yuan 2 and Aili Wang 2,*

1 College of Electron and Information, University of Electronic Science and Technology of China,
Zhongshan Institute, Zhongshan 528402, China

2 Heilongjiang Province Key Laboratory of Laser Spectroscopy Technology and Application,
Harbin University of Science and Technology, Harbin 150080, China; 2020610085@stu.hrbust.edu.cn

* Correspondence: aili925@hrbust.edu.cn

Abstract: Aiming at the problems of multi-scale and serious overlap of dangerous goods in X-ray
security-inspection-image samples, an X-ray dangerous-goods-detection algorithm with high detec-
tion accuracy is designed based on the improvement of YOLOv4. Using deformable convolution to
redesign YOLOv4’s path-aggregation-network (PANet) module, deformable convolution can flexibly
change its receptive field based on the shape of the detected object. When the high-level information
and low-level information are fused in the PANet module, deformable convolution is used to align
features, which can effectively improve the detection accuracy. Then, the Focal-EIOU loss function is
introduced, which can solve the problem of the CIOU loss function being prone to causing severe
loss-value oscillation when dealing with low-quality samples. During training, the network can
converge more quickly and the detection accuracy can be slightly improved. Finally, Soft-NMS was
used to improve the non-maximum suppression of YOLOv4, effectively solving the problem of the
high overlap rate of hazardous materials in the X-ray security-inspection dataset and improving
accuracy. On the SIXRay dataset, this model detected 95.73%, 83.00%, 82.95%, 85.13%, and 80.74% AP
for guns, knives, wrenches, pliers, and scissors, respectively, and the detected mAP reached 85.51%.
The proposed model can effectively reduce the false-detection rate of dangerous goods in X-ray
security images and improve the detection ability of small targets.

Keywords: X-ray security image; YOLOv4; deformable convolution; path aggregation network;
Soft-NMS

1. Introduction

X-rays can penetrate substances and interact with them to produce high-resolution
images with rich internal details, which is conducive to the detection of high-density
contraband hidden inside objects [1]. Different materials have different degrees of X-ray
absorption and scattering attenuation, and the corresponding X-ray images generated
by the goods have different colors. Because of the advantages of using X-ray to detect
dangerous goods in baggage, such as the little damage to goods, non-necessity of unpacking,
its safety and reliability, and its easy operation, it is widely used in various places requiring
security inspection.

At present, the X-ray safety inspection for dangerous goods is still manual monitoring.
The security inspector needs to observe the X-ray-scanned image on the screen with the
naked eye and judge whether there are dangerous goods based on their own experience.
The accuracy of the inspection of prohibited goods depends on the proficiency and mental
state of the security inspector. In addition, there are many uncertainties in the number of
items in the X-ray security-inspection images, and not all luggage contains dangerous items,
which greatly affects the alertness of security inspectors while increasing the difficulty of
detection, resulting in an increase in the rate of missed detection.
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Compared with natural images, X-ray images are characterized by low contrast,
limited color range, poor texture, and serious overlap [2]. Therefore, experts have conducted
deep research on the characteristics of designing, labeling, and selecting X-ray-image data.
Bastan et al. compared the performance of various feature detectors and a combination of
different descriptors, proving the feasibility and potential of traditional methods of manual
features in X-ray-image detection [3]. Mikolaj et al. found that the methods of a visual word
bag yielded great differences in terms of the feature detector, feature descriptor, word size,
and final classification method, and further proved that the use of feature-point density as
a simple measure of image complexity is a component of the overall classifier [4].

In 2017, Mery et al. proposed separating the target and background of an X-ray
image using the adaptive sparse-representation method to improve the performance of the
detection of dangerous goods [5]. In 2018, Xing Xiaolan et al. used the method of median
filtering to de-noise X-ray security images and used two gray-projection algorithms to find
the area with the smallest gray value in the image to carry out the detection of the X-ray
security image [6]. Russo et al. used the approximate-median-filter algorithm to remove
the background from the input image and then used the shape-based-filtering method
to obtain the region of interest, calculated the local binary pattern (LBP) and histogram
based on the pixels of the region of interest to form the feature vector, and finally used a
support vector machine (SVM) to classify [7]. In 2019, Santos et al. implemented bilateral
filtering-preprocessing technology before the detection phase to improve the accuracy and
used color-threshold processing and Hough transform in the HSV color space to effectively
segment the region of interest. In the detection phase, the directional-gradient histogram
was extracted from the image as the key feature of classification [8]. Li Hai et al. used X-ray
images for bilateral filtering processing to select an image with rich edge information, and
each channel was subject to homomorphic filtering processing, which could effectively
assist with the detection of dangerous goods in X-ray images [9].

Although the method of detecting dangerous goods based on traditional X-ray security
images has strong interpretability, the efficiency of manual feature extraction is low, and
the performance of traditional methods in processing large amounts of data and rapid
detection is not ideal.

Due to the significant improvement in the parallel-computing ability of computer
systems and the emergence of a large number of X-ray security-image data, the X-ray
security-image technology for detecting dangerous goods based on the deep-learning
method has gradually become the preferred method of most researchers, as it can realize
automatic extraction of multiple features of the image [10], thus avoiding the traditional
image-feature-extraction operation, and has good invariance features, such as displacement
and scaling, as well as good scalability, which are great advantages in X-ray security-image
detection [11].

In 2017, Akcay et al. used transfer learning to conduct pre-training on an ImageNet
dataset with Faster RCNN, and the mAP reached 88.3% [12]. Zhu et al. improved the Faster
RCNN detection model through appropriate anchor selection and the non-maximum-
suppression (NMS) algorithm, and achieved excellent detection performance [13]. In 2018,
Singh et al. proposed the R-FCN300 model to improve the detection speed by solving the
problem of repeated calculation of ROI in Fast RCNN and decoupling the classification
branch [14]. Zhang et al. improved on the basis of the SDD network, proposed the
Detection with Enriched Semantics (DES) model, used the segmentation module to increase
the semantic information of low-level feature maps, and used the global-activation module
to enhance the semantic information of high-level feature maps [15].

In 2019, Guo et al. used ResNet101 to replace the backbone network of the basic
network SSD to obtain stronger anti-degradation performance to build the SSD-Resnet101
structure. On this basis, the shallow features are used to fuse with the deep features
to increase the receptive field of the shallow-feature map. Full use is made of context
information to improve the detection accuracy of small and medium-sized target dangerous
goods in safety inspections [16]. In order to explore the transferability brought by different
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shapes, different image resolutions, and different colors in X-ray images, Gaus et al. used
the transfer-learning method to evaluate the network structures of Faster R-CNN, Mask R-
CNN, and RetinaNet, among which Faster R-CNN had the best detection performance [17].

In 2020, Tang Haoyang et al. used deformable convolution to reconstruct the feature-
pyramid structure of the SSD network to improve the detection accuracy of the network in
order to extract the deeper semantic features of dangerous goods when the feature pyramid
is fused [18]. Yu et al. proposed an SSD-X detection network. Considering the position
uncertainty and overlap of the target, multiple data enhancement is used to effectively
improve the accuracy and over-fitting phenomenon. The focus loss is introduced into the
confidence-loss function to accelerate the convergence rate of the model [19].

In 2021, Guo Shouxiang et al. believed that the composite-backbone-network structure
has a stronger ability to extract features. On the basis of YOLOv3, the composite-backbone
network was used to build the YOLO-C network to improve the detection accuracy of the
network [20]. On the basis of CenterNet, Tang et al. used ResNet-50 to improve its backbone
network to improve detection speed and added a sampling layer to the feature-processing
network to improve detection accuracy [21].

In 2022, Kumar et al. proposed a multi-channel region-recommendation network
(MCRPN) to solve the scale difference of dangerous goods in X-ray-image recognition and
achieve a faster RCNN network, which uses different levels of convolution features in visual
semantics and integrates the richer semantic information at the upper level of VGG16 and
the shallower edge features at the lower level to map the multi-scale candidate-target area to
the corresponding feature map [22]. Jiang et al. proposed the AM-YOLO model, adding the
SE-attention module to the backbone network of YOLOv4 to distinguish the importance of
feature-map channels, and proposed a new path-aggregation network to achieve the fusion
of shallow and deep features, thus improving the network model-detection ability [23].

We proposed a combination of deformable convolution and the path-aggregation-
network (PANet) module of the YOLOv4 network, and designed and implemented a
dangerous-goods-detection algorithm for X-ray security-inspection images. The main
contribution of the proposed method is summarized as follows:

1. This paper proposes combining deformable convolution with the PANet module of
the YOLOv4 network and using the more flexible receptive field of deformable convolution
to solve the problem of feature misalignment in the feature-fusion module of YOLOv4 in
the process of high- and low-level feature fusion.

2. Based on the backbone network, a channel-pruning algorithm is designed to remove
redundant channels in the network, reduce the amount of computation, and improve the
reasoning speed of the network model. Experiments show that this method can effectively
improve the inference speed of network models and meet the requirements of real-time
security checks in terms of speed.

2. Related Work

X-ray security-inspection images mainly have the following characteristics:
(1) Serious loss of detail and color features: Due to the X-ray-imaging method and the

material of the object itself, the original color information and detailed information on the
contour of the object are lost during imaging.

(2) Background interference: When the background material is the same as the object,
contour information similar to the object color is generated, which interferes with the
model’s learning of object-feature information during training.

(3) Serious-overlap phenomenon: The shape of an object undergoes significant changes
under ray projection, and the random placement of positions and the overlapping place-
ment of multiple objects results in complex, overlapping, and occluding contours of the
object formed by X-rays passing through the object, increasing the difficulty of extracting
effective features of various categories.
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(4) The scale of prohibited items is diverse: Even within a single X-ray security image,
the size of prohibited items is diverse, and the same object may even exhibit different sizes
due to issues such as angle, compression, and image size.

Based on the characteristics of X-ray images, Mery et al. [11] evaluated 10 X-ray
contraband-detection methods based on visual-pool-bag models, sparse representations,
deep learning, and classical pattern-recognition schemes, and found that deep-learning
methods performed the best. Miao et al. [24] proposed a class-balance hierarchical-
refinement model that uses different scale features to filter irrelevant information and
identify and classify prohibited items. Wei et al. [25] proposed a deblocking attention
module that utilizes edge information and material information of prohibited items to
generate attention maps and feature maps for detection. Gu et al. [26] proposed using
feature-enhancement modules to improve feature-extraction capabilities while utilizing
multi-scale fusion to obtain more accurate regions of interest, improving the accuracy and
robustness of prohibited-item detection in X-ray security images.

The above methods have greatly improved the detection accuracy and laid the foun-
dation for the development of X-ray-security prohibited-item detection. However, in real
scenes, the variable shape and scale of targets, severe overlapping occlusion, and complex
background interference are still key issues that need to be addressed in current research,
especially the challenges brought on by the characteristics of X-ray-security images of
prohibited items themselves. The current detection accuracy still does not meet the require-
ments of practical applications. On the one hand, the scale and shape of contraband vary
greatly, the distribution of context information is uneven, and conventional convolution
cannot adapt to the receptive field of the actual target and cannot flexibly handle the height
change of context distribution due to its fixed sampling location, which ultimately causes
some important context information to be ignored, weakening the ability of feature extrac-
tion. On the other hand, items of the same material present the same or similar colors in
the image, which can easily cause confusion between the target and the background when
overlapping and obstructing, and can even not be distinguished. When these items are
processed through convolutional layers, they receive similar feature responses, resulting in
a decrease in recognition and positioning accuracy.

3. Improved YOLOv4 Model

The YOLO network is a target-detection network based on regression. It can complete
classification and location tasks of targets in a network directly and simultaneously by
fully extracting the features of the detected targets, and truly realizes a simple and efficient
end-to-end design idea. The YOLOv4 algorithm has a more complex network structure but
has higher accuracy and faster speed, and shows a significant improvement in detecting
small targets and occluded targets.

There will be many targets of different sizes in the X-ray-detection task, and different
targets have different characteristics, resulting in a low accuracy rate of judgment only
through target characterization when detecting dangerous goods. YOLOv4’s neck adopts
the PAN structure for fusion, uses shallow features to distinguish simple targets, uses
deep features to distinguish complex targets, transfers high-level strong semantic features,
enhances the whole pyramid, enhances semantic information, adds a bottom-up pyramid,
transfers low-level location features, combines semantic information, and has location
information. However, PAN ignores the problem of feature alignment. The direct splicing
between up-sampling and local features cause the feature map to have an unaligned context,
which turns into errors in prediction, especially on the object boundary.

This improved design proposes a feature-selection module that can adaptively learn
the bottom-up feature map containing more spatial details to achieve accurate positioning.
A feature-alignment module is proposed that aligns the up-sampling feature with a set of
reference features by adjusting each sampling position in the convolution kernel using the
learned offset. The two modules are integrated into the PAN structure, and the PANv2
structure is proposed as shown in Figure 1.
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Figure 1. Improved YOLOv4 network for dangerous-goods detection.

3.1. The Deformable Convolution

The neck of YOLOv4 uses the PANet module to fuse the high- and low-level features
and combines the semantic information and location information. However, the direct
splicing between the upper sampling and local features may cause the feature map to
contain misaligned context information, which can be converted into errors in prediction,
especially on the object boundary, resulting in poor accuracy when detecting dangerous
goods. Deformable convolution [27] introduces offset in the receptive field, which is
different from the square receptive field of traditional convolution. This feature can be used
to achieve more accurate feature alignment and improve the accuracy of detection.

The standard convolution layer usually uses sliding-window and scale-invariant
feature transformation to deal with the geometric changes of the object. It can effectively
expand the receptive field by stacking more convolution layers, but the corresponding
calculation cost increases exponentially with the increase of the receptive field. With the
increase in depth, the receptive field goes far beyond the area of interest, resulting in
the extracted features being affected by redundant context information. The deformable
convolution can adaptively determine the size of the receptive field and flexibly adjust the
receptive field by learning the additional offset of the convolution network.

Traditional convolution uses a regular grid as the convolution kernel, slides on the
input-characteristic graph step by step, and calculates the point product sum of the matrix
of the input characteristic graph one by one, and finally adds the variation. The size of the
convolution kernel determines the size of the receptive field. The corresponding value of
each position in the output-characteristic diagram is calculated as shown in Formula (1):

y(p 0) = ∑
pn∈R

w(pn)·x(p0+pn) (1)

where y represents the output-feature map, x represents the input-feature map, w represents
the weight coefficient, b represents the deviation, p0 is the 0th point in the grid, and pn is
the nth point in the grid.

The deformable convolution adds a learnable offset parameter on the basis of ordinary
convolution, which can be used to adjust the receptive field to better extract the features of
complex-shaped objects. In the deformable convolution, {∆pn|n = 1, · · · , N} is considered
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an offset. The offsets of each position are enumerated on the convolutional kernel when
N = |R|, as shown in Formula (2):

y(p 0) = ∑
pn∈R

w(pn)·x(p0+pn + ∆pn) (2)

The diagram of the deformable convolutional receptive field is shown in Figure 2.
The green dot represents the original receptive-field range, and the blue dot represents the
receptive-field range after increasing the offset. The offset in deformable convolution is
learned through back propagation, which makes the receptive field more flexible and able
to adaptively match various shapes.
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Figure 2. Schematic diagram of the deformable convolution’s receptive field. (a) Original receptive
field, (b) target-movement receptive field, (c) target-size-scaling receptive field, and (d) target-rotation
receptive field.

Since the coordinate position after adding the offset is usually not an integer, it does
not correspond to the feature points on the actual feature map. Bilinear interpolation can
be used to obtain the feature value after adding the offset.

x(p) = ∑
q

G(q, p)·x(q) (3)

p corresponds to any sampling point at any position, x(q) is the convolutional-feature
map, and G(·) is a bilinear insertion kernel with one linear insertion in the axis and the
axis directions.

G(q, p) = ∑
q

g(qx, px)·g(qy, py) (4)

g(qx, px) = ∑
q

max(0, 1−|qx − px|) (5)

qx and qy are the horizontal and vertical coordinates, respectively, of the feature-map
coordinate point q, and px are py the horizontal and vertical coordinates, respectively, of
the feature-map coordinate point p.
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The schematic diagram of deformable convolutional sampling is shown in Figure 3.
For the input-feature map, it is assumed that the traditional convolutional network uses
a convolutional-kernel size of 3 × 3 to obtain the convolutional-feature map, and the
deformable convolution is obtained by an additional kernel of 3 × 3 to learn the offset
domain. The offset domain has the same size as the input-feature map, and the number of
channels is 2N, which corresponds to N two-dimensional offset. Then, the output is the
result of the joint action of the input-feature map and the offset domain.
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Figure 3. Schematic diagram of deformable convolution sampling.

3.2. Improved PANet Module

Before performing channel reduction on features, a feature-selection module is pro-
posed to adaptively adjust feature maps that contain excessive spatial details, thereby
achieving precise localization and suppressing redundant feature maps. The schematic
diagram of the feature-selection module (FSM) is shown in Figure 4. The module first
adopts a dual-branch structure, using global-maximum pooling and global-average pooling
to extract the information of its feature maps. Then, the output-feature maps are inputted
into the MLP structure separately. Then, the two feature maps outputted from the MLP are
added and subjected to the sigmoid operation. Finally, the output obtained by multiplying
the output-feature maps by the input-feature maps is placed in the input-feature maps and
then subjected to the add operation.
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Figure 4. Feature-selection module (FSM).

The feature-selection module introduces additional skip connections between input-
and scaled-feature maps. Using skip connections for scaled features can avoid any specific
channel response being excessively amplified or suppressed and can adaptively recalibrate
the channel response through channel attention.

The recursive use of down-sampling and up-sampling operations in deep neural
networks may result in spatial misalignment between feature maps, and feature fusion
directly through element-level addition or channel-level stitching can affect the detection of



Electronics 2023, 12, 2644 8 of 17

object-bounding boxes [28]. A feature-alignment module is proposed to address the above
issues. This module can calibrate the underlying features by combining high-level features
before feature fusion. The feature-alignment module is shown in Figure 5.
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The feature-alignment module up-samples low-level information to ensure consistent
feature-map size and then concatenates the feature map with high-level feature maps. The
offset is learned through convolution and input into deformable convolution to perform fea-
ture alignment on the up-sampled feature map. Spatial-position information is represented
through two-dimensional feature maps, where each offset includes the offset distance and
corresponding point of each point, as shown in Formulas (6) and (7):

P̂u
i = fa(Pu

i , ∆i) (6)

∆i = fo([Ĉi−1, Pu
i ]) (7)

Ĉi−1 Represents the (i− 1)th layer feature map, Pu
i represents the result of up-sampling

the ith layer feature, and [Ĉi−1, Pu
i ] is a concatenation of Ĉi−1 and Pu

i , which provides the
spatial difference between up-sampling and corresponding bottom-up features. fa(·) and
fo(·) represent the learning offset ∆i derived from spatial differences and aligned features
with the learning offset, respectively.

Using deformable convolution for feature alignment, first, an input-feature map and
a convolutional layer are defined, and then, the output features at any position x̂P are
obtained after the convolutional kernel.

x̂P =
N

∑
n=1

Wn·xP + Pn (8)

N is the size of the convolutional layer, Wn is the weight of the nth convolution, and
Pn is the pre-specified offset.

In order to adaptively adjust for different sample positions, in addition to pre-specified
offsets, other offsets {∆p1, ∆p2, · · · , ∆pn} need to be learned.

x̂P =
N

∑
n=1

Wn·xP + Pn+∆Pn (9)

Each ∆Pn is a tuple of (h, w), where h ∈ (−Hi, Hi), w ∈ (−Wi, Wi).
The improved YOLOv4 network is shown in Figure 1 and combines the feature-

alignment module and feature-selection module to improve the PANet module of YOLOv4.
Before the fusion of low-level and high-level features, the up-sampled features of the
low-level features and the high-level features are removed from redundant information
through the feature-selection module and then input into the feature-alignment module for
feature alignment.
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3.3. Focal-EIoU Loss Function

The target detection uses bounding-box regression to locate the target in the image,
and the early target detection uses IOU as the loss function of the location. However,
when the prediction boxing does not overlap the real boxing, the gradient of the IOU loss
function disappears, resulting in a slower convergence speed and an inaccurate detector.
This inspired several improved loss-function designs based on IOU, including GIOU, DIOU,
and CIOU. Whereas GIOU introduces a penalty term in the IOU loss function to alleviate
the problem of gradient disappearance, YOLOv4 uses the CIOU loss function. The loss
function considers the center-point distance and width–height ratio between the prediction
box and the real box in the penalty term, but the relative ratio of width and height is not
a very direct indicator, so it is proposed to use the side length as a more direct penalty
term. In addition, in order to solve the problem of severe oscillation of loss value caused by
low-quality samples, the combination of EIOU loss and focal loss forms the Focal-EIOU
loss function.

3.4. Soft-NMS

After the YOLOv4 network detects images, a target may generate a large number of
bounding boxes, and the final output is only the optimal bounding box corresponding
to the target, which requires a non-maximum-suppression algorithm. This algorithm
sorts the confidence levels of all bounding boxes and deletes excess bounding boxes in
descending order of confidence levels. The approach of the non-maximum-suppression
algorithm in YOLOv4 is to select the bounding box with the highest confidence, calculate
the DOIU between the remaining bounding boxes, delete them if they are greater than the
set threshold and retain them if they are less than the set threshold, and then select the
bounding box with the second highest confidence to perform this operation, and so on
until all filtering is completed. The non-maximum-suppression algorithm mainly uses this
iterative form to continuously perform DIOU operations with other boxes with the highest
confidence and filter out boxes with a larger DIOU.

The specific operation of Soft-NMS has three inputs: detection-box set B, confidence
set S, threshold N, and a set D used to store the final detection box. When set B is not empty,
the maximum confidence in set S is found. Assuming the subscript of this maximum
confidence is m, there is also a corresponding detection box bm in set B, which is the
corresponding detection box for this confidence. Then, detection box bm in stored in M, and
it is merged and delete from the B set. Each detection box bm is looped through in set B and
the DIOU is calculated, and the combined effect of the DIOU value and confidence is used
as the final score of the detection box. Formula (10) provides the definition of Soft-NMS
as follows in order to change the practice of directly deleting detection boxes with high
overlap in NMS and follow the principle that the larger the DIOU, the lower the score:

si =

{
si, DIOU(M, bi) < Nt

si(1−DIOU(M, bi)), DIOU(M, bi) ≥ Nt
(10)

si is the confidence level of the object, DIOU(M, bi) represents the size of the DIOU
between detection boxes, and Nt is the set threshold.

The processing results using two different NMS algorithms are shown in Figure 6.
Figure 6a shows the results of the traditional NMS method, which may miss detection
when two objects overlap. This is because when two objects overlap, the DIOU threshold is
directly used to determine whether to delete the bounding box, which may delete the exact
bounding box of the other object. The Soft-NMS algorithm no longer only uses the DIOU
to determine whether to delete the bounding box but also considers both the DIOU and the
confidence size when deleting the bounding box and gives the correct detection results, as
shown in Figure 6b.



Electronics 2023, 12, 2644 10 of 17

Electronics 2023, 12, x FOR PEER REVIEW 11 of 21 
 

 

and the confidence size when deleting the bounding box and gives the correct detection 

results, as shown in Figure 6b. 

  
(a) NMS (b) Soft-NMS 

Figure 6. The processing results using two different NMS algorithms. 

3.5. Improved Channel Pruning 

There is a large number of redundant parameters in the operation process of convo-

lutional neural networks, which have little effect on improving the detection accuracy of 

the model and may even lead to a decrease in accuracy. Effectively removing these redun-

dant parameters can improve the detection speed of the network. Channel pruning can 

delete entire redundant channels while preserving the original convolutional structure, 

improving network-detection performance without losing accuracy. This design aims to 

create a channel-pruning method for the YOLOv4-PANv2 network, which considers chan-

nel pruning as a search problem, and the legitimate pruning network in the search space 

is called a subnet. The adaptive BN method is used to evaluate the subnet, which can 

accurately and quickly find the optimal subnet. The overall pruning process is shown in 

Figure 7. Firstly, n subnets are generated through the pruning strategy, and each subnet 

is evaluated by adaptive BN to select the one with the highest score. After several epochs, 

the pruned model is determined. 

 

Figure 7. The flow chart of channel pruning. 

The detection accuracy of the subnet generated by the pruning strategy can only be 

tested after the training process converges. However, each subnet is evaluated by this 

method, which requires not only fine hyperparameter adjustment but also an extra time-

consuming training process. This design uses an adaptive BN-evaluation method that can 

quickly and accurately select subnets with good final-testing performance. The original 

BN formula is written as follows: 

[0.1,0.9, ,0.5]

[0.5,0.8, ,0.1]

[0.3,0.2, ,0.9]

 

Adaptive BN

Adaptive BN

Adaptive BN

9%

23%

12%

Finetuning
76.7%

 

 
Figure 6. The processing results using two different NMS algorithms.

3.5. Improved Channel Pruning

There is a large number of redundant parameters in the operation process of con-
volutional neural networks, which have little effect on improving the detection accuracy
of the model and may even lead to a decrease in accuracy. Effectively removing these
redundant parameters can improve the detection speed of the network. Channel pruning
can delete entire redundant channels while preserving the original convolutional structure,
improving network-detection performance without losing accuracy. This design aims
to create a channel-pruning method for the YOLOv4-PANv2 network, which considers
channel pruning as a search problem, and the legitimate pruning network in the search
space is called a subnet. The adaptive BN method is used to evaluate the subnet, which can
accurately and quickly find the optimal subnet. The overall pruning process is shown in
Figure 7. Firstly, n subnets are generated through the pruning strategy, and each subnet is
evaluated by adaptive BN to select the one with the highest score. After several epochs, the
pruned model is determined.
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The detection accuracy of the subnet generated by the pruning strategy can only be
tested after the training process converges. However, each subnet is evaluated by this
method, which requires not only fine hyperparameter adjustment but also an extra time-
consuming training process. This design uses an adaptive BN-evaluation method that can
quickly and accurately select subnets with good final-testing performance. The original BN
formula is written as follows:

y = γ
x− u√
σ2 + ε

+ β (11)
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where β and γ represent the scaling factors and offsets learned through training, respec-
tively, and µ and σ2 represent the mean and variance of the current batch for small batch
size of N, respectively.

uB = E[xB] =
1
N

N

∑
i=1

xi (12)

σ2
B = Var[xB] =

1
N − 1

N

∑
i=1

(xi − uB)
2 (13)

If the same method is used to normalize a batch of samples that need to be predicted
during testing, uncertainty occurs in the prediction results. Therefore, during the testing
phase, the global-BN statistics are used to calculate µT and σ2

T as follows:

ut = mut−1 + (1−m)uB (14)

σ2
t = mσ2

t−1 + (1−m)σ2
B (15)

where m is the momentum coefficient, and the subscript t represents the number of training
iterations. The statistical information of BN is not learned through training but rather is
obtained through data statistics. During testing, global-BN statistical information is re-
quired to stabilize performance. However, there may be a mismatch between the global-BN
statistical information of the pruned subnet and the global-BN statistical information before
pruning, leading to unstable detection performance in direct testing. The general method
is to train the subnet for several epochs before accurately testing its subnet performance.
Adaptive BN inputs data into the network for several epochs of inference, which resamples
the subnets and solves the problem of statistical-data mismatch. The use of the adaptive-BN
method can quickly select subnets with excellent performance.

4. Results

All experiments in this paper were implemented under the Linux operating system
using the Python language and Pytorch framework and a GPU-accelerated NVIDIA A100-
PCIe graphics card, and the CPU was Intel(R) Xeon(R) Gold 6330 CPU @ 2.00 GHz.

This paper selected the public dataset Security Inspection X-ray Benchmark (SIXray)
for the experiments [24], which was released by the University of Chinese Academy of
Sciences. The SIXray dataset contains more than one million security-screening images
from subway stations, which provided enough training and testing data. Moreover, the
images in the dataset have high clarity and resolution, covering many of the most common
items in security tasks. Each image provides detailed labeling information, including the
type, location, and size of the items. In this experiment, 8929 positive sample images were
used, including five categories of guns, knives, wrenches, pliers, and scissors. The quantity
distribution of each category is shown in Table 1.

Table 1. The distribution of the number of categories in the dataset.

Category Guns Knives Wrenches Pliers Scissors

Number 3131 1943 2199 3961 983

The dataset was divided into two parts, with 80% of the samples as the training set
and 20% of the samples as the test set. The maximum learning rate was 1 × 10−3, and
the minimum learning rate was 1 × 10−6. Using the label-smoothing strategy and cosine-
annealing optimization algorithm, we learned to first simulate the rapid decline of the
function and then linearly increase and repeat the process continuously. The epoch was
set to 100. First, the influence of the Focal-EIOU loss function on the network was verified.
The original CIOU loss function and the Focal-EIOU loss function were used to train the
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YOLOv4 network. The visualization results of the loss function are shown in Figure 8.
The network using the CIOU loss function began to converge to a stable level at the 30th
epoch, whereas the network using the Focal-EIOU loss function began to converge at the
19th epoch, indicating that it had a faster convergence rate.
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In order to verify the effectiveness of the proposed method in this paper in improving
the accuracy of the YOLOv4 network, we compared it with other object-detection models,
including YOLOv3, M2Det [29], SSD [30], and YOLOv4, as shown in Table 2.

Table 2. Detection results with different models.

Method Guns (%) Knives (%) Wrenches (%) Pliers (%) Scissors (%) mAP (%)

YOLOv3 93.18 78.00 68.55 79.69 76.97 79.28
M2Det 95.49 75.70 70.17 83.00 82.96 81.47

SSD 94.91 77.87 74.82 84.51 82.69 82.96
YOLOv4 94.40 81.69 77.38 84.50 77.55 83.11

YOLOv4-PANv2 95.73 83.00 82.95 85.13 80.74 85.51

The mAP of the improved model was the highest, reaching 85.51%, which was 6.23%,
4.04%, 2.55%, and 2.4% higher than that of the YOLOv3, M2Det, SSD, and YOLOv4 models,
respectively. Compared with YOLOv4, the AP value of guns increased by 1.33%, that of
knives increased by 1.31%, that of wrenches increased by 5.57%, that of pliers increased by
0.63%, and that of scissors increased by 3.19%.

In order to further analyze the performance of the different categories, the AP, preci-
sion, recall and F1 measure of each category of the YOLOv4-PANv2 network were analyzed,
as shown in Table 3. It can be seen from the table that the AP, precision, recall, and F1
measure of guns were the highest, because the number of gun samples in the dataset was
the largest. The recall of knives was relatively low. Because knives are usually thin in shape
and can easily overlap with other dangerous goods, there is more missed detection. The
precision of the five types of dangerous goods was maintained at a good level, indicating
that the model has strong generalization ability and a low false-detection rate.
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Table 3. Improved model-performance analysis for each category.

Category AP (%) Precision (%) Recall (%) F1 Measure

Guns 95.73 98.59 84.92 0.91
Knives 83.00 91.43 67.20 0.77

Wrenches 82.95 83.66 71.95 0.77
Pliers 85.13 92.95 74.23 0.82

Scissors 80.74 86.88 75.13 0.81

The average value of various objects was taken as the overall performance-evaluation
index and compared with the original YOLOv4, as shown in Table 4.

Table 4. Comparison of YOLOv4 performance before and after improvement.

Method mAP (%) Precision (%) Recall (%) F1 Measure

YOLOv4 83.11 90.35 73.00 0.80
YOLOv4-PANv2 85.51 90.70 74.69 0.82

As can be seen from the table, compared with the original YOLOv4 model, the mAP,
accuracy, and recall rate of the YOLOv4-PANv2 model increased by 2.4%, 0.35%, and 1.69%,
respectively, which means that all indicators of our detection algorithm were improved
and the improved model had better detection performance.

The detection performance of the model in the test set is shown in Figure 9, where
(a) is a single-target image, (b) is a multi-target image, (c) is an occluded-target image,
(d) is an overlapping image, (e) is a placement-difference image, and (f) is a small-target
image. It can be seen that the improved model could accurately detect each target with our
proposed method.
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5. Discussion
5.1. Ablation Experiment

In order to verify the model-detection effect after adding different improvement points,
ablation experiments and analysis were conducted on the improved PANet module, Focal-
EIOU loss function, and Soft-NMS. The comparison results of the ablation experiments are
shown in Table 5. It can be seen from the table that mAP was significantly improved after
the PANet module was improved, indicating that the feature-selection module and feature-
alignment module were used in the process of low-level and high-level feature fusion,
which significantly improved the detection performance. After using the Focal-EIOU loss
function, the model mAP was slightly improved. It can be seen that the Focal-EIOU loss
function not only accelerated the convergence of the model but also improved the detection
performance of the model. Finally, Soft-NMS also increased the mAP of the model by 0.9%,
which more accurately deleted redundant boundary boxes in the processing of images with
a high overlap rate.

Table 5. Comparison results of ablation experiment.

Method Improved PAN Focal-EIOU Loss Soft-NMS mAP (%)

YOLOv4 × × × 83.11
YOLOv4-Improved PAN

√
× × 85.06

YOLOv4-Focal-EIOU Loss ×
√

× 83.96
YOLOv4-Soft-NMS × ×

√
84.01

YOLOv4-PANv2
√ √ √

85.51

5.2. Analysis of Channel-Pruning Performance

Although the YOLOv4-PANv2 network improved detection accuracy compared to
the YOLOv4 network, the detection speed is not ideal and it would be difficult to meet the
detection speed required for X-ray security when there are many bags. To address the above
issues, a channel-pruning algorithm was designed to reduce the redundant convolutional
channels of the model while not reducing accuracy in order to reduce the computational
complexity and improve the detection speed of the model. The distribution of scaling
factors before and after sparse training is shown in Figure 10.
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Figure 10. Distribution of scaling factors for sparse training.

Figure 10a shows the distribution of scaling factors in the BN layer during normal
training, and Figure 10b shows the distribution of scaling factors in the BN layer during
sparse training. The x-axis coordinate represents the size of the scaling factor, the y-axis
coordinate represents the epoch of the training, and the z-axis coordinate represents the
number of scaling factors. The use of L1 regularization terms effectively suppressed the
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scaling factor corresponding to channels that made little contribution to the model, making
it approach 0. Channels with relatively large contributions also had their scaling factor
suppressed, but the final value was also relatively large.

The statistical distribution of the scaling factor is shown in Figure 11. The horizontal
axis represents the current epoch, whereas the vertical axis represents the numerical value
of the scaling factor. A higher value indicates a higher quantity. In the end, all scaling
factors were basically compressed to 0, and sparse training had a significant effect.
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To verify the effectiveness of channel pruning, the detection performance of the
YOLOv4-PANv2 network before and after pruning was compared. The detection results
are shown in Table 6. From the table, it can be seen that after channel pruning, the model’s
FLOPs decreased by 20.38 G, FPS increased by 23.70 f/s, and mAP only decreased by 0.73%,
which was acceptable. After pruning, the computational complexity of the model was
significantly reduced, and FPS was significantly improved. This is because the channel-
pruning algorithm removed many redundant channels, reducing the calculation parameters
and the number of calculations, which can effectively improve the detection speed of the
model for X-ray security-inspection images.

Table 6. Detection results after model pruning.

Method FLOPs (G) FPS (f/s) mAP (%)

YOLOv4-PANv2 60.52 26.71 85.51
Prune-YOLOv4 40.14 50.41 84.78

6. Conclusions

This paper proposes a combination of deformable convolution and the PANet mod-
ule of the YOLOv4 network, and designs and implements a dangerous-goods-detection
algorithm for X-ray security-inspection images. The deformable convolution with a more
flexible receptive field is used to solve feature misalignment in the fusion of high- and
low-level features of YOLOv4. The pruning strategy uses adaptive BN to evaluate subnets,
which can quickly select subnets with good detection results. While ensuring the accuracy
of the detection model, it greatly reduces the FLOPs of the model and improves the FPS of
the detection model. Experimental results show that our improved YOLOv4 method can
effectively improve the accuracy of the detection network and meet the requirements of
X-ray security detection in terms of accuracy and speed. Future work will use lightweight
methods to reduce the number of parameters and computation while ensuring detection
accuracy, making it easier for embedded implementation.
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