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Abstract: The number of people in a crowd is crucial information in public safety, intelligent monitor-
ing, traffic management, architectural design, and other fields. At present, the counting accuracy in
public spaces remains compromised by some unavoidable situations, such as the uneven distribution
of a crowd and the difference in head scale caused by people’s differing distances from the camera.
To solve these problems, we propose a deep learning crowd counting model, multi-scale dilated
convolution networks (MSDCNet), based on crowd density map estimation. MSDCNet consists of
three parts. The front-end network uses the truncated VGG16 to obtain preliminary features of the
input image, with a proposed spatial pyramid pooling (SPP) module replacing the max-pooling
layer to extract features with scale invariance. The core network is our proposed multi-scale feature
extraction network (MFENet) for extracting features in three different scales. The back-end network
consists of consecutive dilation convolution layers instead of traditional alternate convolution and
pooling to expand the receptive field, extract high-level semantic information and avoid the spatial
feature loss of small-scale heads. The experimental results on three public datasets show that the
proposed model solved the above problems satisfactorily and obtained better counting accuracy than
representative models in terms of mean absolute error (MAE) and mean square error (MSE).

Keywords: deep learning; crowd counting; density map estimation; spatial pyramid pooling (SPP);
multi-scale feature extraction; dilated convolution

1. Introduction

The rapid development of monitoring equipment has led to a continuous increase in
the amount of image and video data, while the demand for video analysis is also increasing.
Crowd counting is an important aspect of video analysis, especially in crowded public
places where avoiding public safety accidents through early warning is crucial [1–3].

There are three types of approaches to counting the number of people in a crowd. The
most direct method is to detect each person in an image one by one through object detection
methods and to accumulate the objects to obtain the final count [4]. The detection-based
approaches can achieve satisfactory results in sparse crowds without serious occlusion [5].
The second type of crowd counting method is to extract the foreground features of an image
and build the regression model to learn the mapping from the features to people number [6].
Thus, the regression-based approaches avoid object detection in the counting and simplify
the task [7]. However, this type of method ignores the spatial information of the crowd
distribution in the real scene and only focuses on the number of targets in the image. The
third type of crowd counting, density estimation-based methods, does not detect or locate
objects in an image, but maps the local image features and density distribution on the
corresponding area, estimates the density map, and integrates the density map over the
area to obtain the number of people in that region [8,9]. It turns the counting problem into
a problem of estimating the density of the image.
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With the advent of the convolutional neural network (CNN), deep learning models
have been introduced into crowd counting and density estimating, and have become the
mainstream research direction [10,11]. In 2012, AlexNet [12] won the ImageNet Challenge,
using ReLU as the activation function, and using dropout to randomly kill some neurons
during training to avoid over-fit. Because of the powerful parallel processing capability
of GPU, training on the deep convolution network is possible. After AlexNet achieved
good results in target classification and counting, more and more deep networks emerged,
such as the well-known Inception (GoogLeNet) [13] and VGG series [14]. In surveillance
videos, people inevitably appear in different scales because of their differing distances
from the surveillance camera, which is often installed at a high altitude. Without scale
invariance, the CNN-based models could not obtain accurate counting results until Zhang
et al. proposed a multi-column convolutional neural network (MCNN) in 2016 [15]. In this
classical model, they designed three convolution network columns with different scales and
cascaded feature maps extracted to obtain head feature maps at large, medium, and small
scales. The crowd density map was then obtained by fusing it to the back-end network. To
fully cover all challenging scenarios, a new large-scale dataset called Shanghai_Tech was
collected and labeled. Since then, how to extract features with scale invariance from images
and improve the accuracy of density estimation has become a lively point of discussion in
crowd counting research.

In order to solve the problem of scale variance and crowd uneven distribution in
crowd counting, we propose a deep learning model to learn the non-linear relationship
between the input crowd image and the density map. By integrating the density map, the
crowd in the input image is then statistically counted. The contributions of this paper can
be summarized as follows:

1. We propose a multi-scale dilated convolution network (MSDCNet) to estimate the
density map of an input crowd image. A multi-scale feature extraction network is
designed as the core component of MSDCNet.

2. In the front-end network of MSDCNet, we propose SPP modules to replace max-
pooling layers of VGG16 that can extract features with scale invariance. In the back-
end network of MSDCNet, we use the dilated convolution layers to replace the
traditional alternate convolution and pooling to expand the receptive field, extract
high-level semantic information and avoid the loss of spatial information at the
same time.

3. The effectiveness of our approach is validated on three public datasets, Shanghai_Tech,
UCF_CC_50, and UCF_QNRF. Compared with other representative crowd counting
models, our model has a better counting performance.

In the rest of this paper, Section 2 includes the recent work related to density estimation.
The framework and principle of MSDCNet are described in Section 3. The datasets, experi-
mental results and related analysis are given in Section 4. Conclusions and suggestions for
future work are given in Section 5.

2. Related Work
2.1. Density Map

A crowd counting sample generally consists of a crowd image and its label matrix
which is the same size as the image. The label matrix stores numbers 0 and 1 that represent
the heads’ center-point positions. A visualized label matrix and the corresponding crowd
image are shown in Figure 1. The main issue of crowd counting is to find the mapping
between input images and density maps through extensive training. The training process
of crowd counting models is shown in Figure 2. The preprocessing of training samples
includes two objectives: generating ground truth density maps and data augmentation. A
sample in datasets provides an image and a set of coordinates of each head-center-point
instead of the label matrix mentioned above. The coordinates need to be converted into a
label matrix and then into a smooth and continuous density map to serve as the ground
truth density map of the training sample (see Section 2.2 for details). Due to the differences
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in the number of samples, image size, and crowd density among different datasets, the
data augmentation for different datasets also varies (see Section 4.1 for details).
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2.2. Generating Density Map Based on Gaussian Kernel

First, we initialized a zero matrix with the same size as the input image. Based on
the known position coordinates of each head, we set the corresponding elements to 1, and
obtained a label matrix composed of 0 and 1. Using the Gaussian kernel and the label
matrix for convolution, we obtained a smooth and continuous density map. Due to the
variance in the heads’ scale in an image, we adopted an adaptive Gaussian kernel whose
size varies with the heads’ scale. After convolution, the 1 at a certain position in the label
matrix was replaced with multiple weights between 0 and 1 around it, and the sum of these
weights was equal to 1. This not only did not affect the counting of the total number of
heads through the density map, but also obtained the spatial information of each head. A
ground truth density map obtained via the above method is visualized as a pseudo-color
map shown in Figure 3.
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2.3. Crowd Counting Models

In 2018, a single-column network, named the congested scene recognition network
(CSRNet) [16], was proposed to extract more scale information by using dilated convolu-
tions and expanding the receptive field. CSRNet obtained encouraging counting results
in highly congested spaces. In 2020, Jiang et al. [17] proposed trellis encoder–decoder
networks (TEDnet) to generate high-quality density estimation maps. They designed mul-
tiple decoding columns to hierarchically aggregate spatially endowed features at different
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encoding stages. Some researchers found out different ways leading to the same target. In
order to eliminate the distortion of the crowd image, a reverse perspective network was
proposed by Yang et al. [18]. In 2021, a locality-aware crowd counting model was proposed
to avoid serious deviation in counting results [19]. A Tencent YouTu team proposed a
point-based approach [20]. A set of point proposals is given to represent heads. In [21], an
unbalance-based generalized loss function was proposed to improve the training process of
the crowd counting model. Introducing an attention mechanism into training is one of the
solutions to scale differences in crowd counting [22]. The emergence of various innovative
models and learning strategies is continuously improving the accuracy of crowd counting.

3. Proposed Approach

The proposed MSDCNet consists of three parts, a front-end network, a multi-scale
feature extraction network (MFENet), and a back-end network, as shown in Figure 4. The
crowd-counting task is to obtain the density map instead of classification, so we design
it as fully convolutional networks (FCNs). The feature of FCN is that both the input and
output are 2D images. The input can be images of any size, while the output size is the
same as the input size and they have a corresponding spatial structure. The FCN consists
of two parts: a full convolution part (the front-end network and MFENet) which is used to
extract features, and a deconvolution part (the back-end network) which is used to obtain
the density map estimation by up-sampling.
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3.1. Front-end Network

The front-end network is used to extract preliminary features from input images.
Because VGG16 [14] performs well in object detection and classification, and has strong
transfer learning ability, we used it as the backbone of the front end. VGG16 consists of
13 conv layers, 5 pooling layers, 3 fully connected (FC) layers and a soft-max output layer,
as shown in Figure 5. The pooling layer is 2 × 2 max-pooling. After each pooling layer,
the width and height of the feature map are reduced by half. With the increase in the
network depth, the size of the feature map gradually decreases. The small feature size is
not conducive to crowd counting especially in a converged scene. Therefore, to refer to
CSRNet [16], the front-end network uses the first 10 conv layers of VGG16 and the 3 pooling
layers between them. In order to learn features of multi-scale heads in crowd images, spatial
feature fusion is performed in pooling layers in our model. We propose a pooling module
based on the SPP idea (denoted as the SPP module) to replace the max-pooling layer.
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3.1.1. SPP Module

In 2015, He et al. [23] proposed spatial pyramid pooling (SPP) to address the input
size limitation of the standard CNN. As shown in Figure 6, the SPP layer is used after the
last conv layer (conv5, with 256 filters) and before the FC layers (fc6, fc7). The SPP extracts
the features from the output of conv5 through pooling bins (windows) with different
sizes. Each bin obtains one output, so the size of the SPP output features is determined
by the number of bins instead of the size of the input. Compared to the breaking fixed
size limitation, the most important advantage of the SPP is found by researchers to be that
different sizes of bins correspond to different regions of the original image, i.e., to objects of
different scales. This greatly improves the robustness of the network to object scaling. The
SPP is therefore an effective way to handle multi-scale networks.
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Inspired by the different sizes of bins in the SPP, we proposed a SPP module with
different pooling kernel sizes to replace the 2 × 2 max pooling layers in VGG16 and to
further extract the features with scale invariance. Identical to the original 2× 2 max-pooling,
our SPP module reduces the width and height of the feature map by half, too. Therefore,
it is denoted as “SPP-2” in Figure 4. As shown in Figure 7, the SPP module is a stack of
three max-pooling layers. The size of the input feature maps is W × H, and the sizes of the
three pooling kernels we used are 2 × 2, 2 × 2, and 3 × 3, and the strides are 2, 1, and 1,
respectively. Finally, on every channel, the obtained three feature maps of size W/2 × H/2
are summed up. With three SPP modules fusing the spatial features, the front-end network
can expand the receptive field and extract features in different scales without increasing
the parameters.
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3.1.2. Architecture of Front-End Network

The front-end network consists of 10 conv layers and 3 SPP modules, and its architec-
ture is shown in Table 1. After three SPP modules, the size of the feature map output by the
front-end network becomes W/8 × H/8.

Table 1. The architecture of the front-end network. The conv layers are denoted as “conv (size)-
(number of filters)”. The ReLU activation function is not shown for brevity.

Layers Kernel Stride

Conv1 conv3-64 1

Conv2 conv3-64 1

SPP modules

maxpool 2 × 2 2

maxpool 2 × 2 1

maxpool 3 × 3 1

Conv3 conv3-128 1

Conv4 conv3-128 1

SPP modules

maxpool 2 × 2 2

maxpool 2 × 2 1

maxpool 3 × 3 1

Conv5 conv3-256 1

Conv6 conv3-256 1

Conv7 conv3-256 1

SPP modules

maxpool 2 × 2 2

maxpool 2 × 2 1

maxpool 3 × 3 1

Conv8 conv3-512 1

Conv9 conv3-512 1

Conv10 conv3-512 1

3.2. Multi-Scale Feature Extraction Network (MFENet)

In order to perceive the dramatic changes in the scale of the image and extract the
multi-scale features of heads, MFENet is designed as the core of MSDCNet in addition to
the SPP module in the front-end network.

In order to improve the accuracy of a deep learning model, researchers improve the
network structure constantly. The development of a structure design is mainly along two
lines; one is the Inception series (i.e., complexity), from GoogLeNet to Inception V2, V3, V4.
The other is the VGG series (i.e., depth), which uses a simple structure to make the network
as deep as possible, from VGG to ResNet, DenseNet, etc. The core idea of the Inception
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block is to use parallel sub-networks (conv kernels of different sizes) to achieve perception
at different scales, and finally fuse them to obtain better representation of the image. But
the complexity of multi-column networks is too great; for example, GoogLeNet consists of
9 Inception blocks and 100+ conv layers. Therefore, we cut off the latter half of VGG16 and
replaced it with a multi-column subnet (MFENet) to achieve a balance between complexity
and accuracy.

MFENet contains four columns with different perception fields to extract different
scales of head features, as shown in Table 2. The first layer of each column is a bottleneck
layer, 128 1 × 1 convolutions with a depth of 512. The number of channels of each column
is reduced from 512 to 128 due to the bottleneck layer. At the same time, the scale of the
feature map extracted by the front-end network is still preserved to cover small targets. One
column is only a bottleneck layer and the other columns use stacked 3 × 3 convolutions
in one, two, and three layers to implement perceptive fields in sizes of 3 × 3, 5 × 5, and
7 × 7. Thus, MFENet can extract heads’ features in the three scales, large, medium, and
small. Multiple small kernels are used consecutively instead of one large kernel, as the
latter can significantly reduce the network parameters [14]. For example, to obtain the same
7 × 7 perceptive field, a 7 × 7 kernel has 49 parameters and three 3 × 3 kernels only have
27 parameters. On the other hand, compared to a 7 × 7 conv layer, three 3 × 3 conv layers
are two layers deeper and have a stronger ability to fit nonlinearity because the nonlinear
activation function ReLU is adopted on each conv layer.

Table 2. The architecture of MFENet. The convolutional layers are denoted as “conv (size)-(number
of filters)”. Padding = 1, stride = 1.

Layers Kernel

Column1 conv1-128

Column2
conv1-128

conv3-128

Column3

conv1-128

conv3-128

conv3-128

Column4

conv1-128

conv3-128

conv3-128

conv3-128

3.3. Back-End Network

The back-end network is designed to expand the receptive field, extract higher-level
semantic information, and then conduct up-sampling to obtain a high-quality density
map. After the front-end network and MFENet, to achieve these goals we can continue
to deepen the network, using alternate conv and pooling layers. However, pooling will
further reduce the feature size and decrease the spatial resolution, which is not conducive
to obtaining high-quality density maps. Therefore, we use a dilated convolution instead of
the combination of conv and pooling to achieve the above goals [16].

A dilated convolution uses sparse kernels to increase the receptive field [24], as shown
in Figure 8. In our model, the size of the dilated convolution kernel is 3 × 3. When the
dilation rate is 2, the receptive field is expanded to 5 × 5. But the number of parameters is
only 9, which is only 36% of that of 5 × 5 standard convolution. Padding is set to 1, so that
overfitting can be prevented to avoid the loss of heads’ features while keeping the feature
map size unchanged, i.e., without loss of spatial resolution.
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Four consecutive dilated convolutional layers are deployed in the back-end network,
whose architecture is shown in Table 3. After dilated conv layers, a 1 × 1 conv is deployed
to output the density map, whose size remains unchanged (W/8 ×H/8). In order to obtain
a density map of the same size as the input image, up-sampling is conducted by bilinear
interpolation to resize the output density map.

Table 3. The architecture of the back-end network. The dilated convolutional layers are denoted as
“Dilated conv (size)-(number of filters)”. Padding = 1, stride = 1.

Layers Kernel Dilation Rate

Dilated conv1 Dilated conv3-256 1

Dilated conv2 Dilated conv3-128 2

Dilated conv3 Dilated conv3-64 2

Dilated conv4 Dilated conv3-32 2

Conv conv1-1 -

3.4. Discussion on Number of Parameters

In order to evaluate the cost of every component of MSDCNet, the number of param-
eters is calculated without model compression, as shown in Table 4. The total number
of parameters is 9.560 M, and the main cost comes from the front-end network, i.e.,the
10 conv layers of VGG16. Three SPP modules are pooling operations without parameters.
Due to the bottleneck layers in every column, MFENet only has 0.360 M parameters, about
3.8% of the total number of parameters. Compared to standard convolution with the same
kernel size, dilated convolution in the back-end network does not increase the parameters
together with the receptive field expanding.

Table 4. The number of parameters in MSDCNet.

Component Parameters (M)

Front-end network 7.633

MFENet

Column1 65,536

0.360
Column2 81,920

Column3 98,304

Column4 114,688

Back-end network 1.567

Total 9.560

4. Experimental Results and Discussions

The experiments were carried out on a Linux, Ubuntu16.04 operating system, and the
model was implemented using the Python 3.8 and PyTorch 1.8.0 library. The experimental
environment is an Intel (R) Core (TM) i7-8750H CPU @ 2.60 GHz, DDR4 16 GB memory,
and a NVDIA GeForce GTX 1650Ti graphics card.
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4.1. Datasets and Data Augmentation

Three public datasets, ShanghaiTech, UCF_CC_50, and UCF-QNRF, were used in our
experiments. The statistics of samples and annotations in the datasets are shown in Table 5.
ShanghaiTech includes samples of different scenes and crowd density levels, which are
divided into two parts, Part_A and Part_B. The resolution of the images in Part_B is the
same. The UCF_CC_50 dataset contains 50 grayscale images with different resolutions and
scenes, including sports events, political processions, religious events, etc. The number of
people in the images varies significantly, and some images are of extremely dense scenes.
The UCF-QNRF dataset contains high-resolution images of outdoor surroundings with
green plantation, buildings, streets, the sky and so on. Therefore, UCF-QNRF is of great
significance to the dense crowd counting model against background interference.

Table 5. The statistics of samples and annotations in datasets.

Dataset
Number of Samples Average Resolution Annotations

Total Training
Set

Test
Set

Training
Set

Test
Set Total Ave Max

ShanghaiTech_Part_A 482 300 182 872 × 598 861 × 574 241,677 501 3139

ShanghaiTech_Part_B 716 400 316 1024 × 768 88,488 123 578

UCF_CC_50 50 - - 902 × 653 63,974 1279 4633

UCF-QNRF 1535 1201 334 2896 × 2006 2910 × 2038 1,251,642 815 12,865

In ShanghaiTech and UCF-QNRF, samples were divided into a training set and a
test set, but the size of three training sets was not large enough. The training sets and
UCF_CC_50 were expanded. In order to compare them with other counting models under
the same conditions, we used the general data enhancement method [16]. Nine patches of
1/4 size were cropped from an original image; four of them were nonoverlapping areas
(top left, bottom left, top right, and bottom right), and the other five patches were randomly
cropped. All patches and the original image were then mirrored. Finally, the sample size
was expanded to 20 times the original ones. After expansion, UCF_ CC_ 50 contained only
1000 samples, so we randomly cropped the very dense and high-resolution samples to
expand the dataset to 7500 samples in total. A fivefold cross-validation was conducted, in
which 6000 images were used for training and 1500 images were used for testing.

4.2. Evaluation Metrics

We used the commonly used measures of crowd counting [25], the mean absolute
error (MAE) and mean squared error (MSE), which are defined as follows:

MAE =
1
N

N

∑
i=1

∣∣Ci − Ĉi
∣∣, MSE =

√√√√ 1
N

N

∑
i=1

∣∣Ci − Ĉi
∣∣2 (1)

where N is the number of input images, Ci is the actual number of people in the i th image,
and Ĉi is the estimated number of people in the i th image. The lower the MAE is, the
higher is counting accuracy; the lower the MSE is, the better the network’s robustness is.

4.3. Network Training

The MSDCNet consists of three parts, and we train them separately from easy to
difficult as follows:

1. Training the back-end network. The dimensions of MFENet’s input and output are
same (H/8 × W/8 × 512), so we can remove it first and connect the back end to
the front end directly. The front-end network adopts VGG16’s pretrained model on
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ImageNet. We then freeze the front end and set the back end to trainable. We then
obtain a preliminary back end.

2. Fine-tuning the front-end network. We freeze the back end, and train the front end
from the pretrained weights of VGG16.

3. Training MFENet column to column. We put MFENet back into our model. At first,
we froze the front end, back end, and column 2, 3, and 4 of MFENet, and only set
column1 to trainable. After column1 was trained, we trained column 2 starting at part
of the weights coming from column1. After four columns had been trained one by
one, we trained them together.

4. Fine-tuning the model in order from back end to front end and then to MFENet.

Our model was trained using the Adam optimizer, the ReLU activation function and
the Euclidean distance loss. The initial learning rate was set to 0.002 with a decay factor of
0.005 and a momentum value of 0.9.

4.4. Experimental Results on the ShanghaiTech Dataset

After data augmentation, the training set of ShanghaiTech Part_A and Part_ B were
expanded to 6000 and 8000 images. Some density maps generated by MSDCNet are shown
in Figure 9. The comparison of the counting errors between MSDCNet and other models
is shown in Table 6. Besides the accuracy, the parameters and time complexity of every
model are compared, too. The time complexity is related to the size of the input image;
here, we use the average resolution of training set samples (as shown in Table 5). Only the
multiply-accumulate operations (MACs) of conv and FC layers were considered; pooling,
BN and ReLU were conventionally ignored.
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Table 6. Counting errors on ShanghaiTech dataset.

Method
Part_A Part_B

MAE↓ MSE Parameters (M) MACs (G) MAE MSE MACs (G)

MCNN [15] 110.2 173.2 0.133 13.989 26.4 41.3 21.097

SwitchCNN [26] 90.4 135.0 15.108 164.182 21.6 33.4 247.610

MSCNN [27] 83.8 127.4 3.084 288.706 17.7 30.2 435.412

CP-CNN [28] 73.6 106.4 17.137 254.311 20.1 30.1 383.537

CSRNet [16] 68.2 115.0 16.259 215.405 10.6 16.0 324.862

SANet [29] 67.0 104.5 1.146 49.334 8.4 13.6 74.403

TEDNet [17] 64.2 109.1 8.863 367.193 8.2 12.8 553.780

DUBNet [30] 64.6 106.8 18.827 52.172 7.7 12.5 78.683

MSDCNet (Ours) 60.9 97.2 9.560 160.804 6.9 11.2 242.516

The experimental results show that our model achieves the best counting accuracy.
On the Part_A dataset, the MAE of MSDCNet decreased by 3.7 and the MSE decreased
by 9.6 compared to the best-performing model, DUBNet. On the Part_B dataset, the MAE
decreased by 0.8 and the MSE decreased by 1.3. The backbone of DUBNet is ResNet50 and
its MACs are much lower than ours because a large number of residual blocks is used. This
also leads to its parameters being almost twice the size of ours. From the perspective of
model volume, the MCNN has the lowest parameters and time complexity. Due to the
stacked nine multi-scale encoders with a four-column structure, TEDNet has significant
MACs. TEDNet used nine multi-scale encoders with multi-column structures, resulting in
a significant increase in the model complexity. Compared with SwitchCNN whose MACs
are similar to ours, our parameters were 37% less and the accuracy was greatly improved.

4.5. Experimental Results on the UCF_CC_50 Dataset

The fivefold cross-validation result of our model on the UCF_CC_50 dataset is shown
in Figure 10. Some density maps generated by MSDCNet are shown in Figure 11. The
comparison of the counting errors between MSDCNet and other models on the UCF_CC_50
dataset is shown in Table 7. The experimental results show that our model achieves excellent
counting accuracy on UCF_CC_50. The MAE of MSDCNet decreased by 36.9 and the MSE
decreased by 58.0 compared to the DUBNet with the best performance. The average crowd
number of samples in UCF_CC_50 was 1279, which is much larger than that of other
datasets. Therefore, it can be seen that our model performs well in extremely dense crowds.
MSCNN has only about three M parameters because of its concise structure, but has the
maximum MACs because it has fewer pooling layers. In our model, both complexity and
parameters are taken into account. There are three pooling modules in the front end, so
that the subsequent computation can be controlled in a reasonable range.
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Table 7. Counting errors on UCF_CC_50 dataset.

Method MAE↓ MSE Parameters (M) MACs (G)

MCNN [15] 377.6 509.1 0.133 15.801

MSCNN [27] 363.7 468.4 3.084 326.106

SwitchCNN [26] 318.1 439.2 15.108 185.450

CP-CNN [28] 295.8 320.9 17.137 287.254

CSRNet [16] 266.1 397.5 16.259 243.308

SANet [29] 258.4 334.9 1.146 55.725

DUBNet [30] 243.8 329.3 18.827 58.930

MSDCNet (ours) 206.9 271.3 9.560 181.635

4.6. Experimental Results on the UCF-QNRF Dataset

The UCF-QNRF dataset contains dense crowd images with multiple scenes, views, and
illuminations, and is important for verifying the robustness of counting models. Some den-
sity maps generated by MSDCNet from the UCF-QNRF dataset are shown in Figure 12. The
comparison of the counting errors between MSDCNet and other models on the UCF-QNRF
dataset is shown in Table 8. The experimental results show that our model achieves better
counting accuracy on UCF-QNRF than other models. The MAE of MSDCNet decreased by
4.2 and the MSE decreased by 9.6 compared to DUBNet with the best performance. And
MSDCNet shows excellent robustness on the UCF-QNRF dataset.
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Table 8. Counting errors on the UCF-QNRF dataset.

Method MAE↓ MSE Parameters (M) MACs (G)

SwitchCNN [26] 228 445 15.108 1829.095

RAZ-Net [31] 116 195 24.465 4848.993

TEDNet [17] 113 188 8.863 4090.777

DUBNet [30] 105.6 180.5 18.827 581.231

MSDCNet (ours) 101.4 170.9 9.560 1791.465

4.7. Ablation Experiments

To verify the effectiveness of the proposed MFENet, the SPP module and dilated
conv layers, three ablation experiments were conducted. In the first experiment, MFENet
in MSDCNet was removed and the model only consisted of a front-end and back-end
network. It is denoted as model-A, as shown in Figure 13a. In the second experiment,
MFENet was preserved, three SPP modules in the front end were removed, and the original
2 × 2 max-pooling layers in VGG16 were used. This is denoted as model-B, as shown
in Figure 13b. In the third experiment, four dilated conv layers of the back end were
replaced with four standard conv layers and a pooling layer. This is denoted as model-C,
as shown in Figure 13c. The models are trained and tested on the UCF-QNRF dataset and
the experimental results are shown in Table 9.
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Table 9. Ablation experimental results on UCF-QNRF dataset. 

Model MAE MSE 
model-A (MSDCNet without MFENet) 185.6 268.1 

model-B (MSDCNet without SPP module) 163.3 238.7 
model-C (MSDCNet without dilated conv) 117.1 185.5 

MSDCNet 101.4 170.9 

The experimental results indicate that: 
1. From the counting errors of the two experimental models and MSDCNet, it can be 
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Table 9. Ablation experimental results on UCF-QNRF dataset.

Model MAE MSE

model-A (MSDCNet without MFENet) 185.6 268.1
model-B (MSDCNet without SPP module) 163.3 238.7
model-C (MSDCNet without dilated conv) 117.1 185.5

MSDCNet 101.4 170.9

The experimental results indicate that:

1. From the counting errors of the two experimental models and MSDCNet, it can be
seen that after removing MFENet and the SPP, the counting accuracy of MSDCNet
significantly decreased. Without MFENet, the MAE of model-A increased by 84.2
(about 45% of model-A’s MAE), and the MSE increased by 97.2 (about 36% of model-
A’s MSE). Without the SPP module, the MAE of model-B increased by 61.9 (about 38%
of the MAE of model-B), and the MSE increased by 67.8 (about 28% of the MSE of
model-B). Without dilated conv layers, the MAE of model-C increased by 15.7 (about
13% of the MAE of model-C), and the MSE increased by 14.6 (about 8% of the MSE of
model-C). These fully demonstrate the effectiveness of MFENet, the SPP modules and
the dilated conv layers in our model.

2. From the counting errors of the three experimental models, it can be seen that the
counting error of model-A is higher than that of model-B and model-C, indicating that
MFENet makes a greater contribution to the counting accuracy of the entire network
than the SPP modules and dilated conv layers.

5. Conclusions

The proposed crowd counting model solved the problems of uneven crowd distribu-
tion and variance of heads scale, achieved high counting accuracy and good robustness on
three public datasets. The one-column framework of the backbone simplified the model’s
structure and kept a certain depth to extract high-level features. The proposed SPP modules
in the front end fused the spatial features in pooling and helped the front end to extract
features in a different scale without increasing the parameters. By connecting a multi-
column subnet (MEFNet) to the one-column backbone, we achieved a compromise result
between precision and complexity. Only by increasing the parameters by 3.8% did MEFNet
perceive the dramatic changes in the scale of the image and extract the multi-scale features
of the heads. The consecutive dilated convolution layers used as the back end prevented
overfitting effectively to avoid the loss of head features, expanded the receptive field, and
improved the quality of the output density maps.

In future research, we will investigate the impact of the background and image edge,
and establish a dense crowd counting model with higher accuracy and better robustness.
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