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Abstract: Deep learning has shown great potential in smart agriculture, especially in the field of
pest recognition. However, existing methods require large datasets and do not exploit the semantic
associations between multimodal data. To address these problems, this paper proposes a multimodal
fine-grained transformer (MMFGT) model, a novel pest recognition method that improves three
aspects of transformer architecture to meet the needs of few-shot pest recognition. On the one hand,
the MMFGT uses self-supervised learning to extend the transformer structure to extract target features
using contrastive learning to reduce the reliance on data volume. On the other hand, fine-grained
recognition is integrated into the MMFGT to focus attention on finely differentiated areas of pest
images to improve recognition accuracy. In addition, the MMFGT further improves the performance
in pest recognition by using the joint multimodal information from the pest’s image and natural
language description. Extensive experimental results demonstrate that the MMFGT obtains more
competitive results compared to other excellent models, such as ResNet, ViT, SwinT, DINO, and
EsViT, in pest recognition tasks, with recognition accuracy up to 98.12% and achieving 5.92% higher
accuracy compared to the state-of-the-art DINO method for the baseline.

Keywords: pest recognition; multimodal representation; fine-grained image recognition; vision
transformer; few-shot learning

1. Introduction

Agricultural pests seriously affect agricultural production and crop storage. Preven-
tion of agricultural pests requires proper recognition of the pest species and targeted control
measures. The mainstream methods for image classification are based on deep convolu-
tional neural networks (CNNs) [1]. However, such methods require a large number of
high-quality pest datasets manually labeled by experts, which is costly and impractical.
Therefore, the pest recognition techniques that can accommodate few-shot and low-quality
pest datasets have become a hot topic in current research. Transfer learning-based image
recognition methods [2] have achieved remarkable results with few-shot datasets. However,
such methods require the data in the source and target domains to be as similar as possible,
which is often difficult to satisfy for fine-grained recognition.

In recent years, the vision transformer (ViT) [3] model has achieved remarkable
success as a new model for applying transformers to the field of computer vision. ViT
uses a self-attentive mechanism to extract global information and is capable of parallel
training. However, such a method still requires large sample datasets for training. In
contrast, self-supervised learning is based on using positive and negative sample pairs for
feature extraction, which can achieve good performance with few-shot datasets. Therefore,
fusion of self-supervised learning and ViT has become one of the potential methods to
solve the few-shot pest recognition problem.

To address the problem that existing methods require large datasets and do not exploit
the semantic associations between multimodal data, this paper proposes a multimodal
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fine-grained transformer (MMFGT) model for pest recognition. The MMFGT extends the
transformer structure with self-supervised learning and fine-grained recognition methods.
In particular, it extracts target features using self-supervised learning to improve recognition
accuracy and reduce the reliance on data volume, while focusing attention on subdivision
regions of pest images, overcoming the challenge represented by pest images with low
proportions of pest targets, which are difficult to identify accurately. As shown in Figure 1,
the MMFGT method can improve the accuracy of fine-grained pest recognition by focusing
attention on the subdivided regions of the head, thorax, and tail in the pest image. In
addition, the MMFGT further improves the performance of fine-grained pest recognition by
exploiting the joint multimodal information from images and natural language descriptions
of pests. Experimental results showed that the MMFGT achieved more competitive results
compared to several advanced image recognition methods in the pest recognition task,
with a recognition accuracy of up to 98.12%.

MMFGT Attention

Discriminative 

Regions
"The body is long and

narrow, brownish yellow.

The head is triangular in

front of the compound

eye, and the posterior

part is finely contracted

like the neck..."

Image

Text

Figure 1. Visualization results from the MMFGT for fine-grained attention, with the selected top
three positions shown in red.

The contributions of this paper can be summarized in three points:

• The multimodal fine-grained transformer model for pest recognition is proposed. The
MMFGT extends the ViT model through self-supervised learning and fine-grained
recognition to address the problem of pest recognition; i.e., the target is small in the
image and a large sample dataset is required for training;

• Compared to existing methods, the proposed MMFGT model can provide a better-
performing classification strategy for pest recognition by using joint multimodal
information from images and natural language descriptions;

• Extensive experimental results demonstrate that the MMFGT can obtain more compet-
itive results compared to existing image recognition models in the pest recognition
task. The accuracy levels of the MMFGT with the IDADP pest dataset and tomato
pest dataset were 98.12% and 95.83%, respectively, 5.92% and 4.16% higher than the
state-of-the-art DINO method for the baseline.

The rest of the work is organized as follows: Section 2 describes the related work, and
the materials and the proposed method are discussed in Section 3. Section 4 presents the
experiments and discussion. Section 5 summarizes this work.

2. Related Work
2.1. Image Classification

The current mainstream image classification methods include AlexNet, VGG, GoogLeNet,
ResNet, InceptionNet, DenseNet, and other CNN methods [1]. Related studies on using these
methods for pest recognition have been conducted [4–7]. However, training of a CNN requires
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large datasets containing thousands of images, and there is no such large and diverse dataset
in the field of pest recognition. Transfer learning, which can effectively improve recognition
accuracy by pretraining CNN models with large datasets and re-training them with smaller
datasets [8–10], is an effective way to solve the above problem. Dawei et al. [2] proposed
a transfer learning model based on AlexNet for a pest detection and recognition diagnosis
system that can be trained for and detect 10 pest species. In addition, a deep CNN-based
transfer learning framework [11] has been proposed for the classification of tomato pests.
Chen et al. [12] studied migration learning with deep convolutional neural networks for plant
leaf disease identification. However, transfer learning requires the data in the source and
target domains to be as similar as possible, which is often difficult to achieve for fine-grained
recognition. In contrast, our method does not require a large and diverse dataset, nor does
it impose additional requirements on the dataset. Therefore, it is more suitable for pest
recognition where datasets are difficult to obtain.

2.2. Transformer

In recent years, the transformer model [13] has achieved great success in the field
of natural language processing as a pure attention mechanism approach that can learn
high-quality feature representations by considering the whole context. However, there
are significant challenges in using the transformer model for image classification due to
the significant differences in many scales between visual signals and textual symbols, as
well as the high dimensionality of pixel-level information, which may introduce additional
computational complexity. The ViT model [3] was proposed as a transformer model that
could be applied directly to image patch sequences to solve the image recognition problem.
Liu et al. [14] proposed a hierarchical ViT model called SwinT, which is more suitable for
computer vision tasks as it shifts the window computational representation and restricts
the self-attentive computation to non-overlapping local windows while also allowing
cross-window connectivity. However, the transformer method also relies on a large dataset
for training and is not effective for few-shot pest recognition. In this work, the proposed
MMFGT model uses self-supervised learning to extend the transformer structure to extract
target features through contrastive learning to reduce the reliance on data volume.

2.3. Self-Supervised Learning

Self-supervised learning can effectively solve the few-shot problem. It involves learn-
ing by constructing positive and negative samples and comparing the distance difference
between them without labeling data. Two of its most famous implementations in the
field of computer vision are MoCo and SimCLR. MoCo [15] uses momentum contrast for
unsupervised visual representation learning. SimCLR [16] is a simple visual-representation
contrastive learning framework. MoCov2 [17] establishes a stronger baseline with better
performance than SimCLR by using MLP projection heads and more data augmentation in
the MoCo framework, and it does not require large-scale batch training. SimCLRv2 [18] is
a simple semi-supervised ImageNet classification framework that includes unsupervised
pretraining, supervised fine-tuning, and extraction of unlabeled data. BYOL [19] does
not require negative samples and learns its representation by predicting the output of
previous versions. Sim Siam [20] is a simple Siamese network that uses neither negative
sample pairs nor a momentum encoder. DINO [21] is a recently proposed method com-
bining self-supervision with the ViT to solve the recognition problem for few-shot images.
EsViT [22] is a more recently proposed method combining self-supervision with SwinT
that is also suitable for solving the few-shot image recognition problem. However, the
small percentage of targets in pest images makes identification difficult. To solve this
problem, fine-grained recognition was integrated into the MMFGT to focus attention on
finely differentiated regions of pest images to improve recognition accuracy.
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2.4. Multimodal Learning

Multimodal learning approaches address machine learning problems that contain data
from different modalities, and they can by used for tasks such as data classification [23,24],
sentiment analysis, semantic computing, cross-modal retrieval [25,26], and visual ques-
tion answering [27,28]. In image classification, multimodal data information can describe
images more comprehensively than single-modality data information. For instance, nat-
ural language can complement the description of subtle differences between images to
facilitate image classification. He et al. [29] used natural language descriptions to identify
the discriminative parts of relevant images, thus enabling multimodal representation for
fine-grained image classification. Nawaz et al. [30] proposed a strategy for learning natu-
ral language descriptions and joint image representations using a multilayer two-branch
network to improve fine-grained classification tasks. Gallo et al. [31] built a multimodal
classifier with two different models and adapted it to a stacking technique. In agricultural
disease identification, Zhou et al. [32] studied the semantic embedding methods for disease
images and disease description texts, as well as knowledge representation and knowledge-
embedding mechanisms in the disease recognition domain, and constructed a disease
identification model based on “image-text” multimodal collaborative representation and
knowledge assistance (ITK-Net). However, little work has been devoted to the use of
multimodal information for few-shot image classification because multimodal information
is not easy to search and difficult to fuse. In this work, we propose a few-shot image
classification method based on multimodal information.

3. Materials and Methods

In this section, we first introduce the two datasets used for the experiments in Section 3.1
and then discuss the detailed structure of the proposed MMFGT method in Section 3.2.

3.1. Datasets

Two datasets were used in the experimental part of this study. One was the IDADP
pest dataset [33] containing 1293 images of 29 pest categories; the maximum number of
images per category is 124 and the minimum number of images is 6. The amount of data in
each category is small and unevenly distributed. The number of images in each category in
the IDADP dataset is shown in Table 1. Typical example images and the corresponding
description text are shown in Table 2. In each image, the background of the image is
complex and the pests are small and inconspicuous in the image. The samples are manually
divided into training and validation sets in a ratio of 7:3. The text dataset is based on the
corresponding pest description text written for each image in Wiki Encyclopedia.

Table 1. The number of images per category in the IDADP dataset.

Pest Name Number

Colposcelis signata 41
Piezodorus rubrofasciatus 19

Riptortus pedestris 54
Eysacoris guttiger 6

Erthesina fullo 40
Membracidae 41
Acrida cinerea 13

Tingidae 18
Oxya 10

Scurelleridae 9
Spoladea recurvalis 38

Cletus schmidti Kiritshenko 40
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Table 1. Cont.

Pest Name Number

Ascotis selenaria Schiffermuller et Denis 36
Helicoverpa armigera 39

Berytidae 79
Taiwania 25

Aphidoidea 124
Eurygaster testudinarius 19

Spodoptera frugiperda 95
Trigonotylus ruficornis Geoffroy 28

Riptortus linearis Fabricius 65
Rhopalosiphum maidis 19
Pygmy sand cricket 17

Atractomorpha sinensis Bolivar 90
Tropidothorax elegans Distant 30

Cletus punctiger Dallas 93
Dolycoris baccarum 120

Nysius ericae 62
Longhorned grasshoppers 23

Table 2. Typical example images and corresponding description text.

Pest Name Image Description Text

Aphidoidea
Body length 2 mm, green, ovoid. Eyes large, small ocular
surface. Ventral tube tubular, apical margin protruding,

surface smooth or tiled. Tail plate end round

Acrida cinerea

Body medium to large, green in color. Head
conical. Face extremely inclined, face bulge

extremely narrow. Head protruding with rounded
apex. Antennae sword-shaped. Compound eyes long-oval

Atractomorpha
sinensis Bolivar

The body is green. Head sharpened, protruding forward,
with small yellow tuberculate projections on lateral
margins. Forewings green, exceeding the abdomen;
hindwings red at the base and light green at the tip

Membracidae

The body is yellowish brown, narrow and long, with dense
carving points. The top of the head and the anterior margin of
the dorsal plate of the prothorax are dotted with small black
grains. Compound eyes maroon, single eye red. The lateral

horns are elongated and black at the end

The second database was a database of images of eight common tomato pests [34],
including Tetranychus urticae, Bemisia argentifolii, Zeugodacus cucuurbitae, Thrips palmi, Myzus
persicae, Spodoptera litura, Spodoptera exigua, and Helicoverpa armigera. The images were
collected from the IPMImages database and the National Bureau of Agricultural Insect
Resources (NBAIR), totaling 609 images of pests in eight categories. The number of images
and example images for each category are shown in Table 3.
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Table 3. Number of images and example images for each category in a database of eight common
tomato pests.

Pest Name Image Number Pest Name Image Number

Bemisia argentifolii 61 Spodoptera litura 97

Helicoverpa armigera 109 Thrips palmi 25

Myzus persicae 131 Tetranychus urticae 75

Spodoptera exigua 76 Zeugodacus cucurbitae 43

3.2. The Structure of the Proposed Model

In this paper, a fine-grained pest recognition model (MMFGT) is proposed to solve the
few-shot pest recognition problem. The architecture is shown in Figure 2. At the beginning,
the image is segmented into small pieces and projected into the embedding space. The
input to the transformer encoder includes the patch embedding, as well as the learnable
position embedding. Before the last transformer layer, a part selection module (PSM) is
applied to select the tokens corresponding to the discriminative image patches, and only
these selected tokens are used as input for the last transformer layer to finally obtain the
features of the image. The description text corresponding to the image is fed to the text
encoder (ALBERT [35]), and the input is transformed into feature vectors as text features
after a multi-layer transformer. Finally, the image features and text features are linearly
stitched together for linear classification to obtain the predicted class of pests.

The MMFGT includes improvements of three aspects of the transformer architecture
to make it well-suited for few-shot pest recognition: (1) Self-supervision. To address the
problem that it is difficult to train few-shot pest datasets on a large scale, the MMFGT uses
self-supervised learning to extend the transformer architecture to extract target features by
means of contrastive learning, reducing the dependence on data volume; (2) Fine-grained
recognition. In order to overcome the challenge represented by the small percentage of pest
targets in pest images, the MMFGT integrates fine-grained recognition to focus attention on
subdivided areas of pest images and improve recognition accuracy; (3) Multimodality. The
MMFGT can utilize the joint multimodal information from image and natural language
descriptions encoded using the image encoder (fine-grained transformer model for pest
recognition (FGT)) and text encoder (ALBERT [35]), respectively. These extracted image
features and text features are combined and fed into a linear classifier for classification,
further improving the performance of fine-grained pest recognition. Compared to previous
work, although DINO [21] is implemented in a self-supervised manner to train the ViT,
which is suitable for small-sample recognition, this model does not perform well in the pest
recognition task due to the limited variation in pest features. In contrast, inspired by [21,36],
we innovatively improved the accuracy of fine-grained pest recognition by incorporating
a fine-grained module, PSM, into the ViT to focus attention on pest segmentation in this
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work. In addition, our model further improves the accuracy of pest recognition by fusing
image features and text features extracted with our proposed image encoder (fine-grained
transformer model for pest recognition (FGT)) and text encoder (ALBERT [35]) for pest
classification. To the best of our knowledge, this is the first method that combines fine-
grained, self-supervised ViT and multimodal models for pest recognition.
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Figure 2. Framework diagram of the MMFGT. The image and the corresponding text description are
fed into the image encoder (FGT) and the text encoder (ALBERT), respectively. Then, the obtained
image features and text features are stitched together for linear classification.

3.2.1. Image Encoder

The image encoder uses FGT, a fine-grained pest recognition method with a self-
supervised transformer architecture. As shown in Figure 3, FGT uses a combination of
self-supervised learning and knowledge distillation [21], with the teacher network being
dynamically constructed during the training process and having the same architecture as
the student network but with different parameters. Two different image transforms of the
input image are fed into the student network gθs and the teacher network gθt , respectively.
One N-dimensional feature is output from each of the two networks, and the similarity
between the two features is calculated using cross-entropy loss after normalizing the
features with softmax. The model propagates the gradient through the student network
only, and the parameters of the teacher network are updated using an exponential moving
average (EMA) of the student parameters. Both the student and teacher networks in FGT
use the ViT model modified with a part selection module (PSM) to better extract nuanced
regional features. The implementation details are as follows.
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Figure 3. FGT image encoder. Training the ViT model improved with a PSM with self-supervised
learning.



Electronics 2023, 12, 2620 8 of 19

Self-Supervised Learning Architecture

The architecture performs two different random transformations on the input image x
and generates a set of view sets containing two global views xg

1 and xg
2 and several local

views. All views are passed through the student network, while only the global views
are passed through the teacher network. The student network gθs is trained based on
the output of the teacher network gθt , and the two networks have the same structure but
different parameters, denoted by θs and θt, respectively. The probability distributions
for the N dimensions of the outputs of the two networks are denoted as Ps and Pt. The
probability P is obtained by normalizing the output of the network g using the softmax
function, denoted as:

Ps(x)(i) =
exp(gθs(x)(i)/Ts)

∑N
n=1 exp(gθs(x)(n)/Ts)

(1)

where Ts > 0 is the temperature parameter that controls the sharpness of the output
distribution. Given a fixed teacher network gθt , the model learns to match these probability
distributions P by minimizing the cross-entropy loss with respect to the parameter of the
student network θs:

min
θs

∑
x∈{xg

1 ,xg
2}

∑
x′∈Vandx′ 6=x

H(Pt(x), Ps(x′)) (2)

where H(a, b) = −alogb. The parameter θs is learned by minimizing Equation (2) using
stochastic gradient descent.

Improvement of the ViT Architecture with a PSM

To better extract nuanced regional features, the student and teacher networks use the
ViT architecture improved with a PSM. To make full use of the attentional information,
the last transformer layer is used as input for the feature layer. The improved ViT has M
self-attentive heads, and the hidden features of the last layer input are noted as aL−1 =
[a0

L−1; a1
L−1, a2

L−1, . . . , aN
L−1]. The attention weights of the previous layers are:

wl = [w0
l , w1

l , w2
l , . . . , wM

l ] l ∈ 1, 2, . . . , L− 1 (3)

wi
l = [wi0

l ; wi1
l , wi2

l , . . . , wiN
l ] i ∈ 0, 1, . . . , M− 1 (4)

The matrix multiplication is applied recursively to the original attention weights of all
layers:

w f inal =
L−1

∏
l=0

wl (5)

Compared to the single-layer raw attention weight wL−1, w f inal is a better choice
for selecting discriminative regions because it captures how information is passed from
the input layer to higher-level embeddings. Then, the indexes of the maximum values
W1, W2, . . . , WM are chosen for the M different attention heads in w f inal . These positions
are used as indexes of our model to extract the corresponding tokens in aL−1. Finally, the
selected tokens with the classification tokens are connected as input to the last transformer
layer, denoted as:

alocal = [a0
L−1; aW1

L−1, aW2
L−1, . . . , aWM

L−1] (6)

By connecting the categorical tokens corresponding to information regions to the last
transformer layer instead of the original, entire input sequence as input, the architecture
not only preserves the global information but also forces the last transformer layer to focus
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on the subtle differences between different subcategories and ignore less discriminative
regions, such as background or common features. Figure 4 shows the difference images of
the pests captured with the FGT method.

Image

Cletus punctiger Dallas

Cletus schmidti Kiritshenko

FGT Attention

Discriminative 

Regions

Figure 4. A pair of similar instances from the IDADP pest dataset for which FGT applied the ViT
model improved with a PSM to capture subtle differences.

3.2.2. Text Encoder

Single-modality representation using only images often struggles to achieve fine-
grained recognition. Therefore, multimodal representation including image and text was
used for more robust predictions since the text information can complement the image
information. Natural language description provides useful information that can be used
for fine-grained image classification. The joint multimodal information from the image
and natural language description can yield richer representation information than image
description. As shown in Figure 2, when one modality of data is missing, the multimodal
system can still operate based on the other modality of information.

The mainstream text encoders are BERT [37], ALBERT [35], etc. As shown in Figure 5,
BERT is a deep bi-directional language representation model capable of incorporating con-
textual information. The input of BERT is the representation corresponding to each token,
denoted as E. The representation consists of token embeddings, segment embeddings, and
position embeddings. The word dictionary is constructed using the WordPiece algorithm.
To accomplish the specific classification task, in addition to the word token, each sequence
of the input has a specific classification token [CLS] at the beginning, and the output of the
last transformer layer corresponding to this classification token plays the role of aggregating
the information of the whole sequence representation. Each sentence is followed by a split
token [SEP] to separate the different sentence tokens. After the multilayer transformer, C
is the output of the classification token [CLS] corresponding to the last transformer, and
Ti represents the output of the ith input token corresponding to the last transformer. The
input text goes through the BERT model and is transformed into feature vectors.

Compared to BERT, ALBERT has simplified model parameters, reduced memory
consumption, and improved training speed, solving the problem of limited GPU memory.
Therefore, we used ALBERT to encode the text information. The backbone of the ALBERT
model is similar to BERT in that both use transformer encoders with the GELU nonlinearity
activation function. The vocabulary size is denoted as V, the vocabulary embedding
size is denoted as F, and the hidden layer size is denoted as H. ALBERT has improved
factorized embedding parameterization and cross-layer parameter sharing. ALBERT uses
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the factorization of embedding parameters; instead of directly projecting one-hot vectors
into the hidden space of size H, it first projects them into the low-dimensional embedding
space of size F and then projects them into the hidden space. With this decomposition, the
embedding parameters are reduced from O(V ∗ H) to O(V ∗ F + F ∗ H), where F � H,
thus reducing the number of parameters. Moreover, ALBERT shares all parameters across
layers, further reducing the number of parameters. When processing pest text, ALBERT’s
training corpus is large and fully trained, which can solve the problem related to the
many technical terms in pest text. Furthermore, ALBERT’s network structure adopts a
bidirectional transformer, which better solves the problem of the context dependence of pest
text. At the same time, the ALBERT model is smaller and has faster convergence, shorter
prediction time, and better recognition timeliness. Finally, the obtained text features are
linearly stitched with the image features and then fed into a linear classifier for classification
prediction.

Tok 1 … …

… …

…

…

[CLS] Tok N [SEP] Tok 1 Tok M

……

BERT
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Figure 5. BERT architecture.

4. Experiments and Discussion
4.1. Experimental Settings

Experimental procedure. The MMFGT model was first validated with a 29-class
IDADP pest dataset. To verify the effectiveness of the MMFGT model in identifying similar
datasets, it was further validated with the 15-class IDADP stinkbug dataset with higher
similarity and the remaining 14-class IDADP pest datasets. Furthermore, its effectiveness
was evaluated with a database of eight common tomato pest images. The performance
of the MMFGT model in recognizing real pest images was evaluated by analyzing the
recognition accuracy.

Pretraining. The ViT architecture improved with a PSM was trained in a self-supervised
manner on the CUB_200_2011 dataset, and the initial weights of the ViT were loaded from
the ViT-B_16 model pretrained on ImageNet21k. The text encoder used the Hugging Face
pretrained ALBERT language model.

Parameter Settings. CrossEntropyLoss was used as the loss function and SGD as the
optimizer. The batch size was set to 16, the initial learning rate was 0.07, the momentum
was 0.9, the drop_rate was 0.1, and the epoch was 500.

Experimental environment. All models used in this work were implemented on a
desktop running Ubuntu 18.04 with Nvidia Quadro RTX 6000Ti GPU.

4.2. Evaluation Metrics

In this paper, the performance of the model was evaluated in terms of accuracy (ACC),
precision (P), recall (R), and F1 score. The computational equations are shown below:

ACC =
TP + TN

TP + TN + FP + FN
× 100% (7)
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P =
TP

TP + FP
× 100% (8)

R =
TP

TP + FN
× 100% (9)

F1 =
2× P× R

P + R
× 100% (10)

where TP refers to the number of samples that are actually positive and predicted to be
positive, FP refers to the number of samples that are actually negative but predicted to be
positive, FN refers to the number of samples that are actually positive but predicted to be
negative, TN refers to the number of samples that are actually negative and predicted to be
negative, and TN refers to the number of samples that are actually negative but predicted
to be positive.

4.3. Baseline

Several advanced models (ResNet101 [38], ViT [3], SwinT [14], DINO [21], and Es-
ViT [22]) were chosen as the baselines. ResNet101 is a classical CNN method and the most
widely used image recognition method. ViT is a recently proposed method applying the
transformer architecture to the field of computer vision that has achieved good results
in the field of image recognition. The more recently proposed SwinT exploits the prior
knowledge of the CNN and is more suitable for dealing with image problems. DINO is a
recently proposed method combining self-supervision with ViT that is suitable for few-shot
image recognition. EsViT is a more recently proposed method combining self-supervision
with SwinT that is also suitable for few-shot image recognition. In this study, a fine-grained
transformer model for pest identification (FGT) was developed and used as a baseline to
compare the effectiveness of the multimodal MMFGT.

4.4. Experimental Results

The performances of the FGT model, MMFGT model, and the five baseline methods
were compared by comparing their accuracy with the validation set. Table 4 shows the
highest accuracies achieved by the seven methods with the validation set during the training
period, and Figure 6 shows the accuracy curves and loss curves for these seven methods
with the IDADP pest validation set during the training period of 500 epochs. It can be
observed that: (1) Compared to the existing methods, the MMFGT method proposed in this
paper achieved the highest recognition accuracy, precision, recall, and F1 score; (2) The FGT
method proposed in this paper outperformed current image recognition methods. This was
because the combination of self-supervision and a fine-grained transformer is more suitable
for pest recognition under few-shot conditions; (3) The MMFGT model proposed in this
paper was more suitable for fine-grained recognition as it includes multimodal information,
and the recognition accuracy was improved by 0.8% compared to the FGT method; (4) The
overall recognition loss for the ViT, SwinT, DINO, EsViT, FGT, and MMFGT methods with
the validation set tended to decrease as the number of epochs increased, but ResNet101
showed overfitting because the dataset was too small and the training set was not similar
to the validation set; (5) The image encoder was pretrained with the CUB_200_2011 dataset.
The CUB_200_2011 bird dataset is similar to the IDADP pest dataset we used, as both are
few-shot and fine-grained datasets, and the text encoder was pretrained with Hugging
Face, which gave our proposed MMFGT model highly accurate recognition and improved
accuracy speed.
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Table 4. Performance of different models with the validation set of the IDADP pest dataset.

Model ACC (%) P (%) R (%) F1 (%)

ResNet101 68.90 63.79 56.37 52.43
ViT 86.33 86.45 83.50 84.33

SwinT 87.67 87.98 85.05 84.68
DINO 92.20 93.29 91.16 92.07
EsViT 91.20 91.85 91.05 91.23
FGT 97.32 98.67 96.99 97.51

MMFGT 98.12 99.07 98.56 98.50

Figure 6. Accuracy curves and loss curves for different pest recognition models with the validation
set of the IDADP pest dataset.

Since the stinkbug dataset has more similar data that are more difficult to identify,
experiments were conducted with the 15-class stinkbug dataset containing 682 images
from the IDADP to further validate the effectiveness of our method. The performances
of the different models with the validation set of the IDADP bedbug dataset are shown
in Table 5. The accuracy curves and loss curves for the different pest recognition models
with the IDADP stinkbug validation set are shown in Figure 7. It can be seen that the
MMFGT model achieved the highest recognition accuracy, precision, recall, and F1 score,
outperforming the existing methods. Specifically, the accuracy of the MMFGT model was
1.27% better than the FGT method, 5.73% better than EsViT, 5.21% better than DINO, 12.5%
better than SwinT, 7.82% better than the ViT method, and 22.92% better than ResNet101.

Table 5. Performance of different models with the validation set of the IDADP stinkbug dataset.

Model ACC (%) P (%) R (%) F1 (%)

ResNet101 74.48 67.83 62.90 63.59
ViT 89.58 79.39 74.42 75.36

SwinT 84.90 73.84 73.08 73.06
DINO 92.19 92.89 91.66 92.07
EsViT 91.67 92.32 91.97 91.84
FGT 96.13 98.42 96.11 97.16

MMFGT 97.40 98.96 96.85 97.20

In addition, validation was performed with the remaining 14-class pest datasets (con-
taining 611 images) in the IDADP dataset, without the stinkbug dataset. The performances
of the different models with the validation set for the rest of the IDADP datasets are shown
in Table 6. The accuracy curves and loss curves for the different pest recognition models
with the remaining class-validation IDADP sets are shown in Figure 8. It can be seen that,
due to the low similarity between the remaining class datasets (excluding the stinkbug
dataset), the large differences in pest characteristics, and the small number of datasets,
the recognition accuracy of the MMFGT model was high, achieving 100% for accuracy,
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precision, recall and F1 score. Specifically, the accuracy of the MMFGT model was 3.87%
better than the FGT method, 7.18% better than EsViT, 7.73% better than DINO, 15.53%
better than SwinT, 14.36% better than the ViT method, and 27.07% better than ResNet101.
From the experimental results for the stinkbug dataset and the rest of the datasets, it can
be seen that the MMFGT model still showed the best performance with smaller and more
similar datasets in comparison to the advanced baseline.

Figure 7. Accuracy curves and loss curves for the different pest recognition models with the validation
set of the IDADP stinkbug dataset.

Table 6. Performance of different models with the validation set for the rest of the IDADP datasets.

Model ACC (%) P (%) R (%) F1 (%)

ResNet101 72.93 66.37 65.65 64.53
ViT 85.64 85.43 85.25 84.72

SwinT 84.53 85.15 84.78 84.37
DINO 92.27 92.45 91.97 91.48
EsViT 92.82 93.01 91.95 91.82
FGT 96.13 98.31 96.37 97.49

MMFGT 100.00 100.00 100.00 100.00

Figure 8. Accuracy curves and loss curves for the different pest recognition models with the validation
set for the rest of the IDADP datasets.

4.5. Generalization Performance of the Model

To validate the applicability of our proposed method in different scenarios, experi-
ments were conducted with a publicly available dataset containing eight species of tomato
pests. The performances of the different models with the validation set of the public tomato
pest dataset are shown in Table 7. The accuracy curves and loss curves for the different
pest recognition models with the public tomato validation set are shown in Figure 9. It
can be seen that the precision of the FGT method was slightly higher than that of the
MMFGT model, and both the recall and the F1 score were the highest for the MMFGT
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model. Specifically, the accuracy of the MMFGT model was 0.59% better than the FGT
method, 4.76% better than EsViT, 4.16% better than DINO, 10.71% better than SwinT, 11.9%
better than the ViT method, and 19.64% better than ResNet101. These experimental results
show that the MMFGT method still achieved superior performance with the public dataset.

Table 7. Performances of different models with the validation set of the public tomato pest dataset.

Model ACC (%) P (%) R (%) F1 (%)

ResNet101 76.19 63.50 67.59 64.57
ViT 83.93 90.78 77.00 76.58

SwinT 85.12 86.29 85.42 84.03
DINO 91.67 91.88 91.38 90.29
EsViT 91.07 91.67 90.82 90.04
FGT 95.24 96.23 93.05 94.28

MMFGT 95.83 96.12 96.24 96.16

Figure 9. Accuracy curves and loss curves for the different pest recognition models with the validation
set of the public tomato validation set.

4.6. Visual Analysis

To further explain the role of each module of the FGT model, several IDADP pest
images were visualized, and the visualization results of the different methods are shown
in Figure 10. The importance of each region is represented by the color from low to high
with blue, green, yellow, and red. As can be seen from Figure 10a–e, the ResNet101 model
could not accurately focus on the pest images and the attention images were scattered. The
ViT model could focus roughly on the pest image due to the attention mechanism, while
DINO could focus more precisely on the pest image compared to the ViT model due to the
self-supervision mechanism, and the FGT model could better focus on the head, thorax, and
tail of the pests compared to DINO due to the fine-grained mechanism. However, for cases
where the proportion of pests in the image was too small and the pests were very close to the
background, such as in Figure 10f, the FGT method and the existing Resnet, ViT, and DINO
methods were disturbed by the background and could not accurately identify the image,
thus reducing the recognition accuracy. In summary, the FGT method could generally
improve recognition accuracy by accurately focusing attention on pest-image subdivision
regions through the fusion of the attention mechanism, self-supervision mechanism, and
fine-grained mechanism, but for cases where the pest target is not obvious, recognition
accuracy still needs to be improved.
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Figure 10. Visualization results of the different methods. (a) Cletus punctiger Dallas, (b) Ascotis selenaria
Schiffermuller et Denis, (c) Spoladea recurvalis, (d) Trigonotylus ruficornis Geoffroy, (e) Tropidothorax
elegans Distant, (f) Aphidoidea.

4.7. Ablation Experiments

Ablation experiments were performed to demonstrate the role of each module in
the model. The modules used by each method and their recognition accuracy are shown
in Table 8. It can be seen that the MMFGT method proposed in this paper significantly
outperformed the baseline method for the pest recognition task with the few-shot dataset.
First, it can be observed that the ViT method achieved 17.43% improved accuracy compared
to ResNet101 when classifying the 29-class IDADP pest dataset and 7.74% improved
accuracy for the dataset containing eight tomato pests. This was because the attention
mechanism focused attention on the pest images without overfitting problems, unlike
the CNN model. Secondly, the transformer architecture was extended by self-supervised
learning, which can reduce dependence on data volume and is suitable for few-shot image
recognition problems. The experimental results show that, compared with the ViT method,
DINO achieved 5.87% improved classification accuracy for the 29-class IDADP pest dataset
and 7.74% improved accuracy for the dataset containing eight species of tomato pests,
which verified the above conclusions. The improved fine-grained transformer architecture
made it possible to focus attention on the subdivision regions of the image, thus increasing
the accuracy of pest recognition.

To better compare the performance of the models, as shown in Table 9, we compared
the training time, inference time, number of parameters, and accuracy of the ViT, SwinT,
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DINO, EsViT, FGT, and MMFGT methods with the IDADP dataset. It can be seen that our
proposed FGT method and MMFGT method obtained higher accuracy at the cost of more
training and longer inference time compared to the baseline method.

Table 8. The modules for each method and their accuracy rates.

Method
Module Attention

Mechanism
Self-Supervised

Learning
Fine-

Grained Mechanism
Text IDADP

ACC (%)
Tomato

ACC (%)
ResNet101 68.9 76.19

ViT X 86.33 83.93
SwinT X 87.67 85.12
DINO X X 92.20 91.67
EsViT X X 91.20 91.07
FGT X X X 97.32 95.24

MMFGT X X X X 98.12 95.83

Table 9. Training time, inference time, number of parameters, and accuracy of the different models
with the IDADP dataset.

Model Training Time (s) Inference Time (ms) Parameters
(M) ACC (%)

ViT 2067 5.78 86 84.33
SwinT 2432 6.95 88 84.68
DINO 2217 6.75 85 92.07
EsViT 2864 7.64 87 91.23
FGT 3164 8.81 85 97.51

MMFGT 3595 11.44 97 98.50

4.8. Discussion

It can be seen that, compared to DINO, our proposed FGT achieved 5.12% improved
accuracy in classifying the 29-class IDADP pest dataset and 3.57% improved accuracy in
classifying the dataset containing eight species of tomato pests. The multimodal features
of the joint image and text representation of the pests enriched the input information and
thus enhanced the pest recognition. It can be observed from the experimental results that,
compared to the FGT method, the accuracy of the MMFGT method was improved by 0.8%
when classifying the 29-class IDADP pest dataset and by 0.59% when classifying the dataset
containing eight species of tomato pests. In summary, as it integrates the self-supervised
transformer architecture, fine-grained recognition, and multimodal information, the MM-
FGT model is more suitable for solving the few-shot pest recognition problem and has good
prospects compared to the currently existing image classification methods. However, for
aphid recognition, as shown in Figure 10f, the MMFGT model could not accurately focus
on the pest. This was because the pest was too small in proportion to the image and very
close to the background, with high background interference. Ongoing research will address
this issue by incorporating multiple fine-grained attention mechanisms or by adding more
precise textual description information.

5. Conclusions

In this work, a new multimodal fine-grained transformer architecture (MMFGT) was
proposed for pest recognition. Specially, the MMFGT model improved on the transformer
architecture in three aspects, making it well-suited for few-shot pest recognition. Firstly,
the MMFGT model extracted target features using self-supervised learning to improve
recognition accuracy and reduce the reliance on data volume. Secondly, focusing attention
on subdivision regions of pest images, the MMFGT model overcame the challenge repre-
sented by pest images with small proportions of pest targets, which are difficult to identify
accurately. Moreover, the performance of the fine-grained pest recognition was further
improved by exploiting joint multimodal information from images and natural language
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descriptions of pests. The experimental results demonstrated the superior performance
of our method compared to the existing baselines; i.e., the MMFGT model achieved more
competitive results compared to several advanced image recognition methods in the pest
recognition task, with recognition accuracy up to 98.12% with the IDADP dataset and a
5.92% improvement compared to the state-of-the-art DINO method for the baseline. How-
ever, when the proportions of pests in the images were too low and the pests were very
close to the background, it was difficult for the MMFGT model to perform accurate pest
recognition. In the future, we will address this issue by incorporating multiple fine-grained
attention mechanisms or by adding more precise textual description information.
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ViT vision transformer
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SwinT hierarchical vision transformer using shifted windows
DINO a form of self-distillation with no labels
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