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Abstract: Over the past ten years, breakthroughs in battery technology have dramatically propelled
the evolution of electric vehicle (EV) technologies. For EV applications, accurately estimating the
state-of-charge (SOC) is critical for ensuring safe operation and prolonging the lifespan of batteries,
particularly under complex loading scenarios. Despite progress in this area, modeling and forecasting
the evaluation of multiphysics and multiscale electrochemical systems under realistic conditions
using first-principles and atomistic calculations remains challenging. This study proposes a solution
by designing a specialized Transformer-based network architecture, called Bidirectional Encoder
Representations from Transformers for Batteries (BERTtery), which only uses time-resolved battery
data (i.e., current, voltage, and temperature) as an input to estimate SOC. To enhance the Transformer
model’s generalization, it was trained and tested under a wide range of working conditions, including
diverse aging conditions (ranging from 100% to 80% of the nominal capacity) and varying temperature
windows (from 35 ◦C to−5 ◦C). To ensure the model’s effectiveness, a rigorous test of its performance
was conducted at the pack level, which allows for the translation of cell-level predictions into real-life
problems with hundreds of cells in-series conditions possible. The best models achieve a root mean
square error (RMSE) of less than 0.5 test error and approximately 0.1% average percentage error
(APE), with maximum absolute errors (MAE) of 2% on the test dataset, accurately estimating SOC
under dynamic operating and aging conditions with widely varying operational profiles. These
results demonstrate the power of the self-attention Transformer-based model to predict the behavior
of complex multiphysics and multiscale battery systems.

Keywords: lithium-ion battery; SOC; deep learning; estimation; transformer; electric vehicle

1. Introduction

Vehicle electrification is considered as an important decarbonization pathway for
climate change mitigation [1]. Global electric vehicles (EVs) sales are stepping into steadily
escalating phases, from less than 10,000 in 2010 to more than 10 million units in 2022,
surpassing 20 million cumulative sales [2]. In total, billions of lithium-ion batteries are used
as energy storage devices in today’s EVs. In EV applications, cell performance is highly
dependent on operating conditions. Under abuse conditions, such as over-charging [3]
or over-discharging [4], battery voltage can move beyond their safe operating windows,
which can accelerate degradation and increase the risk of battery failure after long-term
incubation. Accurate estimation of battery state-of-charge (SOC) under various operating
conditions is critical for effective battery management in both large-scale EVs [5] and
photovoltaic-assisted applications [6]. However, accurate SOC estimation faces multiple
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sources of uncertainty, including complex physio-chemical mechanisms, significant cell-
to-cell variation, and dynamic operating conditions. These challenges are exacerbated
when cases involve uncertain aging conditions, noisy data, and missing initial/boundary
conditions, such as those found in EV field applications.

1.1. Current Methods for SOC Estimation

The traditional methods for battery SOC estimation can be classified by the form of
mechanisms into a variety of categories, including Coulomb counting methods [7,8], open
circuit voltage (OCV)-based estimation [9,10], filter-based algorithms [11–13], and model-
based estimation [14,15]. Despite relentless progress, there is always a trade-off between the
computational cost and the accuracy of model-based predictions for online SOC estimation.
Coulomb (ampere hour) counting methods provide a simple, straightforward estimation
method based on the definition of SOC. Due to the low computational complexity, Coulomb
counting methods have been widely used for online SOC estimation in the EV industry.
However, this method generally achieves a limited accuracy and poor robustness resulted
from unknown initial SOC and capacity degradation, as well as current sensor drift [16].
In addition, the energy loss during charging and discharging process and self-discharge
would also cause further accumulating errors. OCV-based methods are also commonly
used for SOC estimation due to their stable and monotonical relationship. There is very
little variation among the cells that have the same chemistries and cell design in terms of
the SOC–OCV relationship, which provides tools for practical applications by mapping
the look-up table under different test conditions. However, it can be a time-consuming
process, especially considering capacity degradation [17] and working temperature [18].
In addition, OCV-based methods can only be used to describe the electrode potential
difference in the open circuit condition. In order to obtain a stable electrode potential, it
requires a long rest time for the lithium-ion battery to reach a stable potential due to the
slow diffusion, which generally takes a few hours for most operating conditions. Such a
requirement greatly limits its utility and prediction accuracy for EV applications. A recent
study introduced an efficient methodology for determining the OCV–SOC curve for lithium-
ion batteries under dynamic temperature conditions to improve model generalizability [19].
Considering the variability of the OCV–SOC curve with temperature and battery age,
the research proposed a multi-output Gaussian process (MOGP) model utilizing current–
voltage data, thereby bypassing the need for direct OCV measurement or estimation. This
model efficiently captures correlations across various temperatures and constructs an
accurate OCV–SOC curve for a specific temperature, significantly diminishing prediction
errors. This pioneering technique provides enhanced SOC estimation precision, paving
the way for a more pragmatic and accurate SOC determination approach under diverse
operating conditions.

Closed-loop-based filter algorithms have been widely developed to tackle uncertain-
ties and disturbances based on feedback correction over the past decade. Filter-based
SOC estimation has two components: a battery voltage model and a filter algorithm, such
as Kalman Filter family [20], particle filter [21], and H-infinity [22]. When a filter model
is available, a first- or second-order equivalent circuit model (ECM) is widely used for
online EV applications. High-order ECM models [23] and physics-based models (PBM) [24]
achieve a higher voltage accuracy at the cost of computational complexity. One comment,
PBM, is the pseudo-two-dimensional (P2D) model. This model provides deeper insights
into the internal dynamics of batteries. However, the complexity of the governing equa-
tions and the high computational cost makes P2D less practical for online applications.
Additionally, traditional PBMs do not consider detailed material information, which is vital
for understanding battery degradation behavior. To manage the computational demand,
a primary strategy involves simplifying the PBMs. However, such approximations must
still retain sufficient physical information to accurately predict battery behavior. A widely
studied model that adopts this simplified approach is the single-particle model (SPM). This
model operates under the key assumptions that each electrode is represented by a spherical



Electronics 2023, 12, 2598 3 of 23

particle and that the potential and concentration effects in the solution phase are disre-
garded. These approximations contribute to a significant reduction in computational time.
Nonetheless, the SPM model falls short in accuracy when applied to high-rate simulations.

Due to the availability of high-throughput computing and open-source software, data-
driven and machine learning-based approaches have been successful in helping scientists
and engineers in the energy storage realm [25–30]. Machine learning techniques play
crucial roles in modeling and forecasting the dynamics of multiphysics and multiscale
battery systems within the framework of Industry 4.0 [31]. Particularly, deep learning
enables the creation of computational models that consist of multiple processing layers,
which can learn data representations with various levels of abstraction. Through the
backpropagation algorithm, deep learning uncovers complex structures in large datasets
and guides a machine to adjust its internal parameters that compute representations in each
layer from the previous layer’s representations. In prediction tasks, the top layers of deep
learning models heighten critical features while filtering out unnecessary variations. This
layered approach of enhancing and reducing data helps to extract vital patterns, resulting in
accurate prediction. This technique has emerged as a promising alternative, with particular
advantages in determining cell states [32,33]. Figure 1 illustrates the balance between
prediction accuracy and anticipated computational cost for the aforementioned methods.
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Figure 1. Trade-off between prediction accuracy and expected computational cost (Every model
presents a unique blend of strengths and obstacles. Machine Learning Models: These models harness
computational power and large datasets to capture complex, non-linear battery dynamics. They
offer an effective balance between prediction accuracy and computational cost, which is especially
beneficial for determining cell states. PBM: These models, such as the P2D model, provide deeper
insights into the internal dynamics of batteries. ECMs: Widely used with filter-based algorithms,
ECMs offer a more straightforward approach to SOC estimation. High-order ECMs can achieve
higher voltage accuracy, but at the cost of increased computational complexity. Simplified Physical
Models: Models such as the SPM reduce computational demand by simplifying the physics. However,
they may compromise accuracy, particularly in high-rate simulations).

In the recent technological era, a multitude of innovative machine learning methods
and deep neural networks have been advanced for the estimation of the SOC for EV appli-
cations. These novel proposals are meticulously designed to substantially augment model
accuracy, thus contributing to more precise and efficient energy management within the
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burgeoning field of electric vehicles. One such example is the use of convolutional neural
network (CNN). Innovative research has centered on crafting a universal SOC estimator
capable of addressing variations in battery type and sensor noise [34]. A unique closed-loop
paradigm, employing a deep convolutional neural network (DCNN), was put forward in
this study, employing transfer learning and pruning techniques for swift adaptability in
distinct scenarios. The proposed model showcased its effectiveness across diverse battery
types and stages of aging, achieving root mean square errors (RMSE) below 2.47% by adjust-
ing the final layers. Recurrent neural networks (RNNs) offer significant benefits for tasks
that demand sequential inputs and time-series data over convolutional neural networks
(CNNs). Processing each data sequence element individually, RNNs preserve a state vector
with crucial historical sequence data in their hidden units. The concept becomes apparent
when the outputs of hidden units across discrete time steps are viewed as outputs of neu-
rons in a deep, multilayered network, illuminating how backpropagation can train RNNs.
Specialized RNNs, known as long short-term memory (LSTM) networks, bring a novel
structure called a memory cell into play, which includes three gate types (input, forget, and
output) that control the memory cell’s information flow. A recent study introduced a fusion
network marrying a multi-dimensional residual shrinkage network (MRSN) with an LSTM,
enhancing SOC estimation in lithium-ion batteries [35]. The combined network efficiently
manages multi-dimensional interaction, noise interference, and precludes data leakage
using a sequence-to-point processing strategy. Further advancements in SOC estimation
techniques for lithium-ion batteries involve a LSTM-RNN augmented with extended input
and constrained output (EI-LSTM-CO) [36]. This model includes an additional input, the
sliding window average voltage, and an Ampere-hour integration-based state flow ap-
proach for output constraint. These enhancements significantly improved SOC estimation
performance by curbing output volatility. The encouraging results underscore the potential
of the EI-LSTM-CO for real-world SOC estimation. In addition, a multi-forward-step SOC
prediction method based on LSTM demonstrates its effectiveness for battery systems in real-
world EV applications. The developed Weather-Vehicle-Driver analysis method considers
how drivers’ actions and the weather affect a battery system’s performance in real-world
operating circumstances. In addition to preventing LSTM from overfitting, the proposed
dropout technology and correlation analysis efficiently choose the best parameters prior
to training. Additionally, by using LSTM and multiple linear regression algorithms, a
joint-prediction strategy was applied to achieve dual control of prediction accuracy and
prediction horizon. It offers an opportunity to control the prediction steps of LSTM while
ensuring acceptable prediction accuracy by using the one-forward-step prediction accuracy
of linear regression as the accuracy benchmark [37]. To capture temporal dependencies
in both forward and backward directions, a bidirectional LSTM neural network was used
for the SOC estimation [38]. Moreover, the bidirectional LSTM layers are stacked to im-
prove the predictive ability of the non-linear and dynamic relationship between the input
parameters and cell SOC on a layer-by-layer basis. Compared to LSTM, the gated recurrent
unit (GRU) employs a simpler structure with low-dimensional non-linear manifold and
was given a great deal of attention in relation to the prediction of battery conditions. For
example, a RNN with GRU was applied to estimate the cell SOC from measured time-
series signals, including current, voltage, and temperature [39]. The proposed method
improves estimation accuracy over traditional feed-forward neural networks by making
use of data from previous SOCs and measurements. To determine the SOC of lithium
batteries, a single hidden layer GRU-RNN-based momentum-optimized algorithm was
investigated [40]. To prevent oscillation of the weight change and to increase the training
speed of the estimation, the current weight change direction compromises the gradient
direction at the current instant and historical time. The GRU-RNN-based momentum
algorithm offers tools to obtain the battery SOC estimates and the related estimation errors
by tweaking noise variances, epochs, and hidden layer neuron counts. In a recent study,
the GRU-RNN was applied to pre-estimate battery SOC, and the adaptive Kalman filter
(AKF) was used to smooth the output of the GRU model to obtain the final results [41].
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In the proposed framework, it is not necessary to construct the intricate battery model
because GRU-RNN model is well-suited to establish the non-linear mapping between the
measured battery variables (voltage, current, and temperature) and SOC over the entire
temperature range. Moreover, since the AKF process the outputs of the GRU-RNN, there
would be more flexible to design the network’s hyperparameters, which introduces savings
in computational cost. The enhanced noise adaptive algorithm not only makes it easier to
choose the initial noise covariance but also makes the proposed GRU-AKF more adaptable
to the more complex loading scenarios. In line with recent advancements, a unique SOC
estimation approach for lithium-ion batteries was introduced that utilizes a deep feed-
forward neural network (DFFNN), optimized through an attention mechanism relevant to
stochastic weight algorithms (RAS) [42]. This strategy efficiently extracts pertinent features
from input data and updates the weights and biases, addressing gradient issues and aug-
menting the DFFNN’s applicability across a range of operational conditions. Additionally,
it implements a shifting-step unscented Kalman filter (SUKF) for the adaptive adjustment of
error covariance, thus providing robustness against spontaneous error noise. This strategy
has been verified to deliver precise SOC estimates, showcasing impressive error metrics in
trials, indicating its potential applicability in managing batteries for electric vehicles.

Collectively, these research findings demonstrate that RNNs are effective in modelling
sequential and time-series data. However, training them has proven difficult. The back-
propagated gradients either increase or decrease at each time step, so they usually explode
or vanish for the prediction tasks which require learning of the sequences with the limited
use of parallelization across multiple timescales.

The attention-based Transformer model [43], which is primarily employed in natural
language processing, recently made ground-breaking advancements in time-series pre-
diction. Over the past few years, some researchers estimated SOC with good potential
using the encoder-decoder structure, self-attention mechanism, and sequence-to-sequence
method. The Transformer model can be calculated in parallel, which permits faster training
and better use of GPU resources, unlike conventional RNNs. For example, the encoder-
based Transformer neural networks have been demonstrated to be a powerful tool to
estimate battery SOC in a self-supervised data-driven manner without considerable do-
main expertise to design features or adaptive filtering [44]. To explore the current and
voltage data separately, a two-encoder architecture was developed, which is composed
of one linear layer and two identical encoder layers for each encoder [45]. The outputs
of the encoders were then concatenated into a single sequence and used as the inputs for
the decoder. Moreover, an immersion and invariance adaptive observer was proposed to
reduce the oscillations of the Transformer prediction. Moreover, self-attention Transformer
model has demonstrated remarkable power in achieving accurate co-estimation of battery
states [46]. Self-supervised Transformer neural networks unveil new avenues for assimi-
lating representations derived from observational data. These intricate networks offer a
gradation of abstractions, thereby simplifying the incorporation of attention mechanisms,
an essential feature in the data processing pipeline. Their integration with a synergistic
cloud-edge computing framework, when combined with the versatility of deep learning,
substantially augments the predictive prowess of these networks. Such an approach ulti-
mately aids in effectively capturing and decoding long-range spatio-temporal dependencies
that span across diverse scales, thus enhancing the accuracy of analyses and predictions.
Table 1 presents a comprehensive comparison of the merits and demerits associated with
these aforementioned techniques, particularly in the context of battery SOC estimation.
This balanced evaluation provides a clear understanding of the applicability and potential
challenges of each method in real-world settings.
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Table 1. Advantages and disadvantages of the common methods used for battery SOC estimation.

Methods Advantages Disadvantages

Ampere-hour Counting Low computational complexity,
straightforward method

Susceptible to errors, depends heavily on
initial SOC

Open Circuit Voltage Simple, easy to implement Not suitable for real-time SOC, requires
resting state

Model-Based Estimation Can be used for online applications, low
computational demand

Limited accuracy, requires careful
parameterization

Physics-Informed Methods Provides insights into the internal
battery dynamics Complex equations, high computational cost

Filter-based Methods Capable of handling noise and
estimation uncertainty

Requires accurate system model, might be
computationally heavy

Machine Learning Can handle complex relationships, potential
for high accuracy

Needs a large amount of data, requires
training phase

1.2. Contributions and Structure of the Work

In this study, we have meticulously designed a custom Transformer network archi-
tecture. This specific construct is aimed at accurately predicting the state of charge (SOC)
of a battery under real-world operating conditions, thereby eliminating the need for prior
knowledge of the underlying physical principles. Time-series data, in this case, are under-
stood as a sequential aggregation of samples, observations, and unique features mapped
over a temporal dimension. When compiled at a predetermined sampling interval, these
data points aggregate into time-series datasets, serving as a valuable source of analyti-
cal information. The contributions of this study, embodying innovation, rigor, and the
knowledge gained, can be summarized as follows:

(1) The specialized Transformer model, termed as Bidirectional Encoder Representations
from Transformers for Batteries (BERTtery), offers an effective tool to learn the non-
linear relationship between SOC and input time-series data (e.g., current, voltage, and
temperature), and to uncover intricate structures.

(2) For efficient implementation of the Transformer, it is beneficial to create models
and algorithms considering different operating conditions, such as charging and
discharging processes. Consequently, the encoder network converts observational
data into token-level representation, where each feature in the sequence is replaced
with fixed-length positional and operational encoding.

(3) A variable-length sliding window has been designed to produce predictions adhering
to the underlying physico-chemical (thermodynamic and kinetic) principles. The
sliding window aids in enriching the network with temporal memory, enabling BERT-
tery to generalize well beyond the training samples and to better exploit temporal
structures in long-term time-series data.

(4) For real-world applications, the accuracy of model performance is essential. Therefore,
we have collected a diverse range of operating conditions and aging states from field
applications to test the generalization capabilities of the machine learning model.

(5) We devised a dual-encoder-based architecture to preserve the symplectic structure
of the underlying multiphysics battery system. The channel-wise and temporal-wise
encoders pave the way for broader exploration and capture epistemic uncertainty
across multiple timescales, facilitating the assimilation of long-term time-series data
while considering the influence of past states or forcing variables.

In the subsequent sections, we initially outline the machine learning pipeline, which
includes data generation and the implementation of the self-attention Transformer model.
Our specialized Transformer neural networks consist of three key components: embedding,
a two-tower structure, and a gating mechanism. The selection of hyperparameters is also
briefly discussed. Following this, we used field data to train and evaluate the Transformer
model across a broad range of operating and aging conditions at both the cell and pack
levels. We then discuss potential applications for real-world electric vehicle (EV) usage.
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Considering the fast-paced advancements in this field, we conclude by providing an outlook
that includes reflections on the model’s current limitations.

2. Materials and Methods
2.1. Data Generation

Transferring academic advancements to commercial applications can be a challenging
task, even with open data sharing. This is mainly due to reproducibility issues resulting
from the gap between laboratory settings and end-use scenarios. The high-dimensional
parameter space that parameterizes the state of charge (SOC) of lithium-ion batteries
presents a significant challenge to probe, given the diverse aging mechanisms, numerous
capacity fade processes, and manufacturing uncertainties involved.

To address this challenge, we collected two comprehensive datasets from real-world
electric vehicle (EV) applications. As shown in Table 2, Group #A comprises three lithium-
ion cells with widely varying state-of-health (SOH), ranging from 100% to 80%, while
Group #B comprises one large-scale battery pack after eight consecutive months of service
under realistic conditions. All charging–discharging data were cycled under varied random
charging and discharging conditions, with commercial cell balancing and thermal manage-
ment. By deliberately varying the aging conditions, we generated a dataset that captures
a wide range of SOH, from approximately 100% to 80% of nominal capacity. Although
the cell temperature is controlled for security reasons in real-world applications, it can
still vary by up to 45 ◦C due to the large amount of heat generated during charge and
discharge. In this study, we probed discharging rates ranging from 0.1 C to 5 C pulse power
for acceleration and multi-step charging rates ranging from 0.5 to 1.5 C.

Table 2. Datasets used for machine learning modelling.

Datasets Entity Cell Specification SOH Operating
Temperature Window

Group A
(Cell level) 5 large-scale NMC cells 105 Ah, 115 Ah and 135 Ah 100%, 90% and 80%. −5 ◦C to 40 ◦C

Group B
(Pack level) 1 battery pack 92 NMC cells in-series 8 consecutive months

of service time in an EV 10 ◦C to 35 ◦C

Despite significant advancements in battery states estimation research, a prevalent gap
remains between the simulated models and their real-world applicability. This disconnect
arises due to the complex nature of lithium-ion batteries and the diverse range of operat-
ing conditions they encounter in real-world scenarios, which are often oversimplified or
overlooked in simulation-based studies.

The authors of this study address this gap by amassing comprehensive datasets that
depict the true behavior of lithium-ion batteries under a wide variety of real-world op-
erating conditions. These datasets are not limited to idealized or laboratory conditions
but encompass a broad spectrum of real-world scenarios, thus presenting a more realistic
representation of battery performance. The introduction of these detailed and representa-
tive datasets paves the way for the development and validation of more accurate, robust,
and reliable predictive models for battery diagnosis and prognosis. By employing these
datasets, researchers can better understand the multifaceted dynamics of lithium-ion bat-
teries in real-world scenarios and, consequently, enhance the transferability of academic
advancements to commercial applications. This, in turn, facilitates the creation of effec-
tive battery management strategies, ultimately extending the lifespan and improving the
safety of lithium-ion batteries in practical applications. For a comprehensive exploration of
the disparity between laboratory testing and real-world applications, please refer to the
detailed discussion presented in [47].
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2.2. Transformer-Based Neural Network

Recently, Transformer models have been increasingly utilized across diverse facets of
time-series analysis. Transformers address these complexities using self-attention mecha-
nisms and positional encodings. These strategies permit them to concurrently concentrate
on the immediate data samples and capture their sequence details. The Transformer′s struc-
ture is designed to identify relationships between various input segments. This is achieved
by integrating positional data into these segments and employing the dot product operation.
For a comprehensive understanding of the algorithm and mathematics, please refer to the
resource provided in [48]. The proposed Transformer model (Figure 2) consists of four main
modules: a dual-embedding module, a two-tower encoder module, sequence predictions,
and a gating module. Below are the relationships between our Transformer model and
BERT (bidirectional encoder representations from transformers): (i) Our BERTtery adopts
the BERT methodology for self-supervised pretraining and employs Transformer as the
model backbone. (ii) Although our embedding and encoder structure differs from BERT
in several ways, it has special capabilities for exploring specific knowledge in the battery
domain. (iii) We used two embeddings: positional embedding and operational embedding.
(iv) Two duel-wise encoders—channel-wise encoder and temporal-wise encoder—were
designed to capture the long-range spatio-temporal features automatically.
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position of the battery operational profiles within the sequence. To optimally leverage the time-series
data of the cell, a two-tower structure was employed, incorporating both a channel encoder and a
time-step encoder. A gating mechanism serves as a robust and straightforward means to amalgamate
the outputs of the two encoder towers. In our self-attention multi-head Transformer model, query,
key, and value matrices play a crucial role in determining the level of attention each part of the
input sequence should receive. These matrices serve to identify and weigh the importance of specific
patterns within the sequence, enabling the model to focus on critical details during prediction).
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2.2.1. Normalization

The self-attention mechanism can be conceptualized as a procedure consisting of two
stages. Initially, a normalized dot product is computed among all pairs of input vectors
present in a specific input sequence. This normalization is accomplished through the
application of the softmax operator, which can be expressed as:

ωij = softmax(xi
Txj) =

exi
T xj

∑ kexi
T xk

(1)

where xi represent the input segments, ∑n
j=1 ωij = 1 and 1 ≤ i, j ≤ n.

In the subsequent phase, we identify a fresh representation, denoted as zi, for a specific
input segment xi. This representation is a weighted aggregate of all segments {xi}n

j=i within
the input:

zi =
n

∑
j=1

wijxj, ∀1 ≤ i ≤ n (2)

2.2.2. Embedding

To encode the position of the battery operational profiles in the sequence, we used
both positional and operational (charging and discharging) embedding to encoder the
position of the time-series data in the sequence. The operational embedding is designed to
produce a sequence-level representation for battery data under different energy storage
mechanisms. A sine-cosine encoding method was used in this study for both absolute and
relative positional embeddings.

PE(pos)2i = sin(p/100002i/dx ) (3)

PE(pos)2i+1 = cos(p/100002i/dx ) (4)

where 2i stands for the even dimensions and 2i + 1 stands for the odd ones. The position
embedding technique can reflect both absolute and relative position information of the
cell states.

(i) Positional Encoding

BERTtery uses positional encoding to stamp the position of the tokens in the sequence.
In applications to the electrochemical system, positional encoding plays an important role,
as the underlying mechanism is related to the detection of the subtle variations in the
parameters (current, voltage, and temperature) over long length and time scales. As time
passes, the cell charge storage behaviors would significantly change under irregular cycling
patterns and varying operating conditions for evaluating the electrochemical performance
of energy storage devices. The introduction of embedding time into the input embedding
improves the performance of the learning algorithm by forecasting long range dependencies
and interactions in sequential data.

(ii) Operational Encoding

In addition to positional encoding, battery operational (working condition) encoding
was established to improve the performance of the learning algorithm, and then it applies
a dropout technology to enhance the generalization and robustness [49]. Considering the
unique operating conditions these batteries undergo in daily use, such as discharging,
charging, and resting/idle periods, operational encoding plays a crucial role in improv-
ing the learning algorithm’s ability to accurately predict battery behavior. These distinct
operating conditions significantly alter the cells’ behavior and underlying physical (thermo-
dynamic and kinetic) properties, thus necessitating distinct model interpretations for each
state. By integrating operational encoding, we acknowledge the differential behaviors and
influences during these states and provide an enriched representation of the input data.
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2.2.3. Two-Tower Structure

A two-tower architecture with channel-temporal encoders was developed for multi-
variate time-series regression. Each encoder block is composed of multi-head self-attention
and feed forward network connected back-to-back with residual connections and normal-
ization layers around each of the sub-layers. Residual connections offer an effective and
simple technique for improving the model accuracy towards stable and efficient training of
robust neural networks. The layer normalization substantially reduces the training time
with a faster training convergence. Compared to the traditional single-tower architecture,
the two-tower model can capture deeper electrochemical parameter changes or hidden rep-
resentations, which may reflect an early stage of aging and open-circuit relaxation process.
Capturing both the step-wise (temporal) and channel-wise (spatial) information provides
powerful tools for learning the evolution of non-linear multiscale and multiphysics systems
with inhomogeneous degradation behavior, considerably advancing the capabilities of SOC
estimation under different aging and operating conditions.

The core of the Transformer neural network is the multi-head self-attention mechanism,
which is made up of various scaled dot-product attention functions and enables the model
to capture significant information in a sequence.

Vectors corresponding to input xi, such as query qi, key ki, and value vi, can be derived
by employing the following method:

qi = Wqxi, ki = Wkxi, and vi = Wvxi (5)

The matrices Wq and Wk of dimension Rd*d
k, as well as Wv of dimension Rd*d

v, embody
adjustable weight matrices. Consequently, the resultant output vectors, indicated by {zi}
from i = 1 to n, can be determined as follows:

zi = ∑
j

softmax(qi
Tk j)vj (6)

It is important to highlight that the weighting attributed to the value vector vi is reliant
on the evaluated correlation between the query vector qi at the i-th position and the key
vector kj at the j-th position. The dot product’s magnitude tends to augment with the
growth in the size of query and key vectors. Due to the softmax function’s susceptibility to
large magnitudes, the attention weights undergo scaling proportional to the square-root of
the size of the query and key vectors, denoted by dq, as follows:

zi = ∑
j

softmax(
qi

Tk j√
dq

)vj (7)

In the matrix form, the self-attention mechanism can be succinctly expressed as:

Attention(Q, K, V) = softmax(
QKT
√

dK
)V (8)

where Q, K, and V represent query, key, and value matrix, respectively, and dk is the
dimension of the key matrix.

Multi-head attention empowers the model to concurrently focus on data from varied
representational spaces at diverse positions. This capacity is stifled by averaging in a model
utilizing a singular attention head.

MultiHead(Q, K, V) = Concat(head1, . . . , headn)WO (9)

where headi = Attention(QWi
Q, KWi

K, VWi
V) (10)
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(i) Temporal-Wise Encoder

The two-tower architecture, featuring a temporal self-attention decoder, is employed
in this study for its exceptional ability to learn long-term dependencies in time-series
data. This design proves particularly advantageous in extracting implicit features across a
broad spectrum of charging and discharging activities. Incorporation of the self-attention
mechanism and positional encoding techniques not only curtails computational cost but
also enhances the analysis of current data samples within the sequence. Furthermore, the
use of a dual encoder opens exciting avenues for modeling temporal evolutionary patterns,
thereby allowing for precise estimation of the multiphysics battery system and prediction
of future developments. A notable strength of the Transformer model is its combination
of stacked self-attention and point-wise, feed-forward layers. This architectural decision
ensures that the model effectively recognizes fine-scale features, thereby increasing the
model’s prediction accuracy and operational efficiency.

(ii) Channel-Wise Encoder

In the two-tower architecture, channel-wise attention plays a crucial role in captur-
ing channel features extracted along the temporal dimension. By calculating attention
weights or scores, this mechanism amplifies the contribution of informative channels while
diminishing the impact of less significant ones, ensuring a more nuanced and accurate
representation of the data. The channel-wise encoder, armed with masked multi-head
attention, adeptly captures spatial correlations among both proximate and remote charg-
ing/discharging dynamics, adding another layer of depth to the analysis. The potential to
broaden diagnostic techniques also emerges from this setup, particularly through modeling
spatial dependencies. This process, which takes into account the continuity and periodicity
of time-series data, can provide deeper insights into the temporal patterns and variations
inherent in the battery’s performance. This approach offers a more comprehensive and
dynamic understanding of battery operations.

2.2.4. Gating Mechanism

The gating mechanism serves as a practical and straightforward method for amalga-
mating the outputs of the two encoder towers. Its role in efficiently integrating the learned
representations ensures an optimal synthesis of insights gathered from both towers. In
conjunction, a linear layer and softmax operation, acting as a normalized exponential func-
tion, were implemented. This arrangement functions like a multinomial logistic regression,
effectively generating the final prediction results. The utilization of these techniques not
only streamlines the prediction process but also enhances the accuracy and reliability of
the results. By harnessing the power of these methods, we ensure that the model benefits
from the full range of information captured by both encoders, leading to more robust and
precise estimations.

2.2.5. Hyperparameter Determination

In the present research, we conducted a thorough exploration on how various hyper-
parameters can impact SOC estimation for large-scale, real-world EV batteries (Figure 3).
The variables we studied include the quantity of attention heads, the size of embeddings,
and the layer count in the self-attention Transformer model. Each of these elements affects
the model’s capacity to learn an array of attention patterns and complex representations.
Key hyperparameters, such as the learning rate that affects the velocity of learning, and the
method of positional encoding that impacts the comprehension of temporal relationships,
were also considered. Other variables, such as the dropout rate, batch size, and weight
initialization techniques, were evaluated for their influence on the learning performance
and efficiency of the model. These hyperparameters were fine-tuned with careful consider-
ation to factors such as model performance, computational expenditure, and the specific
requirements of our task. Below are the details of our chosen configurations:
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(i) The model dimension in both the channel-wise and temporal-wise encoders was set
at 64, enabling it to capture rich feature information.

(ii) We used four layers in both the channel-wise and temporal-wise encoder, with a batch
size of 384, balancing between learning capability and computational cost.

(iii) Each multi-head attention for each layer was set to eight heads, allowing the model to
focus on multiple input features simultaneously.

(iv) We conducted 1300 training epochs to ensure thorough learning.
(v) A dropout rate of 0.1 was applied as a regularization technique to prevent the model

from overfitting.
(vi) We employed the Adam optimizer for loss minimization, setting the initial learning

rate at 2 for faster convergence.
(vii) Gradient clipping with a value set at 1 was used to prevent the gradient values from

becoming too large, known as the exploding gradients problem.
(viii) A weight decay rate of 0.0001 was chosen to provide additional regularization.
(ix) Batch normalization was implemented to accelerate learning and stabilize the

neural network.
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3. Results
3.1. Model Performance

We leveraged battery time-series charging–discharging data by pre-training a two-
tower transformer encoder to extract dense vector representations of multivariate time-
series. In this study, we initially pre-trained the Transformer model using observational
data from tens of cells that were randomly collected throughout their operational lifetime.
These data, with a sampling frequency of 10 s using onboard sensor measurements, were
input into the Transformer model. The model’s output, in turn, is the corresponding SOC
estimations for each of these sampling points. The proposed method can be immediately
applied to transient data while preserving prediction accuracy, obviating the necessity
for a steady-state detector and allowing for very large time-steps with high accuracy.
The Transformer architecture is characterized by large data volumes, dynamic loading
operations, and high correlations between the dots for each sliding window when taking
into account the high-dimensional stochastic dynamics and probability distributions for
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industry-scale time-series data in physical problems. It was discovered that the Transformer
model provides efficient, easy-to-implement, meshless implementations for the kind of
pattern identification associated with persistently positive connectivity between these
regions across the sliding window (Figure 4).
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(a) Sliding window for monitoring and analyzing dynamic voltage and current and temperature.
(b,c) are the attention mapping for step-wise and channel-wise encoder, respectively.

The attention mechanism is a fundamental component of the Transformer model
that lends it the power to handle sequences of data. The attention mapping is typically
performed through what is known as multi-head attention. This mechanism allows the
model to focus on different parts of the input sequence for each element in the output
sequence. It provides a weighted combination of all input positions for each output
position, wherein the weights denote the relevance or attention the model pays to each
input element when generating a specific output element. Multi-head attention calculates
the compatibility or similarity score between different positions in the sequence through
a dot product, which is then scaled and passed through a softmax function to yield the
attention weights. These weights are then used to create a weighted sum of the input
values, allowing the model to focus on certain inputs while generating specific outputs.

Current rates, temperature, and aging conditions are three important factors to validate
the generalization performance of SOC estimation model. Therefore, a wide range of cell
aging conditions and operating voltage/current/temperature windows are adopted to
train and test the data-driven model for improving accuracy and enhancing generalization.
In this context, our investigation extends across a total of 5 Li-ion cells and 1 large-scale
battery pack, as presented in Table 2. We have divided the model development dataset
randomly into two distinct sections, namely the training and testing sets. These sets feature
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random real-world application scenarios, adding a layer of practical complexity to the
investigation. The estimation results are summarized in Table 3.

Table 3. The test errors over the cell and pack dataset.

Datasets RMSE APE MAE Operating Conditions

Cell_1 0.4857 0.59% 1.6507% dynamic temperatures −4 ◦C to 4 ◦C
Cell_2 0.4356 0.71% 1.3208% dynamic temperatures 0 ◦C to 35 ◦C
Cell_3 0.4047 0.67% 1.1275% aging conditions, 100% SOH
Cell_4 0.4046 0.60% 0.9461% aging conditions, 90% SOH
Cell_5 0.4218 0.41% 1.0836% aging conditions, 80% SOH

Battery pack, Cell_V_max 0.4033 0.95% 1.4876% Pack level, 20 ◦C to 25 ◦C, ~97.5% SOH
Battery pack, Cell_V_min 0.4497 0.88% 1.7525% Pack level, 20 ◦C to 25 ◦C, ~97.5% SOH

3.1.1. Cell Level SOC Estimation at Dynamic Temperatures

A prime objective behind the development of new algorithms is their ability to with-
stand and function robustly in the face of field data. Factors such as missing or noisy
data, outliers, and other inconsistencies can drastically influence the model performance.
When considering model performance, predictive accuracy, and estimation robustness
against temperature uncertainty, scattered sensor measurements and sensor drift emerge
as significant considerations during the design of appropriate model architectures and
novel training algorithms. This holds particularly true for real-world applications, where
practical constraints and dynamic environmental factors come into play.

We trained and tested the proposed Transformer algorithm at two dynamic operat-
ing temperature windows, ensuring that we scrutinized its performance under varying
conditions. Figures 5 and 6 detail these temperature windows. This process not only
tests the robustness of the algorithm against temperature fluctuations but also gauges its
adaptability and consistency of performance under dynamic conditions. It showcases the
robustness of the BERTtery model and its ability to handle imperfect data and temperature
uncertainties efficiently. The validation process thus serves as a testament to the BERTtery
model’s resilience and adaptability, affirming its applicability and potential in practical,
real-world scenarios.

Electronics 2023, 12, x FOR PEER REVIEW 14 of 23 
 

 

Datasets RMSE APE MAE Operating Conditions 
Cell_1 0.4857  0.59% 1.6507% dynamic temperatures −4 °C to 4 °C 
Cell_2 0.4356 0.71% 1.3208% dynamic temperatures 0 °C to 35 °C 
Cell_3 0.4047 0.67% 1.1275% aging conditions, 100% SOH 
Cell_4 0.4046  0.60% 0.9461% aging conditions, 90% SOH 
Cell_5 0.4218 0.41% 1.0836% aging conditions, 80% SOH 

Battery pack, Cell_V_max 0.4033 0.95% 1.4876% Pack level, 20 °C to 25 °C, ~97.5% SOH 
Battery pack, Cell_V_min 0.4497 0.88% 1.7525% Pack level, 20 °C to 25 °C, ~97.5% SOH 

3.1.1. Cell Level SOC Estimation at Dynamic Temperatures 
A prime objective behind the development of new algorithms is their ability to with-

stand and function robustly in the face of field data. Factors such as missing or noisy data, 
outliers, and other inconsistencies can drastically influence the model performance. When 
considering model performance, predictive accuracy, and estimation robustness against 
temperature uncertainty, scattered sensor measurements and sensor drift emerge as sig-
nificant considerations during the design of appropriate model architectures and novel 
training algorithms. This holds particularly true for real-world applications, where prac-
tical constraints and dynamic environmental factors come into play. 

We trained and tested the proposed Transformer algorithm at two dynamic operat-
ing temperature windows, ensuring that we scrutinized its performance under varying 
conditions. Figures 5 and 6 detail these temperature windows. This process not only tests 
the robustness of the algorithm against temperature fluctuations but also gauges its adapt-
ability and consistency of performance under dynamic conditions. It showcases the ro-
bustness of the BERTtery model and its ability to handle imperfect data and temperature 
uncertainties efficiently. The validation process thus serves as a testament to the BERTtery 
model’s resilience and adaptability, affirming its applicability and potential in practical, 
real-world scenarios. 

 
Figure 5. SOC estimation at operating temperature windows of −4 to 4 °C for the Cell_1. (a) Voltage 
profile. (b) Current profile. (c) Temperature profile. (d) SOC estimation. (e) Estimation error. 

Figure 5. SOC estimation at operating temperature windows of −4 to 4 ◦C for the Cell_1. (a) Voltage
profile. (b) Current profile. (c) Temperature profile. (d) SOC estimation. (e) Estimation error.



Electronics 2023, 12, 2598 15 of 23Electronics 2023, 12, x FOR PEER REVIEW 15 of 23 
 

 

 
Figure 6. SOC estimation at operating temperature windows of 0 to 35 °C for the Cell_2. (a) Voltage 
profile. (b) Current profile. (c) Temperature profile. (d) SOC estimation. (e) Estimation error. 

3.1.2. Cell Level SOC Estimation at Different Aging Conditions 
Aging is an intrinsic property of lithium-ion batteries that significantly influences 

their performance and lifespan. Degradation phenomena, such as the loss of lithium in-
ventory (LLI) and the loss of active material (LAM), pose considerable challenges to assess 
SOC estimation for batteries under varying aging conditions. 

The Transformer model leverages additional information gleaned from the relation-
ship between SOC and input data across different aging conditions. This ability to adapt 
to changes brought on by aging increases the model’s accuracy and its effectiveness in 
real-world scenarios. A battery is typically considered to have reached its end-of-life when 
its full charge capacity diminishes to 80% of the nominal value—a key threshold in battery 
manufacturing. Our training and testing cover this entire spectrum, allowing us to under-
stand the performance of the BERTtery model in a range of scenarios reflecting the service 
life of batteries. This process is divided into three groups, each representing different 
stages in the battery life, as illustrated in Figures 7–9. In essence, by evaluating the model’s 
performance under dynamic aging conditions, we delve into an often overlooked but cru-
cial aspect of battery SOC estimation. This helps ensure that our model remains robust, 
adaptable, and accurate across the full lifespan of a battery, thereby enhancing its practical 
applicability and usability in real-world applications. 

 

Figure 6. SOC estimation at operating temperature windows of 0 to 35 ◦C for the Cell_2. (a) Voltage
profile. (b) Current profile. (c) Temperature profile. (d) SOC estimation. (e) Estimation error.

3.1.2. Cell Level SOC Estimation at Different Aging Conditions

Aging is an intrinsic property of lithium-ion batteries that significantly influences their
performance and lifespan. Degradation phenomena, such as the loss of lithium inventory
(LLI) and the loss of active material (LAM), pose considerable challenges to assess SOC
estimation for batteries under varying aging conditions.

The Transformer model leverages additional information gleaned from the relationship
between SOC and input data across different aging conditions. This ability to adapt
to changes brought on by aging increases the model’s accuracy and its effectiveness in
real-world scenarios. A battery is typically considered to have reached its end-of-life
when its full charge capacity diminishes to 80% of the nominal value—a key threshold in
battery manufacturing. Our training and testing cover this entire spectrum, allowing us
to understand the performance of the BERTtery model in a range of scenarios reflecting
the service life of batteries. This process is divided into three groups, each representing
different stages in the battery life, as illustrated in Figures 7–9. In essence, by evaluating the
model’s performance under dynamic aging conditions, we delve into an often overlooked
but crucial aspect of battery SOC estimation. This helps ensure that our model remains
robust, adaptable, and accurate across the full lifespan of a battery, thereby enhancing its
practical applicability and usability in real-world applications.
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3.1.3. SOC Estimation at Pack Level

The intricate operation of a lithium-ion battery rests upon a multitude of factors such as
diffusion pathways, electron/ion transport, various phase transformations, electrochemical
redox reactions, both reversible and irreversible, charge–transfer reactions, and several
material-dependent elements. However, these operations become exponentially complex
in practical applications, where hundreds or even thousands of lithium-ion batteries are
interconnected in a series-parallel architecture to provide sufficient power and energy.
Pack design modifications, environmental conditions, and loading scenarios are a few
among many factors that can significantly impact the overall performance of the battery
system. Ambient temperature variations, cell packaging alterations, batch-to-batch and cell-
to-cell inconsistencies originating from differing synthesis conditions, electrolyte wetting
procedures, and mechanical properties can lead to substantial deviations in the predicted
outcomes. These complexities emphasize the importance of the practical application
performance of predictive models. After all, it is the real-world efficacy of these models
that determines their value. Accordingly, we further scrutinize the Transformer model’s
performance by employing it on one large-scale battery pack operating under dynamic
conditions. Figure 10 represents these tests. To concisely present the estimation, only the
cells with the maximum and minimum voltage are depicted in the plots.
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In this respect, the validation process transcends beyond a mere algorithmic scrutiny
and extends into a comprehensive examination of the model’s adaptability to intricate,
multifactorial, and dynamic conditions. As the reliance on lithium-ion batteries in practical
applications continues to increase, the necessity for sophisticated, robust, and reliable
predictive models escalates correspondingly. It is this critical juncture of theoretical models
and practical applications in which the true value of a predictive model is ascertained,
ultimately contributing to the continuous evolution and optimization of battery technology.

3.2. Model Training and Evaluation

Numerous stochastic processes are involved in the instantiation of deep learning
models. All experiments were run with a predetermined seed value to guarantee the
uniformity and repeatability of the results. Unlabeled vectors of input sequence were
utilized in the pre-training stage to train the model. The metrics that are used in the loss
function and model evaluation are described as follows.

3.2.1. Loss Function

The Transformer model was trained using an end-to-end approach, and the choice
of loss function is crucial in guiding this process. The loss function quantifies how far
the model’s predictions deviate from the actual values and serves as the criteria that
the learning algorithm seeks to minimize. The mean squared error (MSE) in regression
problems can be expressed as:

LMSE(y, ŷ) =
1
N

N

∑
i=1

(yi − ŷi)
2

(11)

where yi and ŷi are the observed and estimated value, respectively, of the i-th samples, and
n is the total number of samples in the dataset.

Mean Squared Error (MSE) is frequently chosen for regression tasks, mainly due to
its simplicity, computational efficiency, and focus on amplifying larger discrepancies. It is
differentiable, which is advantageous for optimization methods such as gradient descent,
and is a common yardstick for gauging the performance of regression models. MSE
quantifies the deviation between the predicted SOC and the actual values. To minimize
this loss, the Adam optimizer [50] was deployed with a user-defined learning rate, which
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dynamically adjusts the model parameters during the training process, thereby ensuring a
smoother and more efficient convergence.

3.2.2. Evaluation Metrics

In this study, three metrics were adopted to evaluate the performance of SOC estima-
tion model, including root mean square error (RMSE), the maximum absolute error (MAE),
and average percentage error (APE). (a). RMSE is a widely used metric for evaluating
the accuracy of predictions. It measures the square root of the average of the squared
differences between the predicted SOC values and the corresponding ground truth values.
(b). MAE measures the maximum absolute difference between the predicted SOC values
and the true values. It provides an insight into the worst-case scenario of prediction error.
(c). APE quantifies the average percentage difference between the predicted SOC values
and the true values. It provides a measure of the relative error in the predictions.

These evaluation metrics were chosen to capture different aspects of the model’s
performance. RMSE and MAE focus on the absolute error, while APE provides insights
into the relative error. By considering all three metrics, researchers can assess the accuracy,
worst-case scenario, and relative performance of the SOC estimation model, facilitating a
comprehensive evaluation of its effectiveness in capturing battery SOC.

y∗i is the observed SOC, ŷ∗i is the predicted SOC, and n is the total number of observa-
tional data. Therefore, RMSE can be calculated as:

RMSE =

√√√√ 1
n

n

∑
i=1

(
ŷ∗i − y∗i

y∗i

)2

(12)

Maximum absolute error (MAE) can be given by:

Errormax = max
1£i<<n

|ŷ∗i − y∗i | × 100 (13)

The average percentage error (APE) is defined as:

ErrorAPE =
1
n

n

∑
i=1

∣∣∣∣ ŷ∗i − y∗i
y∗i

∣∣∣∣× 100 (14)

3.3. Model Development and Applications

In this research, we utilized MATLAB for handling and manipulating the EV battery
field data, whereas Python, in tandem with open-source deep learning libraries such as
TensorFlow and PyTorch, was employed for constructing the Transformer model. Our
computing infrastructure is comprised of an Intel Core i7-4790K CPU clocked at 4.00
GHz, coupled with 32 GB of RAM, and a robust Nvidia GeForce RTX3090 GPU. Machine
learning models considerably enhance predictive capacity, especially for long-range spatial
connections spanning various time scales, all while reducing computational costs. However,
the computational and storage limitations of current on-board Microcontroller unit (MCU)
necessitate model pretraining for optimal performance.

The model’s deployment comprises two phases: offline pretraining (training and
testing) and online application. We utilized a private cloud for offline training, which had
been previously used for developing multiple machine learning techniques for assessing
battery state of health (SOH) and state of safety (SOS). References for the data generation,
methodology, and cloud framework can be found in the cited literature [26,27,51]. The
BMS’s embedded software is updated or calibrated using over-the-air (OTA) technology,
enabling Software as a Service (SAAS) for connected EVs, as shown in Figure 11.
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4. Discussion and Outlook

Machine learning methods, particularly deep learning [52], offer promising avenues
for advancing our understanding and management of multiphysics and multiscale battery
systems, pushing the boundaries of efficiency and accuracy. Amidst our relentless pursuit
of sustainable and digitalized energy systems, these models play a pivotal role, demon-
strating superior capabilities in extracting meaningful insights from high-dimensional
and complex data, and thus facilitating accurate predictions and expedited training times.
However, certain challenges necessitate careful consideration. Real-life observational data,
which often includes time-series, lab data, and field data, are frequently scarce, noisy, and
not directly accessible for certain variables of interest. Therefore, it is crucial to leverage
specialized network architectures or kernel-based regression networks that excel in gen-
eralization beyond limited data and adapt to dynamic operating conditions and different
aging levels.

As battery technologies rapidly evolve with new cell chemistries and architectures,
predictive models must adapt swiftly. Variabilities within the same battery chemistry,
caused by factors such as the manufacturing processes, cell packaging, and equipment
differences, compound this challenge. The models that can efficiently accommodate these
variables and maintain high accuracy will undoubtedly garner greater attention. Moreover,
domain adaptation techniques that learn from diverse data sources and hybrid modeling
approaches combining physics-based and data-driven models can improve model gen-
eralization and accuracy. The innovative learning paradigm has found a contemporary
manifestation in the development of Physics-Informed Neural Networks (PINNs) [53]. This
nascent category of deep learning algorithms proficiently integrates data with advanced
mathematical constructs, including partial differential equations (PDEs), even in instances
where specific physics principles are omitted or not factored in. The future of cloud battery
management system [54,55] heavily relies on tackling these challenges, leading to the
creation of more precise and trustworthy predictive models across various applications. An
in-depth investigation into the extent of generalization of these transformations is crucial,
identifying the range of observations for which one model can reliably map to another.
Equally critical is defining the boundaries of this generalization—the point beyond which
these models fail to transform or calibrate in relation to each other.
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Addressing these challenges is paramount in advancing towards a more sustainable
and digitalized energy landscape, where the role of machine learning in battery manage-
ment becomes increasingly crucial. This continual evolution also paves the way for the
convergence of digital technologies with sustainable energy systems, shaping the future of
the energy sector.

5. Conclusions

Deep learning has revolutionized the field of machine learning by allowing computa-
tional models composed of multiple processing layers to learn data representations with
multiple levels of abstraction. By leveraging the backpropagation algorithm, deep learning
uncovers intricate structures in large datasets, indicating how a machine should adjust its
internal parameters to compute the representation in each layer from the representation in
the previous layer. Transformer models employ a multi-headed attention system, making
them proficient in handling time series data. They concurrently seize the context—both
prior and succeeding—of each sequence element. The use of multiple attention heads
facilitates the analysis of different representational subspaces, enhancing the probing of
diverse relevance aspects among input elements within time series data. This capability
allows machines to be fed with raw time-series data and to automatically discover the
representations and extract temporal features required for classification or regression. In
this study, we showcase a bespoke two-tower Transformer neural network technique for
predicting the SOC of lithium-ion batteries, using field data from practical electric vehicle
(EV) applications. This model leverages the multi-head self-attention mechanism, which is
instrumental in achieving precise predictions. This mechanism excels at discerning and em-
phasizing critical data points while simultaneously mitigating the influence of less relevant
information. This model’s unique advantage is its ability to be trained solely on battery
time-series data, effectively eliminating the need for laborious feature engineering. The
strength of this approach lies in its adaptability to the dynamic nature of battery data, aided
by a 10 s sampling frequency, enabling the capture of battery states amidst fluctuating
operating conditions. The self-attention mechanism also allows the model to focus on
varying sequence lengths and dependencies, making it particularly effective in dealing
with the temporal nature of battery data. Furthermore, the two-tower architecture ensures
that the model can learn intricate correlations, maximizing the extraction of relevant infor-
mation. This study underscores the potential of integrating machine learning tools with
sparse sensor measurements, pushing the frontiers of battery state estimation in complex,
real-world scenarios.
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Abbreviations

AKF Adaptive Kalman filter
APE Average percentage error
BERTtery Bidirectional encoder representations from transformers for batteries
CNN Convolutional neural network
DFFNN Deep feed-forward neural network
ECM Equivalent circuit model
EVs Electric vehicles
GRU Gated recurrent unit
LAM Loss of active material
LLI Loss of lithium inventory
LSTM Long short-term memory
MAE Maximum absolute error
MCU Microcontroller unit
MSE Mean squared error
OCV Open circuit voltage
OTA Over-the-air
P2D Pseudo-two-dimensional
PBM Physics-based mode
PINNs Physics-informed neural networks
RMSE Root mean square error
RNNs Recurrent neural networks
SAAS Software as a service
SOC State of charge
SOH State of health
SOS State of safety
SPM Single particle model
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