
Citation: Marelli, A.; Chiozzi, T.;

Battistini, N.; Zuolo, L.; Micheloni, R.;

Zambelli, C. Integrating FPGA

Acceleration in the DNAssim

Framework for Faster DNA-Based

Data Storage Simulations. Electronics

2023, 12, 2621. https://doi.org/

10.3390/electronics12122621

Academic Editor: Gemma Piella

Received: 27 April 2023

Revised: 23 May 2023

Accepted: 2 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Integrating FPGA Acceleration in the DNAssim Framework
for Faster DNA-Based Data Storage Simulations
Alessia Marelli 1,*,†, Thomas Chiozzi 1,†, Nicholas Battistini 1,†, Lorenzo Zuolo 1,†, Rino Micheloni 1,†

and Cristian Zambelli 2,*,†

1 DNAalgo, 62100 Macerata, Italy
2 Dipartimento di Ingegneria, Università degli Studi di Ferrara, 44122 Ferrara, Italy
* Correspondence: alessia.marelli@dnaalgo.com (A.M.); cristian.zambelli@unife.it (C.Z.);

Tel.: +39-320-2472597 (A.M.); +39-0532-974993 (C.Z.)
† These authors contributed equally to this work.

Abstract: DNA-based data storage emerged in this decade as a promising solution for long data
durability, low power consumption, and high density. However, such technology has not yet reached a
good maturity level, requiring many investigations to improve the information encoding and decoding
processes. Simulations can be key to overcoming the time and the cost burdens of the many experiments
imposed by thorough design space explorations. In response to this, we have developed a DNA storage
simulator (DNAssim) that allows simulating the different steps in the DNA storage pipeline using
a proprietary software infrastructure written in Python/C language. Among the many operations
performed by the tool, the edit distance calculation used during clustering operations has been identified
as the most computationally intensive task in software, thus calling for hardware acceleration. In this
work, we demonstrate the integration in the DNAssim framework of a dedicated FPGA hardware
accelerator based on the Xilinx VC707 evaluation kit to boost edit distance calculations by up to 11 times
with respect to a pure software approach. This materializes in a clustering simulation latency reduction
of up to 5.5 times and paves the way for future scale-out DNA storage simulation platforms.

Keywords: DNA-based storage; FPGA hardware acceleration; simulation

1. Introduction

The expected amount of data generated over the next decade will rapidly expose the
need for larger scale-out file- and object-based storage [1]. One of the main culprits in the
forecast storage emergency is the set of processes that cloud-based infrastructures devise
nowadays to preserve the information while attempting to keep the Quality of Service
(QoS) within the limits of a Service-Level Agreement (SLA) [2]. Frequent data replication
and retention management require denser, faster, and yet more reliable storage media,
impacting the Total Cost of Ownership (TCO). As a result, there is a surge of interest in
exploring alternatives to current storage technologies, such as Solid State Drives (SSDs),
Hard Disk Drives (HDDs), and magnetic tapes. An interesting solution to reduce TCO
and face the challenges in the cloud archival tier emerged in deoxyribonucleic acid (DNA)-
based data storage [3]. In a nutshell, DNA storage refers to the ability to represent digital
information (i.e., files made of ‘1’ and ‘0’ bits) in a synthetic molecule composed of two
polymer chains containing a sequential string of nucleotide monomers (bases). The chains
form a double helix structure in which there are four naturally occurring DNA bases:
adenine (A), thymine (T), cytosine (C), and guanine (G) [4]. From a digital standpoint,
we could, for example, use Gray coding to assign the value 11 to “A”, 10 to “T”, 00 to
“C” and 01 to “G” (see Figure 1). The data stored in DNA would then last reliably for
thousands of years [5] with little power consumption requirements for retention refreshing.
Further, a storage density of about 100 PB per gram is predicted [6], with evident benefits
on the physical footprint of a storage system. The molecules that represent the information

Electronics 2023, 12, 2621. https://doi.org/10.3390/electronics12122621 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122621
https://doi.org/10.3390/electronics12122621
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-3400-2624
https://orcid.org/0000-0001-8755-0504
https://doi.org/10.3390/electronics12122621
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122621?type=check_update&version=2

Electronics 2023, 12, 2621 2 of 19

to be stored in DNA are created on demand by encoding the way the DNA molecule is
synthesized and assembled. Once available, DNA sequences are later read back using
proper decoding techniques and sequencing technologies. However, one of the aspects
that limit the research in DNA-based data storage is related to economic reasons. Today,
writing (synthesis) and reading (sequencing) DNA for data storage are not practical at
scale [3]. Synthesis costs for DNA data storage are dependent on how bits are encoded
into DNA bases, and on the specific methods of synthesizing the DNA. They are hard
to characterize since today’s applications do not include DNA data storage (despite a
lab-based proof of concept [7]), but in general are considered unaffordable for thorough
design space explorations. Sequencing costs have already dropped dramatically in this
decade [8,9], but are still too high to bear since we are in the phase of gaining knowledge on
the DNA decoding steps for storage, thus requiring a multitude of lab experiments being
performed to explore the plethora of parameters controlling the process. Additionally, the
time required for synthesis and sequencing (with the former dominating the experiment
time) of DNA to prove reliable storage capabilities is extremely high, being in the range of
a week for less than 5 kbits [10]).

Figure 1. The double helix structure of the DNA with the base pairs evidenced along with the digital
encoding of the bases.

On top of that, the DNA synthesis and sequencing processes in information encoding
and decoding are inherently error-prone (i.e., noise affected). Common errors found in each
DNA chain (strand) are insertions, deletions, substitutions of bases, and multiple “noisy”
amplified replicas when the polymerase chain reaction (PCR) is used in data readout [11].
The nature of encoding and decoding errors is purely stochastic [12] and tailored to the
specific technology exploited in DNA synthesis/sequencing. Moreover, since the DNA
data storage channel theory observed some undefined spots in the phenomenology of
errors [13], there are some inherent difficulties in projecting their impact at the storage
application level. The literature addressed these specific topics by focusing either on a
deeper characterization of the channel or on the error correction techniques and on random
access data retrieval [5,12,14–19], although the difficulty of understanding how errors
interact in the digital data-to-DNA pipeline [3] still persists. A thorough campaign of
experiments could help in the formulation of error models, but with an evident burden
on the implementation cost and on the time-to-results. This calls for the creation of ad hoc
DNA-based storage simulation environments that tackle all the aspects of the synthesis
and sequencing errors.

In this work, we address the challenges described so far by providing the following
major contributions in the field of DNA-based storage:

Electronics 2023, 12, 2621 3 of 19

• We have developed a DNA storage simulation (DNAssim) platform to enable a fast
full-design exploration of the synthesis and sequencing technologies in the context
of storing digital information inside a DNA strand. The tool is entirely built in the
Python/C language and features a proprietary Graphical User Interface (GUI). To the
best of our knowledge, this is the first framework oriented to the study of DNA-based
storage that includes all the steps of the pipeline within a single tool.

• In the storage pipeline simulation, we identified a possible performance bottleneck
in the calculation of the edit distance, which is a similarity metric between DNA
strands appearing both in the modeling of the DNA storage noise channel and in the
information decoding steps.

• To this extent, we developed a custom acceleration engine based on a Xilinx VC707
Field Programmable Gate Array (FPGA) that improves edit distance execution with
evident advantages in the simulation chain. The accelerator improves the performance
with respect to a software counterpart by up to 11 times (700 kedit/s) and consumes
up to 7.46 W with a clock frequency of 170 MHz for the computational blocks.

• The accelerator has been integrated with the DNAssim framework by developing a
custom driver in the C language that provides data conversion from the software tool
and transfers them to the FPGA for subsequent edit distance calculation using the
PCIe gen2 protocol [20].

• We have validated the hardware-software co-simulation approach in the clustering
operation performed during the DNA storage decoding steps. The experimental
results demonstrated a simulation latency reduction of up 5.5 times with respect
to a pure software approach. Further, we have projected the simulation speed-ups
achievable on real use cases by demonstrating a simulation time reduction of up to
4.2 times when considering the storage of a music file on the DNA.

This work largely extends the preliminary ideas provided in our previous presenta-
tions [21,22] where we disclosed the idea of having software such as DNAssim and its
potential connection to an external hardware accelerator that had an unoptimized imple-
mentation. No details about the internal structure of the overall framework, the FPGA used,
the driver interconnection with DNAssim, and the structure of the design with the obtained
performance were given there. In this work, we completely exposed the details of the
DNAssim platform by showing its potential in modeling the DNA channels for information
reconstruction simulation and the architecture of the accelerator with quantitative and
qualitative benchmarks to assess the benefits in some critical operations such as clustering
(were edit distance is required the most).

With our work, we want to provide a simulation framework that will be of practical use
for storage engineers that want to quickly understand the potentialities and the limitations
of DNA-based data storage by exploring the role of the different steps in the storage
pipeline without bearing the costs and the time of synthesis and sequencing. Considering
the end-to-end flow from the information encoding to the final data reconstruction will help
extrapolate the operation bottlenecks and the potential data read/write failed strategies.
With our tool, it will be possible, without incurring the costs of synthesis/sequencing, to
extract the information required in benchmarking the reliability of this new storage medium
with respect to legacy devices such as Flash memories for Solid State Drives. Further, our
co-simulation approach based on an FPGA accelerator addresses the shortcomings of
computationally intensive simulation campaigns [23] by reducing the time-to-result for
DNA storage data reconstruction using defined encoding/decoding strategies. Given the
scalability of this methodology, we foresee the future integration of multiple accelerators
dedicated to different steps of the storage pipeline enabling large scale-out simulation
campaigns, with the ultimate goals of improving the confidence in DNA-based data storage
and helping the research community in this context.

The work is organized as follows: in Section 2, we present the related works on the
topic; in Section 3 we discuss the fundamentals of DNA-based storage and the DNAssim
software simulation chain; in Section 4 we present the FPGA-based edit distance hardware

Electronics 2023, 12, 2621 4 of 19

acceleration block to be integrated into the DNAssim framework; in Section 5 we provide
experiments and results to assess the benefits of our approach in clustering operations
performed in the information decoding pipeline; conclusions will be drawn in Section 6.

2. Related Works

DNA-based storage has been studied for more than one decade both from the theoreti-
cal and the practical standpoint. A recent proof-of-concept showing an automated system
for DNA reading and writing has been provided in [24]. Microsoft and the University of
Washington research teams created a device that takes the data input and then encodes
it as DNA strands. To read it, a dedicated machine pumps the DNA strands into a DNA
sequencer, and then a computer decodes that into binary to recreate the original data. This
promising work enabled computer architects to start considering DNA storage technology
even as an integral part of computer design [7]. With the help of the coding theory, there
was an incredible effort put into the ECC application and the technology used for DNA
strands’ readout.

Y. Erlich et al. [5] use Fountain codes and Reed–Solomon (RS) codes to recover missing
DNA strands from sequencing and errors such as substitutions within each DNA readout.
They do not cope with errors such as insertion and deletions.

L. Organick et al. [18] also use RS codes, but on blocks with greater lengths than [5],
to correct both erasures and substitution errors. They also introduce a random-access
technique to the stored data based on the PCR. In this work, they also suggest interleaving
the input data to make sure that the DNA strands obtained by synthesis are dissimilar. In
this way, the decoding process becomes less expensive.

S. Chandak et al. [12] propose to use Low-Density Parity Check (LDPC) codes to face
the problems of missing strands and substitution errors. They also suggest the use of a
synchronization marker to solve the issues derived from insertion and deletion errors.
During the decoding process, differently from [18], they cluster the reads by indexing due
to its lower computational complexity. This is possible because during encoding they add
an index to each strand.

C. Rashtchian et al. [23] highlight that DNA-based data storage requires a computa-
tionally intensive process to retrieve the data. A crucial step in the data retrieval pipeline
involves the clustering of billions of strings. Their proposed algorithm iteratively merges
clusters based on random representatives and compares only a small subset of representa-
tives thanks to a hashing scheme that determines if the clusters are to be merged.

S. Yazdi et al. [17] introduce a DNA storage system with random access capabilities
based on PCR. In this work, they demonstrate that the cost of synthesizing uncompressed
files is much higher than the cost of compressing a file and adding redundancy to eliminate
errors. An alignment procedure that compares with [25] is proposed to achieve high-quality
reads to reduce the number of errors.

R. Heckel et al. [19] discuss the statistical characterization of the DNA storage channel.
They describe the error sources of the channel by pinpointing three phases: during the
DNA synthesis process, in the storage phase, and during the DNA sequencing process.
More generally, they assert that most deletion and insertion errors are due to the synthesis,
while the substitution errors are dominated by synthesis/sequencing and are also impacted
by the DNA decay and the PCR.

S. R. Srinivasavaradhan et al. [26] present a new algorithm useful for trace reconstruc-
tion called Trellis-BMA. They also give a description of the DNA storage system channel
and describe the channel considering that the error profile is strongly influenced by the
DNA sequencing technology.

All these works focus on specific steps of the DNA storage pipeline and do not consider
the end-to-end chain of operations required to encode and decode the information. Further,
to the best of our knowledge, there is no report of a dedicated simulation engine applied to
the context of DNA-based data storage.

Electronics 2023, 12, 2621 5 of 19

Concerning FPGA acceleration engines exploited in speeding up the simulation
pipeline and enabling co-simulation platforms, there has been a lot of investigation.

In [27], we preliminarily developed a co-simulation platform that exploits an FPGA
for ECC analysis and error-floor characterization tightly coupled with a dedicated storage
simulator [28]. The benefits of the co-simulation materialized in accurate yet time-effective
predictions of the storage media reliability. Motivated by this result, we decided to study a
similar approach in the domain of DNA storage.

In the specific context of hardware acceleration for DNA strand analysis,
Caffarena et al. [29], Kent et al. [30] and Dydel et al. [31] present an FPGA hardware
support that leverages parallel computation acceleration for specific functions of the DNA
reconstruction chain, although in these papers, the computations are not fully on par with
the current technologies available for DNA storage, but rather for biological analysis of
the DNA.

Castells-Rufas et al. [32] developed an approximate edit distance accelerator validated
on several up-to-date FPGA architectures (with PCIe gen3×16 host interface) reporting top-
class performance in the context of DNA string alignment, although not providing a direct
link with the clustering algorithm nor with DNA-based storage simulation acceleration.

Marchisio et al. [33] observed that since DNA strings suffer from variations such as
mutation, noisy sampling, and transmission, instead of searching for the exact match, the
inexact string matching (ISM) of DNA sequences is preferred. They show that due to the
large amount of data and massive data dependency, the ISM algorithm is not suitable for
being implemented into general-purpose hardware. They propose a novel specialized
hardware architecture implemented on a Xilinx Ultrascale+ FPGA showing massive clock
cycle reduction compared to an ARM-based implementation, although still with no direct
link with DNA-based data storage.

In this work, we are trying to address what is still an unsolved part of the problem
in DNA-based data storage, namely the creation of a time-efficient framework based on a
hardware/software co-simulation environment that encompasses a tool for the complete
design space exploration of the storage pipeline and a custom accelerator to boost the
execution of computationally intensive tasks. This will be particularly important in large
simulation campaigns required to expose the bottlenecks in the different stages of the DNA
information encoding/decoding processes and in evidencing the critical aspects such as
storage reliability (i.e., resilience to errors).

3. The DNA-Based Storage Simulation Engine

The simulation of the DNA storage pipeline involves different stages that should be
modeled by a software framework capable of capturing the peculiarities of the information
encoding and decoding. Figure 2 shows a high-level description of the proposed DNAssim
software simulation engine. The tool has been written in Python version 3.10 with C
libraries for accelerating the computation of time-intensive and CPU resource-demanding
operations. It currently supports both single-thread and multi-thread architectures.

3.1. Encoder Blocks

The information encoding process starts by feeding the first block of the simulator,
namely the Outer code, with arbitrary input data to store by using synthetic DNA (e.g.,
a multimedia file, a text file, etc.). Its role is to apply an ECC to the binary data in the
input, thus granting data corruption protection against erasures or insertions/deletions
(Indel channel analysis [34]). Supported ECCs range from RS to algebraic codes such as
Bose–Chaudhuri–Hocquenghem (BCH) or probabilistic ones such as LDPC. It is worth
noting that since we are in the presence of burst errors in the channel, a set of interleaving
techniques typical for erasure coding are exploited [35].

Electronics 2023, 12, 2621 6 of 19

Figure 2. The architecture of the DNAssim software simulation engine presenting the different steps
to be performed in the DNA storage pipeline.

The next operation to be performed during encoding is the so-called Mapping. The
generated binary data from the Outer code are translated into bases (A, C, G, and T) by
using a user-specified scheme of 2 bits (e.g., 00 — A, 01 — C, 10 — G, and 11 — T).
Since [18] pointed out that during the mapping process we may incur the generation of
homopolymers (e.g., AA couples) that induce synthesis errors, we included the application
of a randomization scheme (with different techniques [36]) to improve the synthesis quality,
as suggested by [12]. A synchronization marker inside the DNA strand can be applied to
recover specific parts of the information in case of insertion and deletion errors.

The DNA strands are, however, sequenced without a specific order. DNA storage
systems typically encode a single file into a pool of short strands to reduce synthesis and
sequencing issues. To this extent, in order to reconstruct the original stored file, an ECC-
protected index must be applied by an Indexing block [37]. Since DNA sequences with long
homopolymer sequences result in issues with synthesis/sequencing [5], we also support
pseudo-random permutations to each index before encoding. This approach proposed
in [12] turns out to be effective in sequencing error reduction.

The last operation to simulate in the encoding process is the Primer application. For
biological reasons, the primer is used not only for the synthesis process but also for se-
quencing the data to pick up the correct DNA strands that are to be read afterwards. In
fact, it is possible to have multiple files stored in a pool of DNA strands.

3.2. Noise Model of the Channel

The observed noise in DNA storage is a complex combination of synthesis errors,
amplification errors generated during the data readout by the PCR, and sequencing-induced
noise [13,38]. In fact, the DNA is accessed using sequencing technologies, which results
in several PCR noisy replicas called reads (see Figure 3). A read is a copy of an original
short string of DNA symbols called a reference [23]. Both references and reads contain
hundreds of symbols, forecasted to reach a thousand in the near future [17]. Symbols
(bases) in DNA are inserted, deleted, and transposed/substituted (IDS) because of the
previous operations. The DNA storage channel is, therefore, modeled as IDS-like, focusing
on the case where a single encoded message is transmitted and multiple independent
traces are observed [6,17,18]. However, a precise noise model of this error profile is found
cumbersome and of impractical application [26]. A peculiarity of the DNA channel is
that the input is a set of many strings with similar lengths mapped in the {A, T, C, G}
alphabet. Those strings may have a certain degree of similarity, namely, they feature a
proper distance. For DNA-based storage, the similarity index is calculated with the edit
distance, also defined as the Levenshtein distance [39], when IDS errors are present in the
strings. The Wagner–Fischer algorithm [40] computes the edit distance between two strings
based on the observation that if a matrix D holds the edit distances between all the symbols
in the first string and all the symbols in the second, we can compute the values in D by
a flood-filling procedure, and thus find the edit distance between the two full strings as
the last value computed by the algorithm. Let us assume two strings x and y of N and M
length, respectively. The D matrix is then sized (N + 1)× (M + 1). The algorithm is then

Electronics 2023, 12, 2621 7 of 19

expected to calculate each element of the distance score matrix D[i, j] (i = 1, · · · , N and
j = 1, · · · , M) using the following equation set:

D[i, 0] = i i = 1, · · · , N

D[0, j] = j j = 1, · · · , M
(1)

s =

{
0 xi = yj

1 xi 6= yj
(2)

D[i, j] = min

D[i− 1, j− 1] + s
D[i− 1, j] + 1
D[i, j− 1] + 1

 i = 1, · · · , N

j = 1, · · · , M
(3)

where the terms D[i− 1, j− 1] + s, D[i− 1, j] + 1, and D[i, j− 1] + 1 in Equation (3) account
for symbol substitutions, deletions, and insertions. We remember that if one of the two
strings has zero length, the result is the length of the non-null string. If both strings have
zero length, the result is zero. An example of edit distance calculation through the matrix
D used by the Wagner–Fischer algorithm is provided in Figure 4. To evaluate the noise-
modeling capabilities of the DNAssim software engine, we simulated the storage of a 2
MB file. We fixed an IDS error rate equal to 1%. In Figure 5a, there is an example of three
different PCR profiles that DNAssim is able to reproduce. It represents the probability
density function (PDF) as a function of the mean coverage. We define as mean coverage
the average number of reads per strand. An effective way to decrease the IDS error rate
and the number of erasures in DNA-based storage is to increase the mean coverage. A
high coverage means that the same strand is read many times, so it is less likely to feature
a missing strand (i.e., an erasure). Further, the number of strands used to produce a
consensus is higher, so it is most likely to have a good consensus for statistical reasons.
Deviations from the average coverage in the sequence copy distribution can either cause
wasteful provisioning in sequencing or an excessive number of missing sequences.

Figure 3. Common PCR-induced and IDS channel errors modeled by the DNAssim software engine.

Figure 4. An example of edit distance calculation through the Wagner–Fischer algorithm using a
score matrix D. The value highlighted in green (i.e., the last element of the matrix) is the edit distance
between the two strings.

Electronics 2023, 12, 2621 8 of 19

Figure 5. (a) PDF of the mean coverage extracted from simulations where three different PCR profiles
are considered. (b) Unclustered strands ratio as a function of the mean coverage extracted from a
simulation profile. (c) Erasure and error percentage sustained by the decoder as a function of the
mean coverage.

Tuning our PCR models, we are able to represent a case where the mean coverage is
low, but it exposes a long tail in the PDF, a case where the mean coverage is slightly higher
while the tail has approximately the same length, and another simulation where the mean
coverage is much higher, turning the PDF to a Gaussian-like shape.

3.3. Decoder Blocks

The simulation of the decoding operation starts with the Primer removal from the DNA
strands. Since the PCR operation induces many read replicas, the goal of the decoder is
to recover the reference strings (the stored data) from the observed reads. This operation
is accomplished by the Clustering. Datasets in DNA-based storage typically contain only
a handful of reads for each reference, and each of these reads might differ depending on
IDS errors introduced by the channel [23]. The challenge of clustering is to achieve high
precision and recall metrics of many small underlying clusters. In DNA storage, the cluster
size can range from one up to more than a hundred noisy copies of the same reference
and all the clusters are separated in terms of edit distance [23]. Since the calculations
of this operation can be computationally intensive, we need to minimize the number of
edit distance evaluations (calculated through the Wagner–Fischer algorithm discussed in
the former section) through a carefully chosen hash function. The hash function H(w, l)
is defined as the enumeration of all strings w with length l in the alphabet {A, T, C, G}
(e.g., AAAA, AAAC, AACC, etc.). A member h(w, l) of the family H(w, l) is a random
permutation of that enumeration. To hash a cluster C with h(w, l), the following steps
are required:

• Pick a random element (a string) of the cluster and call it x;
• Evaluate which sequence in the enumeration h(w, l) appears first in x;
• Return that sequence followed by the next l character of x after the sequence.

As an example, suppose that we have a long string x = AACTAGCTTAGCAAGT as
a random member of the cluster C. Suppose the enumeration of h(4, 5) is AATT, GGAC,
GTAC, GCTT, etc. Then, the hash of x is GCTTAGCAA. Algorithm 1 shows how clustering
is performed inside DNAssim.

Electronics 2023, 12, 2621 9 of 19

Algorithm 1 Clustering algorithm
Ensure: C, r, w, l, L

for all l ∈ 1 · · · L do
pick random permutation h(w, l) ∈ H(w, l)
for all clusters c ∈ C do

pick random element xc and hash it
for all pairs x, y : h(w, l)(x) == h(w, l)(y) do

if edit_distance(x, y) ≤ r then
merge Cx and Cy

end if
end for

end for
end for

By considering Figure 5a again, we can see that the PDF of the mean coverage also
represents the PDF of the clustering dimension since perfect clustering groups the multiple
reads of the same strand together. In Figure 5b, we have a representation of the performance
of the clustering algorithm modeled in DNAssim. The metric to evaluate the goodness of
the clustering algorithm is the percentage of strands that do not have a cluster to group
with. This issue may happen either because there are too many errors and the algorithm
is not able to find the most similar cluster for a particular strand, or if there are few reads
hampering the process. On the one hand, a high number of reads can cause this situation,
so that is not desirable, but on the other hand, sufficient coverage is required to find out a
cluster of the proper size to compare with. In any case, we can see that in both situations the
DNAssim clustering algorithm performs very nicely since the percentage of unclustered
strands is very low. After Clustering, a Trace reconstruction step is mandatory. Once we
have identified different clusters, we want to choose the best candidate for each cluster
before triggering the decoding operations. Several alignment and consensus algorithms
exist for trace reconstruction [14,23], which are supported by the DNAssim software engine.
Index and synchronization markers are then removed, and the DNA symbols are finally
remapped into binary symbols.

The last step is the Decode operation which performs the de-randomization used in
the encoding step to reduce the synthesis errors. In Figure 5c, we simulated an input to
the Outer Code decoding step. We assessed the percentage of erasures (i.e., the percentage
of nucleotides that are never read) and the percentage of erroneous nucleotides that ECC
must correct as a function of the mean coverage. Straightforwardly, high mean coverage
is a way to decrease both errors. In any case, the percentage values are very different in
magnitude and allow speculation about which kind of errors the ECC struggles to correct
when providing the stored information to the user.

3.4. Qualitative Evaluation of DNAssim

The benefit of having a DNA-based storage simulator is that it is easier to compare
the different algorithms used in the encoding and decoding pipeline. Since the result of
the DNA pipeline is composed of the synergy of all the algorithms, it is very important to
understand how they work together and compare the results of the simulations at different
steps of the decoding process. In Figure 6, we have an example of two different end-to-end
simulations (i.e., experiments) using the same indexing strategy and trace reconstruction
algorithm, but relying on a different outer correction code and clustering algorithm. The
noise applied to the stored data is the same in both cases and the use and IDS error rate
is equal to 1%. We simulated the data storage of 20 DNA strands. With the simulation
parameters considered, we expect theoretically that our stored data will be reconstructed
using 20 clusters and that all the failing DNA strands will be recovered at the end of the
decoding process.

The first output of DNAssim is the result of the clustering algorithm used in data
reconstruction. In Figure 6a, we show how many clusters the algorithm found and their size

Electronics 2023, 12, 2621 10 of 19

(the number of strands composing the cluster). We can easily note that the two simulations
behave differently since the first experiment found 19 clusters (one missing) and the second
one 18 (two missing).

The second output is the number of errors before applying the outer code
(see Figure 6b). As it can be seen, when an erasure is found by DNAssim, we have
all the nucleotides in a DNA strand that are missing, and the corresponding cluster ID
will show a high number of errors (ID 10 and 20 in our experiments), while in all other
strands, there are subtle differences. At the end of the decoding process, DNAssim will
calculate the number of recovered strands. In this simulation, even if the chosen clustering
algorithm performed better for experiment #1 (i.e., a higher number of clusters was found);
the combination with the other algorithms in the storage pipeline (e.g., the outer code) will
perform worst since the decoding process will recover 19 strands out of 20, whereas all the
strands for experiment #2 will be recovered.

Figure 6. Two experiments performed to qualitatively assess the performance of DNAssim. In (a), the
size of the found clusters is plotted versus the cluster ID. The black circle indicates that in Experiment
#2 there are no DNA strands associated with cluster ID 10. In (b), we plot the errors before outer code
application as a function of the cluster ID. The black circle indicates that for Experiment #2 the cluster
ID 10 has been identified as missing (full DNA strand in error) and cluster ID 20 is missing in both
experiments due to the noise imposed on the stored data.

4. FPGA Hardware Acceleration of the Edit Distance Computation

The identification of the edit distance as a bottleneck for the DNA storage simulation
process motivated us to embrace a co-simulation approach that relies on custom hardware
acceleration. In this section, we present an FPGA-based edit distance accelerator discussing
its design flow from hardware to software implementation. The reasons behind the choice
of an FPGA architecture for accelerating the simulations performed by DNAssim are
two-fold. Firstly, the application targeted in this work (i.e., edit distance computation) is
renowned as an algorithm that does not require complex computations in the floating-point
domain nor fast tensor operations as normally happens for GPU-based applications. All
the operations in edit distance are mainly bit-wise (bit manipulations) and are performed
relying on a digital design with custom precision, which is a preferential area for FPGA
designs. Secondly, FPGAs are preferred to general-purpose hardware (e.g., CPUs and
GPUs) for their lower power consumption/higher energy efficiency during operation
and for better handling of a large amount of data with massive dependencies. In large
DNA-storage simulation campaign contexts such as the one presented in [23], these become
important non-functional properties to evaluate in the final system design. Moreover,
their optimization is mandatory for future scale-out simulation platforms where multiple
accelerators are sought to be integrated.

Electronics 2023, 12, 2621 11 of 19

4.1. Hardware Design

The FPGA card used in this work for edit distance acceleration is a Xilinx Virtex-7
VC707 evaluation kit based on the Virtex-7 XC7VX485T device. The design suite used for
the development of the entire system is Vivado 2019.1.3. The accelerator architecture is
presented in Figure 7. Its backbone features 32 concurrent computational blocks (CB), each
one devoted to the calculation of a specific instance of the edit distance using the algorithm
presented in the previous section.

Figure 7. Block diagram of the FPGA accelerator architecture. The connection with the host system
running the DNAssim software engine is highlighted as well.

4.1.1. Implementation of CBs and the Overall Framework

The implementation of the computational blocks has been performed by using Vi-
vado High-Level Synthesis (HLS). The FPGA resources occupation for a single instance is
provided in Table 1, materializing in a usage (Lookup Tables—LUT and Flip Flops—FF)
per CB of lower than 3% of the FPGA area. The communication and control flow with the
CBs is ensured through a set of 32 programmable 4 kB dual port block RAMs (BRAMs)
that represent the main interface between the DNAssim software engine running on the
host and the CBs in FPGA. It is worth noting that the actual parallelism of the backbone
can be assumed in future works either as a design parameter or as a reconfigurable option
to be changed before running the simulations. Indeed, a user could easily change either
the number of instances or the size of the interfacing BRAMs to fit both the host and the
acceleration requirements. The I/O communication path linking the host to the accelerator
BRAMs is achieved through an AMBA-AXI-compliant crossbar [41] featuring 33 master
data ports (one for each CB and a DMA port) and 2 slave data ports. The latter ports are
connected, respectively, to a PCI Express gen2 ×4 interface following the guidelines of [20]
to guarantee the accelerator/host connectivity with this protocol, and to a DMA engine
responsible for the accelerator internal data movements relieving the host from managing
the transfers. Following this design approach, the address space covered by the BRAMs
(i.e., a maximum of 128 kB for 32 CBs) can be exposed to the host as a writable/readable
monolithic address region by means of a PCIe Base Address Register (BAR). Finally, to
precisely control the accelerator’s clock frequency, we inserted a clock multiplier block. Its
role is to decouple the PCIe reference clock at 125 MHz from the one used in computa-
tional logic (170 MHz). This mesochronous time domain approach provides the maximum
FPGA area occupation while keeping the frequency of the computational blocks as high
as possible.

Electronics 2023, 12, 2621 12 of 19

Table 1. FPGA utilization report from Vivado-HLS for a single edit distance computational block.

Name FF LUT

Expression 0 5915
Instance 135 118
Memory 272 96

Multiplexer - 1849
Register 4266 -

Total 4633 (0.76%) 7978 (2.62%)
Available 607,200 303,600

4.1.2. BRAMs Design for Data Transfers

The hardware design to speed up the computation of the edit distance is based
on BRAM blocks instantiated for each computational block that can store up to 4 kB
of data. The width of the BRAMs has been set to 128 bits; therefore, each BRAM will
have 256 addresses available. In a single BRAM instance, we choose to store up to seven
couples of DNA strands with a maximum length of 254 nucleotides, which corresponds to
3556 stored bytes. This design choice is ascribed to the fact that indices of the score matrix
are, in our application, ranging from 1 through 255. Only 7 bytes (strand length of 254) are
needed to store up to seven results in the same BRAM block. In total, 32 BRAMs coupled
with 32 CBs are implemented, which allows for calculating up to 224 results (DNA pairs).
In addition to the bytes reserved for the strands and results, another 16 bytes of metadata
are used—14 bytes to store each length of the strands and the other 2 bytes to control the
execution of the hardware CBs. In Figure 8, we show the layout of the BRAM structure. All
these considerations lead to an 87.4% occupation of BRAMs.

Figure 8. Addressing space layout of a single BRAM instance in the design.

4.1.3. Full Design Results

The full design with 32 CBs has been synthesized and implemented in Vivado using
the default strategies provided by the development suite, resulting in the floorplan depicted
in Figure 9. The estimated power consumption is 7.46 W with a Worst Negative Slack (WNS)
of 136 ps. In Table 2, we show the utilization report of Vivado, indicating heavy resource
usage in the design. In Figure 10, we report the performance of the implemented accelerator
in terms of k (kilo) edit distance calculated per second as a function of the DNA strand
length. We remember that 32 CB instances are concurrently addressed in the algorithm
execution flow. The accelerator’s performance is extracted using the Xilinx Integrated Logic
Analyzer (ILA) IP core [42]. With DNA strand lengths between 120 and 254 (the current
hardware limit), we can sustain a maximum performance of up to 700 kedit/s. It can be
observed that performance decreases as the strand length increases following a power law
rule with exponent −1.91. This is due to the O(N ·M) complexity of the algorithm [29,30]
where N and M are the lengths of the strands, respectively. It is worth highlighting that, in

Electronics 2023, 12, 2621 13 of 19

any case, the FPGA realization of the edit distance drastically outperforms the software (C
wrapped in Python) version.

Figure 9. Floorplan of the XC7VX485T FPGA implementing a 32 CBs edit distance hardware acceler-
ator. The colors of the hardware blocks match those indicated in Figure 7.

Table 2. Utilization report of a 32 CBs edit distance hardware accelerator implemented on the Xilinx
XC7VX485T FPGA.

Site Type Used Available Usage %

Slice LUTs 196,785 303,600 64.82
LUT as Logic 174,277 303,600 57.40

LUT as Memory 22,508 130,800 17.21
LUT as distrib. RAM 21,304 - -

LUT as Shift Reg. 1204 - -
Slice Registers 237,117 607,200 39.05
Register as FF 237,177 607,200 39.05

Register as Latch 0 607,200 0.00
F7 Muxes 5065 151,800 3.34
F8 Muxes 1404 75,900 1.85

Figure 10. Performance of the FPGA-based accelerator measured in terms of calculated kedit/s as a
function of the DNA strand length. A comparison with a software (Python) realization of the edit
distance is provided as well.

4.2. Software Driver Design

The purpose of the software driver is to enable hardware acceleration, thus ensuring
both low latency and a fast integration path with the DNAssim software engine. The
software driver is written using the C programming language and must perform all the host-
to-accelerator data transfers using the DMA engine implemented in the FPGA. Since the
DNAssim software engine is developed in Python, the integration between the simulator

Electronics 2023, 12, 2621 14 of 19

and the driver is performed using the Python/C API which acts as a bridge ensuring
negligible latency. The driver is then included in a custom Python library; therefore, it
can be rapidly integrated inside the simulator and the hardware acceleration of the edit
distance is achieved with a simple function call. In Figure 11, we show the block diagram
of the driver and how it connects the host and the FPGA design.

Figure 11. Block diagram of the software driver interconnecting the DNAssim software with the
developed hardware accelerator.

4.2.1. Front-End

The driver’s front end reshapes the DNA strands received from the software engine
running on the host, appends the metadata, and writes them into a buffer. The data
structure written inside the buffer is defined by the hardware accelerator. Since the number
of received DNA strand pairs and their lengths can change, a zero-padding operation is
included as a part of the reshaping process to match the data structure required by the
hardware accelerator. The buffer is composed of 4 kB chunks representing the working
memory of each CB in the FPGA (see Figure 8). Since the maximum number of CBs is 32,
the maximum buffer size is 128 kB.

4.2.2. Back-End

The driver’s back end performs all the I/O operations at the Operating System (OS)
level. A low-latency data path is ensured by managing the transfers in the OS kernel space.
Once the data buffer has been prepared by the front end, the data is copied to a pre-allocated
buffer located in the kernel space (exposed to the DMA in the accelerator). After that, the
DMA is programmed with the source and destination addresses, together with the amount
of data to be transferred. At this point, the BRAMs associated with the CBs are loaded
and the computation starts. The driver’s back end then waits for the completion of the
hardware accelerator computation. This state is checked with a polling approach. When the
results of the hardware accelerator execution are ready, they are then transferred to the host
by means of the host’s CPU. Currently, no power limits on the PCI Express bus were set and
for the sake of simplicity, a polling approach to check the end of data movement has been
used rather than an MSI-X interrupt approach [20]. The accelerator-to-host data transfers
do not use the DMA. This is because the amount of data transferred is not sufficient to
benefit from the presence of DMA (the maximum results size is 224 bytes) resulting in an
overhead that would defeat its use.

4.2.3. Performance

The performance achieved by the driver is measured with Python using the time
function. It is important to underline that the measures include both write and read
transactions as well as the front end latency, but do not consider the latency introduced by
the hardware execution of the CBs. Indeed, it is important to assess these figures of merit
in isolation. Firstly, we characterized the read/write bandwidth offered by the BRAMs on
the FPGA accelerator. Measurements are performed without accounting for the execution
time of the CBs and they consider only the software driver without the simulation engine
triggering the transfers. The experimental results are obtained with the gettimeofday function

Electronics 2023, 12, 2621 15 of 19

of the C language. As shown in Figure 12, both read and write bandwidths increase with
the amount of transferred data (from 4 kB to 256 kB) until they become almost constant
because of the saturation of the data bus. In Figure 13, the buffer of data to be transferred
into the BRAMs is set to 128 kB to have enough data to compute 224 edit distances, so the
host is expected to read back 224 bytes (i.e., the comparison result). It is shown that the
bandwidth grows as the length of the DNA strands increases. This behavior is attributed
to the overhead reduction introduced by the zero-padding operation when a buffer of
a certain size (in multiples of 4 kB) is created. In Figure 14, the length of the strands is
swept from 120 to 254 to match the bounds of Figure 4. Results show that the bandwidth
grows until saturation as the strands couples increase, likely due to the data bus saturation
experienced in Figure 12.

Figure 12. Characterization of the BRAMs read and write bandwidth in isolation from the CBs.

Figure 13. Driver’s bandwidth (front end and back end) in isolation as a function of the DNA strand
length.

Figure 14. Driver’s bandwidth (front end and back end) in isolation as a function of the number of
DNA strand pairs.

Electronics 2023, 12, 2621 16 of 19

5. Co-Simulation Experiments and Results

To assess the performance benefits of our proposed hardware/software co-simulation
approach for DNA-based storage, we put the DNAssim framework and the FPGA acceler-
ator under test on a time-consuming operation such as clustering. A massive amount of
edit distance calculations are expected in this context, as discussed in the previous section
of this work. We measured, through the time function of a Python library, the clustering
latency obtained with different simulation parameters. The aim is to thoroughly explore
the areas with a performance advantage with respect to a pure software approach.

The test rig considered for all the experiments is shown in Figure 15. It is equipped
with an Asus Prime Z590-P motherboard which mounts an Intel Core i5-10600K CPU with
a 4.1 GHz clock frequency. The memory is a 16 GB (2 × 8 GB DIMMs) DDR4 Hyperx
Predator with a frequency equal to 2666 MHz. The storage is a 500 GB WD BLUE M.2 2280
connected to a PCIe gen3 ×4 interface. The Xilinx VC707 evaluation kit is mounted on
a PCIe slot available on an external PCIe gen3 ×16 PLX switch and connected to the PC
motherboard with extender cables. The OS installed is Linux Ubuntu 20.04.

Figure 15. A photograph of the test rig used to assess the performance of the DNAssim framework.
The Graphical User Interface (GUI) of the software engine and the FPGA-based hardware accelerator
attached to the host PC are highlighted.

In Figure 16, we report the simulation latency of the clustering operation during the
decoding phase in DNA-based data storage. We considered the mean coverage parameter
as 10, 20, and 40 and we varied the DNA strand length with values 120, 160, and 200. To
increase the space of exploration, we also considered different amounts of strings that are
input to the clustering operation, namely 105, 106, and 107. From the figure, it is possible
to straightforwardly observe that the higher the amount of input strings, the longer the
clustering simulation (from hundredths of seconds up to tens of minutes). Interestingly,
we note that our co-simulation approach can accelerate the clustering operation up to a
factor of 5.5 for low mean coverage and short DNA strands. In any case, the number of
acceleration scales with the mean coverage and the number of strings in input support
the use of our approach to speed up DNA-based data storage simulations. To further
qualitatively support the benefit of our proposed approach, we project the obtained speed-
up results to the clustering of real DNA data storage use cases by relying on the datasets
provided in [43] and by approximating the number of reads and the average strand length

Electronics 2023, 12, 2621 17 of 19

to our test conditions of Figure 16. As shown in Table 3, a maximum speed-up of 4.2×
can be achieved in the simulation of a music file stored in the DNA using a co-simulation
approach with the developed FPGA accelerator.

Figure 16. Clustering simulation latency benchmark between a pure software approach (SW) and
our acceleration framework (HW). The simulation parameters varied in the analysis are the mean
coverage and the DNA strand length. We consider different strings number in input to clustering
equal to 105 (a), 106 (b), and 107 (c), respectively.

Table 3. Range of speed-ups achievable in real DNA stored datasets (data traces from Organick [43])
using our co-simulation approach with respect to a pure software execution of DNAssim. The number
of reads and the average strand length are approximated using the closest value in excess used in our
clustering latency experiments.

Dataset # Reads
(Closest)

Avg. Strand
Length

(Closest)
Description Speed-Up

3.1M 3,103,511 (106) 150 (160) Movie file 2.49×
13.2M 13,256,431 (107) 150 (160) Music file 4.2×
12M 11,973,538 (107) 110 (120) Text file 2.91×

6. Conclusions

In this work, we have presented the integration of an FPGA hardware accelerator ded-
icated to editing distance calculation with a DNA-based data storage simulation environ-
ment (DNAssim) devoted to the study of the information encoding/decoding pipeline. The
accelerator has been developed on a Xilinx VC707 evaluation kit with a Virtex-7 XC7VX485T
FPGA and features a PCIe gen2 ×4 driver connected with DNAssim. The design has been
implemented at 170 MHz exhibiting a computation performance of 700 kedit/s (11 times
the performance of a pure software edit distance implementation) with a power consump-
tion of 7.46 W. The combination of the FPGA accelerator and DNAssim has been validated
in the simulations of the clustering operation process during the decoding phase of the
stored data on DNA. Massive simulation time reductions of up to 5.5 times are reported
using the proposed co-simulation approach and a projection on real datasets forecasts a
time reduction of 4.2 times in the simulation of the storage of a music file on the DNA.

Future works will be oriented to the extension of the DNAssim platform with hetero-
geneous integration of multiple accelerators and in the direction of large scale-out DNA
storage simulations.

Author Contributions: The individual contributions to this paper are the following: conceptual-
ization, A.M., C.Z. and R.M.; methodology, A.M., C.Z. and R.M.; software, A.M., T.C., N.B. and
L.Z.; validation, T.C., N.B. and L.Z.; electrical measurements and hardware implementation, T.C.,
N.B. and L.Z.; investigation, A.M., C.Z. and R.M.; data curation, C.Z. and R.M.; writing—original
draft preparation, A.M. and C.Z.; writing—review and editing, C.Z. and R.M.; visualization, C.Z.;
supervision, R.M. All authors have read and agreed to the published version of the manuscript.

Electronics 2023, 12, 2621 18 of 19

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank G. Lanzoni for their help in the design of the
FPGA accelerator and for fruitful discussion.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

DNA DeoxyriboNucleic Acid
PCR Polymerase Chain Reaction
FPGA Field Programmable Gate Array
IDS Inserted, Deleted, and transposed/Substituted
ECC Error Correction Codes
BRAM Block Random Access Memory

References
1. Rydning, J.; Reinsel, D. Worldwide Global StorageSphere Forecast, 2021–2025: To Save or Not to Save Data, That Is the Question;

Technical Report IDC Doc #US47509621; IDC Corp.: Needham, MA, USA, 2021.
2. Wieder, P.; Butler, J.M.; Theilmann, W.; Yahyapour, R. Service Level Agreements for Cloud Computing; Springer: New York, NY,

USA, 2014. [CrossRef]
3. DNA Data Storage Alliance. Preserving Our Digital Legacy: An Introduction to DNA Data Storage; Technical Report; 2021. Available

online: https://dnastoragealliance.org/dev/wp-content/uploads/2021/06/DNA-Data-Storage-Alliance-An-Introduction-to-
DNA-Data-Storage.pdf (accessed on 6 June 2023)

4. Alberts, B.; Bray, D.; Lewis, J.; Raff, M.; Roberts, K.; Watson, J. Molecular Biology of the Cell, 4th ed.; Garland: New York, NY,
USA, 2002.

5. Erlich, Y.; Zielinski, D. DNA Fountain enables a robust and efficient storage architecture. Science 2017, 355, 950–954. [CrossRef]
[PubMed]

6. Grass, R.; Heckel, R.; Puddu, M.; Paunescu, D.; Stark, W. Robust Chemical Preservation of Digital Information on DNA in Silica
with Error-Correcting Codes. Angew. Chem. Int. Ed. 2015, 54, 2552. [CrossRef] [PubMed]

7. DNA Storage. 2015. Available online: https://www.microsoft.com/en-us/research/project/dna-storage/ (accessed on 15
April 2023).

8. Budel, S. Next Generation Sequencing (NGS) Market Assessment Trends (2018–2024); Technical Report; DeciBio: Los Angeles,
CA, USA, 2021.

9. Brown, K. A $100 Genome within Reach, Illumina CEO Asks If World Is Ready. 2019. Available online: https://www.bloomberg.
com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready (accessed on 15 April 2023).

10. Genscript. Gene Synthesis & DNA Synthesis Service. 2023. Available online: https://www.genscript.com/gene_synthesis.html?
src=google&gclid=Cj0KCQjwyLGjBhDKARIsAFRNgW_Y6C7bL0pr-U_MZA_2tmShoNPCZWmjEZuLPCm4OjBff-LARSzPE3
oaAu3BEALw_wcB (accessed on 24 April 2023).

11. Saiki, R.; Gelfand, D.; Stoffel, S.; Scharf, S.; Higuchi, R.; Horn, G.; Mullis, K.; Erlich, H. Primer-directed enzymatic amplification of
DNA with a thermostable DNA polymerase. Science 1988, 239, 487–491. [CrossRef]

12. Chandak, S.; Tatwawadi, K.; Lau, B.; Mardia, J.; Kubit, M.; Neu, J.; Griffin, P.; Wootters, M.; Weissman, T.; Ji, H. Improved
Read/Write Cost Tradeoff in DNA-Based Data Storage Using LDPC Codes. In Proceedings of the 57th Annual Allerton
Conference on Communication, Control, and Computing (Allerton), Monticello, IL, USA, 24–27 September 2019; pp. 147–156.
[CrossRef]

13. Mitzenmacher, M. A survey of results for deletion channels and related synchronization channels. Probab. Surv. 2009, 6, 1–33.
[CrossRef]

14. Church, G.M.; Gao, Y.; Kosuri, S. Next-generation digital information storage in DNA. Science 2012, 337, 1628.
[CrossRef]

15. Goldman, N.; Bertone, P.; Chen, S.; Dessimoz, C.; LeProust, E.M.; Sipos, B.; Birney, E. Towards practical, high-capacity,
low-maintenance information storage in synthesized DNA. Nature 2013, 494, 77–80. [CrossRef] [PubMed]

16. Blawat, M.; Gaedke, K.; Hütter, I.; Chen, X.M.; Turczyk, B.; Inverso, S.; Pruitt, B.W.; Church, G.M. Forward Error Correction for
DNA Data Storage. Procedia Comput. Sci. 2016, 80, 1011–1022. [CrossRef]

17. Tabatabaei Yazdi, S.M.H.; Gabrys, R.; Milenkovic, O. Portable and Error-Free DNA-Based Data Storage. Sci. Rep. 2017, 7, 5011.
[CrossRef]

18. Organick, L.; Ang, S.; Chen, Y.J.; Lopez, R.; Yekhanin, S.; Makarychev, K.; Racz, M.; Kamath, G.; Gopalan, P.; Nguyen, B.; et al.
Random access in large-scale DNA data storage. Nat. Biotechnol. 2018, 36, 242–248. [CrossRef]

http://doi.org/10.1007/978-1-4614-1614-2
https://dnastoragealliance.org/dev/wp-content/uploads/2021/06/DNA-Data-Storage-Alliance-An-Introduction-to-DNA-Data-Storage.pdf
https://dnastoragealliance.org/dev/wp-content/uploads/2021/06/DNA-Data-Storage-Alliance-An-Introduction-to-DNA-Data-Storage.pdf
http://dx.doi.org/10.1126/science.aaj2038
http://www.ncbi.nlm.nih.gov/pubmed/28254941
http://dx.doi.org/10.1002/anie.201411378
http://www.ncbi.nlm.nih.gov/pubmed/25650567
https://www.microsoft.com/en-us/research/project/dna-storage/
https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready
https://www.bloomberg.com/news/articles/2019-02-27/a-100-genome-within-reach-illumina-ceo-asks-if-world-is-ready
https://www.genscript.com/gene_synthesis.html?src=google&gclid=Cj0KCQjwyLGjBhDKARIsAFRNgW_Y6C7bL0pr-U_MZA_2tmShoNPCZWmjEZuLPCm4OjBff-LARSzPE3oaAu3BEALw_wcB
https://www.genscript.com/gene_synthesis.html?src=google&gclid=Cj0KCQjwyLGjBhDKARIsAFRNgW_Y6C7bL0pr-U_MZA_2tmShoNPCZWmjEZuLPCm4OjBff-LARSzPE3oaAu3BEALw_wcB
https://www.genscript.com/gene_synthesis.html?src=google&gclid=Cj0KCQjwyLGjBhDKARIsAFRNgW_Y6C7bL0pr-U_MZA_2tmShoNPCZWmjEZuLPCm4OjBff-LARSzPE3oaAu3BEALw_wcB
http://dx.doi.org/10.1126/science.2448875
http://dx.doi.org/10.1109/ALLERTON.2019.8919890
http://dx.doi.org/10.1214/08-PS141
http://dx.doi.org/10.1126/science.1226355
http://dx.doi.org/10.1038/nature11875
http://www.ncbi.nlm.nih.gov/pubmed/23354052
http://dx.doi.org/10.1016/j.procs.2016.05.398
http://dx.doi.org/10.1038/s41598-017-05188-1
http://dx.doi.org/10.1038/nbt.4079

Electronics 2023, 12, 2621 19 of 19

19. Heckel, R.; Mikutis, G.; Grass, R.N. A Characterization of the DNA Data Storage Channel. Sci. Rep. 2019, 9, 9663. [CrossRef]
20. AXI Memory Mapped to PCI Express (PCIe) Gen2 v2.9. 2021. Available online: https://docs.xilinx.com/v/u/en-US/pg055-axi-

bridge-pcie/ (accessed on 18 April 2023).
21. Marelli, A.; Chiozzi, T.; Zuolo, L.; Battistini, N.; Lanzoni, G.; Olivo, P.; Zambelli, C.; Micheloni, R. DNAssim: A Full System

Simulator for DNA Storage. In Proceedings of the Flash Memory Summit, Santa Clara, CA, USA, 8–10 August 2022.
22. Marelli, A.; Chiozzi, T.; Zuolo, L.; Battistini, N.; Olivo, P.; Zambelli, C.; Micheloni, R. DNAssim: A Full System Simulator for

DNA Storage. In Proceedings of the Storage Developer Conference, Fremont, CA, USA, 12–15 September 2022.
23. Rashtchian, C.; Makarychev, K.; Racz, M.; Ang, S.; Jevdjic, D.; Yekhanin, S.; Ceze, L.; Strauss, K. Clustering Billions of Reads

for DNA Data Storage. In Proceedings of the Advances in Neural Information Processing Systems 30; MIT Press: Cambridge, MA,
USA, 2017.

24. Whitwam, R. Microsoft Automates DNA-Based Data Storage. 2019. Available online: https://www.extremetech.com/extreme/
288240-microsoft-automates-dna-based-data-storage (accessed on 15 April 2023).

25. Lassmann, T.; Frings, O.; Sonnhammer, E. Kalign2: High-performance Multiple Alignment of Protein and Nucleotide Sequences
Allowing External Features. Nucleic Acids Res. 2009, 37, 858–865. [CrossRef] [PubMed]

26. Srinivasavaradhan, S.R.; Gopi, S.; Pfister, H.D.; Yekhanin, S. Trellis BMA: Coded Trace Reconstruction on IDS Channels for
DNA Storage. In Proceedings of the 2021 IEEE International Symposium on Information Theory (ISIT), Melbourne, Australia,
12–20 July 2021; pp. 2453–2458. [CrossRef]

27. Zuolo, L.; Zambelli, C.; Marelli, A.; Micheloni, R.; Olivo, P. LDPC Soft Decoding with Improved Performance in 1X-2X MLC and
TLC NAND Flash-Based Solid State Drives. IEEE Trans. Emerg. Top. Comput. 2019, 7, 507–515. [CrossRef]

28. Zuolo, L.; Zambelli, C.; Micheloni, R.; Indaco, M.; Carlo, S.D.; Prinetto, P.; Bertozzi, D.; Olivo, P. SSDExplorer: A Virtual Platform
for Performance/Reliability-Oriented Fine-Grained Design Space Exploration of Solid State Drives. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 2015, 34, 1627–1638. [CrossRef]

29. Caffarena, G.; Pedreira, C.; Carreras, C.; Bojanic, S.; Nieto-Taladriz, O. FPGA Acceleration for DNA sequence alignment. J. Circuits
Syst. Comput. 2007, 16, 245–266. [CrossRef]

30. Kent, K.; Proudfoot, R.; Zhao, Y. Parameter-Specific FPGA Implementation of Edit-Distance Calculation. In Proceedings of the
Seventeenth IEEE International Workshop on Rapid System Prototyping (RSP’06), Chania, Greece, 14–16 June 2006; pp. 209–215.
[CrossRef]

31. Dydel, S.; Bała, P. Large Scale Protein Sequence Alignment Using FPGA Reprogrammable Logic Devices. In Proceedings of the
Field Programmable Logic and Application; Becker, J., Platzner, M., Vernalde, S., Eds.; Springer: Berlin/Heidelberg, Germany,
2004; pp. 23–32.

32. Castells-Rufas, D.; Marco-Sola, S.; Moure, J.C.; Aguado, Q.; Espinosa, A. FPGA Acceleration of Pre-Alignment Filters for Short
Read Mapping with HLS. IEEE Access 2022, 10, 22079–22100. [CrossRef]

33. Marchisio, A.; Teodonio, F.; Rizzi, A.; Shafique, M. ISMatch: A real-time hardware accelerator for inexact string matching of DNA
sequences on FPGA. Microprocess. Microsystems 2023, 97, 104763. [CrossRef]

34. Cai, K.; Chee, Y.M.; Gabrys, R.; Kiah, H.M.; Nguyen, T.T. Correcting a Single Indel/Edit for DNA-Based Data Storage: Linear-Time
Encoders and Order-Optimality. IEEE Trans. Inf. Theory 2021, 67, 3438–3451. [CrossRef]

35. Leung, K.; Welch, L. Erasure decoding in burst-error channels. IEEE Trans. Inf. Theory 1981, 27, 160–167. [CrossRef]
36. Skiena, S.S., Hashing and Randomized Algorithms. In The Algorithm Design Manual; Springer: Cham, Switzerlands, 2020;

pp. 171–195. [CrossRef]
37. Shomorony, I.; Heckel, R. DNA-Based Storage: Models and Fundamental Limits. IEEE Trans. Inf. Theory 2021, 67, 3675–3689.

[CrossRef]
38. Mao, W.; Diggavi, S.N.; Kannan, S. Models and Information-Theoretic Bounds for Nanopore Sequencing. IEEE Trans. Inf. Theory

2018, 64, 3216–3236. [CrossRef]
39. Berger, B.; Waterman, M.S.; Yu, Y.W. Levenshtein Distance, Sequence Comparison and Biological Database Search. IEEE Trans.

Inf. Theory 2021, 67, 3287–3294. [CrossRef] [PubMed]
40. Navarro, G. A Guided Tour to Approximate String Matching. ACM Comput. Surv. 2001, 33, 31–88. [CrossRef]
41. AMBA AXI4 protocol. 2019. Available online: https://developer.arm.com/products/architecture/system-architectures/amba/

amba-4 (accessed on 15 April 2023).
42. Xilinx Integrated Logic Analyzer (ILA) v2.0 IP-Core. 2012. Available online: https://docs.xilinx.com/v/u/en-US/ds875-ila

(accessed on 15 April 2023).
43. Organick, L.; Ang, S.D.; Chen, Y.J.; Lopez, R.; Yekhanin, S.; Makarychev, K.; Racz, M.Z.; Kamath, G.; Gopalan, P.; Nguyen, B.; et al.

Scaling up DNA data storage and random access retrieval. bioRxiv 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1038/s41598-019-45832-6
https://docs.xilinx.com/v/u/en-US/pg055-axi-bridge-pcie/
https://docs.xilinx.com/v/u/en-US/pg055-axi-bridge-pcie/
https://www.extremetech.com/extreme/288240-microsoft-automates-dna-based-data-storage
https://www.extremetech.com/extreme/288240-microsoft-automates-dna-based-data-storage
http://dx.doi.org/10.1093/nar/gkn1006
http://www.ncbi.nlm.nih.gov/pubmed/19103665
http://dx.doi.org/10.1109/ISIT45174.2021.9517821
http://dx.doi.org/10.1109/TETC.2017.2688079
http://dx.doi.org/10.1109/TCAD.2015.2422834
http://dx.doi.org/10.1142/S0218126607003575
http://dx.doi.org/10.1109/RSP.2006.26
http://dx.doi.org/10.1109/ACCESS.2022.3153032
http://dx.doi.org/10.1016/j.micpro.2023.104763
http://dx.doi.org/10.1109/TIT.2021.3049627
http://dx.doi.org/10.1109/TIT.1981.1056326
http://dx.doi.org/10.1007/978-3-030-54256-6_6
http://dx.doi.org/10.1109/TIT.2021.3058966
http://dx.doi.org/10.1109/TIT.2018.2809001
http://dx.doi.org/10.1109/TIT.2020.2996543
http://www.ncbi.nlm.nih.gov/pubmed/34257466
http://dx.doi.org/10.1145/375360.375365
https://developer.arm.com/products/architecture/system-architectures/amba/amba-4
https://developer.arm.com/products/architecture/system-architectures/amba/amba-4
https://docs.xilinx.com/v/u/en-US/ds875-ila
http://dx.doi.org/10.1101/114553

	Introduction
	Related Works
	The DNA-Based Storage Simulation Engine
	Encoder Blocks
	Noise Model of the Channel
	Decoder Blocks
	Qualitative Evaluation of DNAssim

	FPGA Hardware Acceleration of the Edit Distance Computation
	Hardware Design
	Implementation of CBs and the Overall Framework
	BRAMs Design for Data Transfers
	Full Design Results

	Software Driver Design
	Front-End
	Back-End
	Performance

	Co-Simulation Experiments and Results
	Conclusions
	References

