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Abstract: In the context of population aging, to reduce the run on public medical resources, nursing
homes need to predict the health risks of the elderly periodically. However, there is no professional
medical testing equipment in nursing homes. In the current disease risk prediction research, many
datasets are collected by professional medical equipment. In addition, the currently researched
models cannot be run directly on mobile terminals. In order to predict the health risks of the elderly
without relying on professional medical testing equipment in the application scenarios of nursing
homes, we use the datasets collected by non-professional medical testing equipment. Based on
transfer learning and lightweight neural networks, we propose a disease risk prediction model,
Diplin (disease risk prediction model based on lightweight neural network), applied to nursing
homes. This model achieved 98% accuracy, 97% precision, 96% recall, 95% specificity, 97% F1 score,
and 1.0 AUC (area under ROC curve) value on the validation set. The experimental results show
that in the application scenario of nursing homes, the Diplin model can provide practical support for
predicting the health risks of the elderly, and this model can be run directly on the tablet.

Keywords: transfer learning; image recognition; neural networks; deep learning; health detection

1. Introduction

Along with the rapid development of the internet and the massive image data brought
by digital cameras, computer vision techniques have been rapidly developed in com-
bination with machine learning techniques. For example, in image classification, the
performance of deep learning algorithms approaches or even exceeds that of humans on
the ImageNet dataset [1,2]. The innovation of deep learning techniques has enabled AI
technologies to be used in various fields. In several fields of the medical industry, medical
image data are the more robust data in medical data, and the training of deep learning
algorithm models relies on massive data [3]. Therefore, AI-based image detection is widely
used in X-ray, CT, and MRI-type image recognition.

Against global aging, population aging has become a regular phenomenon in human
society. In its fact sheet on aging and health, the World Health Organization writes: common
conditions among older adults include hearing loss, cataracts, refractive errors, back and
neck pain, osteoarthritis, chronic obstructive pulmonary disease, diabetes, depression, and
dementia. Another hallmark of older age is the development of complex health conditions,
often called geriatric syndrome. They are often the result of multiple underlying factors,
including weakness, urinary incontinence, falls, confusion, and pressure ulcers. Older
adults contribute to their families and communities in many ways, the extent of which
depends mainly on one factor: health.

To reduce the run on public medical resources, regular disease risk assessment for
the elderly has become an urgent task. However, due to the need for more professional
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medical testing equipment in nursing homes, disease risk prediction based on data collected
by professional medical testing equipment is unsuitable for the application scenario of
nursing homes. In the application scenario of the above evaluation, nursing homes need a
prediction method that does not rely on professional medical testing equipment. In this
paper, the Diplin model, a disease risk prediction model we propose, does not need to rely
on professional medical testing equipment for disease risk prediction. We encapsulate the
access to the Diplin model into an API and open access to third-party apps. The application
scenario of the Diplin model is shown in Figure 1.
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Figure 1. Diplin model application scenario.

In Figure 1, we deploy the trained Diplin model directly to the tablet. Nursing home
care workers use an app on a tablet to take a photo. After receiving the image data, the
Diplin model performs relevant disease risk analyses and returns the disease risk prediction
results. Based on the evaluation results, the nursing staff formulates intervention methods
for health management.

The research goal of this paper is that the Diplin model can effectively predict the
risk of related diseases based on images collected by non-professional medical testing
equipment. The Diplin model training uses the datasets “Parkinson’s Drawings” and “Oral
Cancer (Lips and Tongue) images” publicly available on Kaggle. Both datasets are data
collected by non-professional medical equipment. In order to realize the prediction of
disease risk in nursing homes, we first use the spiral sub-dataset in “Parkinson’s Drawings”
and the subject’s image data to form a mixed sample data, build and train the sample
generation model based on WGAN (Wasserstein GAN), and then build a sample feature
preprocessing model. Secondly, we construct and train a sample classification model based
on transfer learning and lightweight neural network EfficientNetV2. Finally, we use the
wave sub-dataset in “Parkinson’s Drawings” and the “Oral Cancer (Lips and Tongue)
images” dataset to further verify and test the method of the Diplin model we proposed.
The test results’ accuracy rate, F1 score, precision rate, and recall rate have all reached more
than 90%, and the AUC (area under ROC curve) value has reached 1.0. Ultimately, we
realize that using images collected by non-professional medical equipment can predict the
risk of related diseases.

The main work of this paper is as follows:

• In the Diplin model, to solve the problem of limited sample number and imbalance,
we propose an image sample generation model based on WGAN.

• In the Diplin model, to better protect the image attribute information of the sample
itself, we propose an image sample feature preprocessing model.
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• In the Diplin model, to reduce the impact of hardware configuration on computing
efficiency, we propose an image sample classification model based on transfer learning
and the lightweight neural network EfficientNetV2.

• The implementation process of the Diplin model we proposed has good general
applicability in the image binary classification task.

This paper has five sections in total. Section 1 is the introduction, which mainly
describes the current research background; Section 2 is the related work, which mainly
describes the current research status; Section 3 is the model design and implementation,
which mainly describes the process of model design and implementation; Section 4 is the
result analysis, which mainly describes the analysis of experimental results; and Section 5 is
the conclusion, which mainly describes the research results of this paper and the prospect
for the future.

2. Related Works

There are many studies on disease risk prediction based on artificial intelligence
technology. Aditya Khosla et al. proposed an integrated machine learning method for
stroke prediction [4]. This method is an automatic feature selection algorithm based on
support vector machine (SVM). Jiayu Zhou et al. proposed a multi-task learning formula
for predicting disease progression using the cognitive subscale (ADAS-Cog) score in the
Alzheimer’s disease (AD) assessment scale [5]. This formulation treats the prediction of
each stage time point as a task and formulates the prediction of disease progression as a
multi-task regression problem. Ankit Agrawal et al. proposed a lung cancer risk prediction
model based on support vector machines, artificial neural networks, and random forest
technology using lung cancer imaging data from the National Cancer Institute of the United
States [6]. Based on this model, they developed an online lung cancer risk prediction system.
Alceu Ferraz Costa et al. proposed a feature extraction method for classifying interstitial
lung disease in computed tomography (CT) scans based on support vector machines. This
method achieved an accuracy rate of 84.36% when performing classification tasks [7].

D. Shiloah Elizabeth et al. proposed an automated method for segmenting lung tissue
from chest CT images based on artificial neural networks [8]. This method can be used for
preprocessing before the diagnosis of lung diseases to improve the performance of system
diagnosis. Md Jamiul Jahid et al. proposed a cancer disease prediction model that can be
used in clinical practice using a support vector machine (SVM) as a classifier [9]. Shuo
Xiang et al. proposed a multi-source data “two-layer” learning model based on random
forests to solve the problem of the loss of block-level data leading to the decline in the
prediction accuracy of Alzheimer’s disease (AD) [10]. Based on the unified formula, this
model handles feature-level and source-level analysis, imputing missing elements.

Roland Assam et al., based on the conditional random field (CRF), used the extracted
sample feature vector to capture the latent features of the freeze of gait (FOG) time series
of Parkinson’s disease patients [11], analyzed the motion time series data of Parkinson’s
disease patients, and analyzed the patient’s freezing of gate state (FOG) for effective
prediction. Matthew Seeley et al. used a structured method of integrated learning to
compare the accuracy of multiple model combinations for predicting Alzheimer’s disease
(AD) [12]. Finally, they obtained the characteristic attributes that affect the prediction
results. Nida Khateeb et al. used the K-nearest neighbor classifier [13], and by using
14 attributes, the accuracy of heart disease prediction reached nearly 80%. In order to
reduce the false alarm rate of pulmonary nodule monitoring, Jiaxing Tan et al. proposed a
two-stage deep learning framework based on a deep neural network and a convolutional
neural network [14].

Allison M. Rossetto et al. proposed an integrated method based on a convolutional
neural network to improve the accuracy of automatic primary diagnosis of lung cancer
using deep learning on lung CT [15]. This ensemble method consists of two separate
convolutional neural networks. This ensemble method achieved an average accuracy of
85.91%. Based on a convolutional neural network [16], Joongwon Kim et al. designed a
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system that can automatically diagnose the risk of lung cancer on chest CT. In order to
realize the automatic classification of cystic fibrosis lung disease (CFLD) lesion degree in
computed tomography (CT) [17], Xi Jiang et al. proposed a framework based on deep
convolutional neural networks and transfer learning. In order to reduce the labeling work
in the supervised lung CT image segmentation training [18], Yuan Huang et al. proposed a
lung plaque feature extraction method based on a fully convolutional neural network and
a generative adversarial network. In order to ensure the high accuracy and performance of
fatty liver disease (FLD) prediction [19], Ming Chen et al. proposed a multi-layer random
forest (MLRF) model using a medical examination dataset with standardized indicators.
This model consists of an input data layer, a processing layer, and an output data layer.
Among them, the processing layer comprises multiple random forests (RF).

Hatim Guermah et al. used a dataset containing physiological indicators (such as
cell count, red blood cell count, and arterial blood pressure) and dietary attributes to
predict the risk of chronic kidney disease based on context ontology and linear SVM [20].
They achieved an accuracy rate of 93.3%. Xuan Chen et al. proposed a weighted loss
function to reduce the impact of class imbalance on the prediction results when using
pancreatic magnetic resonance images (MRI) for pancreatic cancer risk prediction [21].
Furthermore, based on the ResNet18 model, a classification experiment was carried out,
and the experimental results reached an accuracy rate of 91%. Lena Ara et al. used machine
learning algorithms to predict peripheral arterial disease [22]. The findings also reduced
variability in readouts in vascular laboratories. Amanda H. Gonsalves et al. used naive
Bayesian (NB), support vector machine (SVM) [23], and decision tree (DT) to compare
the risk prediction of coronary heart disease (CHD). The prediction effect of the model is
relatively good.

Anik Saha et al. used a dataset containing physiological indicators (such as blood
pressure and albumin) to predict chronic kidney disease (CKD) based on random forest,
naive Bayesian [24], and multi-layer perceptron. They obtained an accuracy rate of 97.34%.
Md. Golam Sarowar et al. used the “tuberous sclerosis” disease dataset obtained from
the National Center for Biotechnology Information (NCBI) based on a hybrid of convolu-
tional neural network (CNN) and particle swarm optimization (PSO) [25]. An optimized
CNN algorithm to predict the disease of tuberous sclerosis (TSC) achieved an accuracy rate
of 83.47%. Iftikhar Ahmed et al. used the “Myocardial Infarction (MI)” dataset in the UCI
machine learning library based on support vector machines [26], multi-layer perceptrons,
random forests, additive regression, and ant colony optimization (ACO). Convolutional
neural networks (CNN) combine the CNN-ACO algorithm to predict myocardial infarction.
The CNN-ACO algorithm achieved an accuracy rate of 95.78%.

When using multi-parameter magnetic resonance imaging (MRI) for prostate can-
cer (PCa) risk prediction [27], Paulo Lapa et al. found through comparative experiments
that the accuracy of classification using semantic learning machine (SLM) is higher than
that of CNN XmasNet. Muhammad Mubashir et al. proposed a new method based
on a deep convolutional neural network to solve the problem of insufficient classifica-
tion accuracy due to feature selection and signal analysis using wrist pulses to diag-
nose lung cancer [28]. This method consists of a 1D fifteen-layer deep convolutional
network. This method can identify lung cancer based on the obtained wrist pulse signal
and achieved a recognition accuracy of 97.67%. In order to better diagnose lung cancer [29],
Yanhao Tan et al. proposed a method for automatically segmenting pulmonary nodules
in CT images based on convolutional neural networks. N. Nemati et al. proposed a
lightweight classification model based on a deep convolutional neural network and using
EEG signals obtained from the CHEG-MIT scalp EEG database for seizure prediction [30],
with an accuracy of 99%. Through comparative experiments [31], Rekka Mastouri et al.
proved that in CT medical imaging analysis, the detection performance of the fine-tuned
model based on the VGG16 model is higher than that of the model formed by transfer
learning based on the pretrained VGG16 model.
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Chulwoong Choi et al. propose an indexing method based on convolutional neu-
ral networks to automatically retrieve lung images from many DICOM medical images
generated after PET-CT imaging [32]. This method achieved 70% accuracy. In order to
improve the accuracy of detecting COVID-19 through chest X-ray images [33], Jonathan
David Freire et al. proposed a new evaluation method based on the Resnet-34 architecture.
This method uses data enhancement techniques for image preprocessing, including global
histogram equalization and pink mapping. This method achieved an accuracy rate of
97.81%. Based on the Resnet-50 architecture [34], Xiang Yu et al. proposed a model for
classifying breast abnormalities using mammographic imaging. In order to improve the
accuracy of this model in predicting breast cancer, histogram equalization was used in the
data preprocessing stage. Experimental results show that the model achieved an overall
accuracy of 95.74%. Yu Lu et al. proposed a lung cancer risk prediction model based
on the VGG-16 model and the expanded convolutional pulmonary nodule segmentation
network [35]. This model achieved an accuracy rate of 97.1%.

S. I. Lopes et al. used radar-based or infrared thermal imaging technology to perform
non-contact monitoring of body temperature and heart rate in nursing homes [36], without
connecting physical electrodes, for early detection and prediction of COVID-19 in patients.
R. Tsuzuki and others developed an online health chart system based on visualization [37].
This system allows nursing home nurses, medical staff, and older adult family members to
view the health trends of the older adult. B. Braga et al. designed a low-cost infrared thermal
imaging system for nursing homes for body temperature screening [38]. D. -R. Lu and others
have developed an intelligent medical system for nursing homes, which uses the monitoring
of service robots to record the current status of the older adult [39]. When the older adult falls,
he presses the emergency button on his body to activate the alarm system of the service robot,
and the nearby medical staff will receive an emergency call for help.

As shown in Table 1, in the current research on related topics, the accuracy rate of
risk prediction for heart disease, lung cancer, chronic kidney disease, pancreatic cancer,
tuberous sclerosis, myocardial infarction, epilepsy, and breast cancer has reached 80%. We
produced statistics on some studies on the risk prediction of Parkinson’s disease, and the
statistical results are shown in Table 2.

Table 1. Related research statistics.

Researcher Disease Name Basic Algorithm Accuracy

Nida Khateeb [13] heart disease KNN 80%
Allison M. Rossetto [15] lung cancer CNN 85.91%

Hatim Guermah [20] chronic kidney disease SVM 93.3%
Xuan Chen [21] pancreatic cancer ResNet18 91%
Anik Saha [24] chronic kidney disease Neural Networks 97.34%

Md. Golam Sarowar [25] tuberous sclerosis CNN 83.47%
Ifthakhar Ahmed [26] myocardial infarction CNN 95.78%

Muhammad Mubashir [28] lung cancer CNN 97.67%
N. Nemati [30] epilepsy CNN 99%
Xiang Yu [34] breast cancer Resnet-50 95.74%

Table 2. Comparison of model accuracy on the topic of Parkinson’s disease prediction.

Researcher Basic Algorithm Type of Dataset Accuracy

Satyabrata Aich [40] DT gait data 81.7%
Terry T. Um [41] CNN sports data 86.88%

Mehedi Masud [42] Deep learning audio data 96%
Anshul Lahoti [43] RNN audio data 83.48%

Ours EfficientNetV2 image data 98%

As shown in Table 2, the accuracy rates of models constructed using decision trees,
convolutional neural networks, deep learning, and recurrent neural networks exceed 80%.
In this paper, using the dataset collected by non-medical equipment, the prediction accuracy
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of the Diplin model proposed by using transfer learning and a lightweight neural network
reached 98%.

In the abovementioned previous studies on disease risk prediction, there are many
analyses of medical imaging images. However, in the application scenario of a nursing
home, the nursing home does not have medical imaging equipment, and it is difficult to
ensure the integrity of collecting gait, motion, and audio data. Therefore, we use datasets
acquired by non-medical imaging devices in our proposed research work. Our disease
risk prediction model based on WGAN, transfer learning, and EfficientNetV2 can run on
ordinary tablet computers. In short, research based on datasets collected by professional
medical testing equipment are not suitable for the business needs of nursing homes. The
Diplin model proposed in this paper does not rely on the datasets collected by professional
medical testing equipment, so nursing homes are advised to use the Diplin model.

3. Model Design and Implementation

This section mainly describes the design and implementation process of our proposed
Diplin model. We first build and train a sample generation model based on WGAN, then
build a sample feature preprocessing model; secondly, we build and train a classification
model based on transfer learning and lightweight neural network EfficientNetV2; finally,
the best model parameters are output according to the evaluation index values such as
specificity. Ultimately, we achieve an efficient prediction of associated disease risk through
image classification. The software platforms used in this paper are Tensorflow-GPU 2.6.0,
Opencv-python 4.7.0.72, Numpy 1.19.5, and Pandas 1.3.5.

3.1. Wasserstein GAN

During the training process of GAN (generative adversarial network), there are often
problems of non-diverse generated samples and opaque training progress [44]. The root
of these problems is that the distance measurement of equivalence optimization needs to
be revised, and the distribution generated by the generator overlaps with the accurate
distribution. To avoid such problems, we propose the Diplin model, which uses the
Wasserstein distance proposed by Martin Arjovsky et al. to measure the distance between
the accurate and generated sample distribution [45]. The specific formula expression of
Wasserstein distance is shown in Formula (1) [45]:

W
(
Pγ,Pg

)
=

in f
γ∈Π(Pγ ,PG )

E(X ,Y)∼γ[‖ X − Y ‖] (1)

In Formula (1) [45], Π
(
Pγ,Pg

)
represents the set of all possible combination distri-

butions of Pγ and Pg combination; γ represents each possible combination distribution;
(X ,Y) ∼ γ represents a real sample X obtained by sampling and a generated sample Y ;
‖ X − Y ‖ represents the distance between the accurate sample and the generated sample;
and E(X ,Y)∼γ[‖ X − Y ‖] represents the expected value of the distance of the sample under
the combined distribution. The Wasserstein distance is the lower bound of this expected
value in all possible combined distributions. However, it is not easy to directly solve the
Wasserstein distance in GAN. However, the theory of Kantorovich–Rubinstein duality can
convert the problem into a dual problem expressed by Formula (2) [45]:

W(Pγ,Pθ) =
sup

‖ f ‖L≤1
EX∼Pγ

[ f (x)]−EX∼Pθ
[ f (x)] (2)

In Formula (2) [45], L ≤ 1 means f is a 1-Lipschitz function. EX∼Pγ
[ f (x)]−EX∼Pθ

[ f (x)]
represents the upper bound value that satisfies the 1-Lipschitz function limit value. Lipschitz
represents the maximum magnitude of local variation of a continuous function. The calculation
formula for parameter data optimization using the neural network method is shown in
Formula (3) [45]:

max
W∈W

EX∼Pγ
[ fW (x)]−EZ∼p(Z)[ fW (gθ(Z))] (3)
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In Formula (3) [45], W ∈ W represents an extreme assumption. This assumption
represents the assumption when proving the consistency of the estimator. The improvement
of WGAN to GAN mainly has the following points [45]:

• The LOSS of the generator network and discriminator network no longer takes LOG.
• Since the discriminator network needs to fit the Wasserstein distance, which is a

regression problem, not a classification problem, the last layer of the discriminator
network removes the sigmoid.

• Since LOSS is volatile when using momentum-based optimization algorithms (includ-
ing momentum and Adam), the optimization algorithm recommended by WGAN is
MSProp or SGD.

• After each discriminator network parameter is updated, this parameter is truncated
so that the absolute value of this parameter does not exceed a fixed value, that is, the
function of the discriminator network is a Lipschitz function, and the derivative of
this function is less than a particular fixed value.

3.2. Transfer Learning

Jason Yosinski et al. proposed the possibility of the transfer of deep neural networks
and demonstrated through experiments that the first three layers of deep neural networks
are standard features [46]. Migrating the parameters of a trained model to a new training
task can save training time—overhead and other resource overhead. In image classifica-
tion [47], the model weights trained on the ImageNet dataset are generally transferred to
new classification tasks. Then, the shallow convolutional and pooling layers are used to
construct the sample feature extraction model [48]. Finally, a new classification task model
is constructed.

Due to the limited number of image samples in the application scenarios of nurs-
ing homes, the Diplin model we proposed uses deep transfer learning. During the
model’s training, because we are training a binary classifier, the loss function we use
is binary_crossentropy. The formula of this binary cross entropy is shown in Formula (4):

Loss = − 1
N ∑N

i=1 yi·log(p(yi)) + (1− yi)·log(1− p(yi)) (4)

In Formula (4), the label value of y is 0 or 1, and p(y) is the probability that the output
belongs to the label y. If the y label value is 1, if the predicted value is close to 1, then the
value of the loss function also tends to be 0. If the predicted value is close to 0, then the
value of the loss function will be more considerable.

The similarity of features between the target sample data and the source sample data
mainly determines the effect of transfer learning [49]. There will be a certain probability of
negative transfer in the training tasks with significant differences between the two sample
data types. In this paper, our criterion for judging negative transfer is to compare the
performance of the model trained with transfer learning and the model trained without
transfer learning. In the case of performance degradation, we fine-tune the model and
process it further.

3.3. EfficientNetV2

The EfficientNetV1 model surpasses the previous network regarding training effect,
model parameter quantity, and training speed [50]. EfficientNet-B7 has a parameter size
of 66M but achieved an accuracy rate of 84.3% on ImageNet. However, when there is
considerable image input, EfficientNetV1 will take up more video memory, significantly
reducing the training speed. In addition, since EfficientNetV1 uses depth-separable con-
volution, more intermediate variables need to be saved during training than ordinary
convolution, which increases the time overhead of reading and writing data and reduces
the training speed. In order to solve the problem of decreased training speed caused by
video memory usage and intermediate variable storage, Google published a lightweight
neural network model EfficientNetV2 on CVPR in April 2021 [51]. This model has been
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dramatically improved in terms of training speed and parameter efficiency through the
training of perceptual neural structure search (training-aware NAS) and scaling. In this
paper, the Diplin model we proposed uses the network structure of EfficientNetV2-S, as
shown in Table 3.

Table 3. EfficientNetV2-S architecture [51].

Stage Operator Stride No. Of Channels No. of Layers

0 Conv3*3 2 24 1
1 Fused-MBConv1, k3*3 1 24 2
2 Fused-MBConv4, k3*3 2 48 4
3 Fused-MBConv4, k3*3 2 64 4
4 MBConv4, k3*3, SE0.25 2 128 6
5 MBConv6, k3*3, SE0.25 1 160 9
6 MBConv6, k3*3, SE0.25 2 256 15
7 Conv1*1 and Pooling and FC - 1280 1

In Table 3 [51], k represents the size of the convolution kernel used; Fused-MBConv rep-
resents the Fused-MBConv network; MBConv represents the MBConv network;
SE (squeeze-and-excitation) represents the SE attention network; the step size of 2 means
that the output width and height of the current stage are half of the input width and height.
The Fused-MBConv network and the MBConv network are shown in Figure 2.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 21 
 

 

ducing the training speed. In addition, since EfficientNetV1 uses depth-separable convo-

lution, more intermediate variables need to be saved during training than ordinary con-

volution, which increases the time overhead of reading and writing data and reduces the 

training speed. In order to solve the problem of decreased training speed caused by video 

memory usage and intermediate variable storage, Google published a lightweight neural 

network model EfficientNetV2 on CVPR in April 2021 [51]. This model has been dramati-

cally improved in terms of training speed and parameter efficiency through the training 

of perceptual neural structure search (training-aware NAS) and scaling. In this paper, the 

Diplin model we proposed uses the network structure of EfficientNetV2-S, as shown in 

Table 3. 

Table 3. EfficientNetV2-S architecture [51]. 

Stage Operator Stride 
No. Of Chan-

nels 
No. of Layers 

0 Conv3*3 2 24 1 

1 Fused-MBConv1, k3*3 1 24 2 

2 Fused-MBConv4, k3*3 2 48 4 

3 Fused-MBConv4, k3*3 2 64 4 

4 MBConv4, k3*3, SE0.25 2 128 6 

5 MBConv6, k3*3, SE0.25 1 160 9 

6 MBConv6, k3*3, SE0.25 2 256 15 

7 Conv1*1 and Pooling and FC - 1280 1 

In Table 3 [51], k represents the size of the convolution kernel used; Fused-MBConv 

represents the Fused-MBConv network; MBConv represents the MBConv network; SE 

(squeeze-and-excitation) represents the SE attention network; the step size of 2 means that 

the output width and height of the current stage are half of the input width and height. 

The Fused-MBConv network and the MBConv network are shown in Figure 2. 

 

Figure 2. Structure of MBConv and Fused-MBConv [51]. 

As shown in Figure 2 [51], MBConv consists of Conv1*1 dimension-up convolution, 

depthwise conv3*3 depth convolution, SE (squeeze-and-excitation) attention module, and 

Conv1*1 dimensionality reduction convolution. The difference between Fused-MBConv 

and MBConv is that Conv3*3 ordinary convolution is used in Fused-MBConv to replace 

depthwise conv3*3 depth convolution and Conv1*1 up-dimensional convolution. 

Figure 2. Structure of MBConv and Fused-MBConv [51].

As shown in Figure 2 [51], MBConv consists of Conv1*1 dimension-up convolution,
depthwise conv3*3 depth convolution, SE (squeeze-and-excitation) attention module, and
Conv1*1 dimensionality reduction convolution. The difference between Fused-MBConv
and MBConv is that Conv3*3 ordinary convolution is used in Fused-MBConv to replace
depthwise conv3*3 depth convolution and Conv1*1 up-dimensional convolution.

3.4. Diplin Model

The method architecture of our Diplin model based on WGAN, transfer learning, and
EfficientNetV2 is shown in Figure 3.



Electronics 2023, 12, 2581 9 of 21

Electronics 2023, 12, x FOR PEER REVIEW 9 of 21 
 

 

3.4. Diplin Model 

The method architecture of our Diplin model based on WGAN, transfer learning, and 

EfficientNetV2 is shown in Figure 3. 

 

Figure 3. Diplin model method architecture. 

The detailed process of the Diplin model design process in Figure 3 is as follows: 

1. Prepare the image data of Parkinson’s disease patients and healthy people drawing 

spirals and waves; prepare the image data of lips and tongues of oral cancer patients 

and healthy people. 

2. Build and train a sample image generation model based on Wasserstein GAN using 

relevant image data of older adults in nursing homes and young, healthy subjects. 

3. Build a sample image feature preprocessing model, including setting the boundary 

of the image, data augmentation, and using filtering algorithms to effectively protect 

the spatial and color information of the edge information in the sample image. 

4. Generate the training dataset, validation dataset, and test dataset. 

5. Load the EfficientNetV2 model trained on ImageNet. 

6. The classification model’s dataset, training, and parameter optimization are used 

based on transfer learning and the EfficientNetV2 model. 

7. After iterative training, the best model is output. 

3.4.1. Sample Data 

In this paper, we use the datasets “Parkinson’s Drawings” and “Oral Cancer (Lips 

and Tongue) images” publicly available on Kaggle. “Parkinson’s Drawings” are the image 

data of spirals and waves drawn by patients with Parkinson’s disease and healthy people 

[52]. “Oral Cancer (Lips and Tongue) images” are the image data of cancerous and non-

cancerous lips and tongues collected at various ENT hospitals in Ahmedabad [53]. The 

details of the data distribution of the “Parkinson’s Drawings” dataset are shown in Table 

4. 

Table 4. “Parkinson’s Drawings” dataset data distribution [52]. 

Category Category Category Quantity 

spiral testing healthy 15 

spiral testing Parkinson’s 15 

spiral training Healthy 36 

spiral training Parkinson’s 36 

wave testing healthy 15 

Figure 3. Diplin model method architecture.

The detailed process of the Diplin model design process in Figure 3 is as follows:

1. Prepare the image data of Parkinson’s disease patients and healthy people drawing
spirals and waves; prepare the image data of lips and tongues of oral cancer patients
and healthy people.

2. Build and train a sample image generation model based on Wasserstein GAN using
relevant image data of older adults in nursing homes and young, healthy subjects.

3. Build a sample image feature preprocessing model, including setting the boundary of
the image, data augmentation, and using filtering algorithms to effectively protect the
spatial and color information of the edge information in the sample image.

4. Generate the training dataset, validation dataset, and test dataset.
5. Load the EfficientNetV2 model trained on ImageNet.
6. The classification model’s dataset, training, and parameter optimization are used

based on transfer learning and the EfficientNetV2 model.
7. After iterative training, the best model is output.

3.4.1. Sample Data

In this paper, we use the datasets “Parkinson’s Drawings” and “Oral Cancer (Lips and
Tongue) images” publicly available on Kaggle. “Parkinson’s Drawings” are the image data
of spirals and waves drawn by patients with Parkinson’s disease and healthy people [52].
“Oral Cancer (Lips and Tongue) images” are the image data of cancerous and non-cancerous
lips and tongues collected at various ENT hospitals in Ahmedabad [53]. The details of the
data distribution of the “Parkinson’s Drawings” dataset are shown in Table 4.

Table 4. “Parkinson’s Drawings” dataset data distribution [52].

Category Category Category Quantity

spiral testing healthy 15
spiral testing Parkinson’s 15
spiral training Healthy 36
spiral training Parkinson’s 36
wave testing healthy 15
wave testing Parkinson’s 15
wave training Healthy 36
wave training Parkinson’s 36

In Table 4 [52], “Parkinson’s Drawings” include Parkinson’s disease patients and
healthy people drawing spiral and wave class II image data. The spiral and wave folders
include two folders: testing, and training, respectively. The testing and training folders
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include healthy and Parkinson’s folders, respectively. There are 15 sample images, each for
healthy and Parkinson’s in the testing folder. There are 36 sample images for healthy and
Parkinson’s in each training folder. The “Oral Cancer (Lips and Tongue) images” dataset
includes two folders: cancer and non-cancer. The cancer folder includes 87 sample images.
Forty-four sample images are included in the non-cancer folder [53].

3.4.2. Sample Image Generation

In sample image generation and implementation, we use five sets of CONV2D and
BatchNorm layers to form the backbone network, convolution, and normalization to
process shortcuts and deconvolution (Conv2DTranspose) to realize the downsampling of
the discriminant network, generate network upsampling. The input of the discrimination
network uses accurate sample image data, the noise when generating the sample data, and
the mixed data of real and fake data. The input of the generation network uses random
noise. Considering that the data in the tfrecord format is convenient to save and transfer,
and the reading speed is fast, we use the tfrecord format to save the data in this paper. The
main steps are as follows:

• Define upsampling and downsampling functions.
• Define the ResBlock module.
• Build a generated network and a discriminator network [54].
• Define the discriminative network input.
• Mix generated data and accurate sample data.
• Define the discriminative network loss function.
• Define the generator network input.
• Define the generative network loss function.
• Define the training network loop body, and train the generative and discriminative networks.

3.4.3. Sample Feature Preprocessing

In this paper, in sample feature preprocessing, we use a filtering algorithm to protect
the spatial, noise, and color information of the edge information in the sample image.
Considering that the size limit of the convolution operator will cause the boundary of the
sample image to be lost, we appropriately expand the boundary of the sample image. The
main steps are as follows:

• Sample image border extension.
• Sample image for bilateral filtering.
• Based on the comparison of mean_squared_error image similarity, duplicate sample

data are eliminated.
• Sample image normalization.
• The training dataset is generated using a 60% training set, 20% verification set, and

20% test set.

3.4.4. Classification Model Construction and Training

This paper uses TensorFlow to build and train classification models based on transfer
learning and EfficientNetV2. We first migrate the weights of the EfficientNetV2 model pre-
trained using the ImageNet dataset to the classification model, then build the classification
model network and compile the classification model. Finally, we load the sample image
data to train and verify the classification model. The main steps are as follows:

• Migrate pretrained model weights.
• Freeze the base network.
• The backbone model network is constructed using a global average pooling layer, a

fully connected layer, and a dropout layer.
• Compile and train the defined model network.
• Unfreeze some layers of the base network.
• Compile and train unfrozen partial layers and define model networks.
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In this section, we describe the sample data and ImageNet data used in this paper,
the implementation of sample image generation based on WGAN, the implementation of
sample feature preprocessing, and the classification model based on transfer learning and
EfficientNetV2 implementation process.

3.4.5. Model Algorithm

The method of Diplin model training is shown in Algorithm 1.

Algorithm 1: Diplin model algorithm.

Input: {s1, s2, . . . , sn}, {l1, l2, . . . , ln}, {N1, N2, . . . , Nn}, {Y1, Y2, . . . , Yn}
Output: Diplin best model
Tra: Training sample data.
Val: Verify sample data.
Test: Test sample data.

1
Combine {s1, s2, . . . , sn}, {l1, l2, . . . , ln}, {N1, N2, . . . , Nn} and {Y1, Y2, . . . , Yn} to form
mixed sample data.

2 Build and train a sample image generation model based on Wasserstein GAN.
3 Build a sample image feature preprocessing model.
4 Sample image data preprocessing.

5
Divide the sample dataset into three parts: one part for training, one part for validation, and
one for testing. Obtain training data Tra, verification data Val, and test data Test [55].

6 Load the weights of the EfficientNetV2 model trained on ImageNet.
7 For epochs do
8 Train a classification model.
9 By observing the evaluation index value, parameter optimization is carried out [55].
10 Evaluate the model using specificity, AUC value, etc.

11
If Accuracy ≥ 0.98 and Precision ≥ 0.97 and Recall ≥ 0.96 and Specificity ≥ 0.95 and
F1-score ≥ 0.97 and AUC ≥ 0.98:

12 Output Diplin
13 Complete training.

In the above algorithm, {s1, s2, . . . , sn} represent the image data of Parkinson’s disease
patients and healthy people drawn by Kaggle to draw spirals and waves. {l1, l2, . . . , ln}
represent the image data of lips and tongues of oral cancer patients and healthy people
published by Kaggle. {N1, N2, . . . , Nn} represent the spirals and waves drawn by the
elderly in the nursing home and the lip and tongue image data. {Y1, Y2, . . . , Yn} represent
the image data of young, healthy subjects drawn by spirals, waves, lips, and tongues.

In Algorithm 1, we first use mixed sample data to build and train a sample generation
model based on WGAN. Then, a sample feature preprocessing model is built. Secondly,
a sample classification model is constructed and trained based on transfer learning and
EfficientNetV2. Finally, the obtained Diplin model is further verified and tested using the
sub-dataset wave dataset in the “Parkinson’s Drawings” dataset and the “Oral Cancer
(Lips and Tongue) images” dataset.

3.5. Evaluation Metrics

This paper uses indicators such as Accuracy, Precision, Recall, and Specificity to
evaluate the Diplin model.

Accuracy =
TP + TN

TP + TN + FP + FN
× 100% (5)

Precision =
TP

TP + FP
× 100% (6)

Recall =
TP

TP + FN
× 100% (7)
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Specificity =
TN

TP + FN
× 100% (8)

F1 =
2TP

2TP + FP + FN
× 100% (9)

In the above formulas, TP means true positive, TN means true negative, FP means false
positive, and FN means false negative. The confusion matrix of the evaluation indicators is
shown in Table 5.

Table 5. Confusion matrix.

Sample Type Predicted as a Normal Sample Predicted as an Attack Sample

normal sample TN FP
attack sample FN TP

The ROC (receiver operating characteristic) curve was first used in radar signal detec-
tion to distinguish signal from noise. Later, researchers applied it to the evaluation index
to evaluate classification models’ predictive ability. The ROC curve is proposed based on
the confusion matrix. The ROC curve is drawn using the false positive rate (FPR) as the
abscissa and the valid rate (TPR) as the ordinate.

AUC (area under ROC curve) is the area under the ROC curve. When comparing
the effects of classification models, draw the ROC curve of each model and compare the
area under the curve as an indicator for judging the quality of the classification model.
The maximum value for this area is 1. The closer the AUC is to 1.0, the more realistic the
classification model is. When the AUC value of a binary classification model is equal to or
less than 0.5, the model has no authenticity and no practical application value.

This section proposes the Diplin model using Wasserstein GAN, transfer learning, and
EfficientNetV2. We describe the model framework, sample data, model implementation
process, algorithms, and evaluation indicators.

4. Experimental Results and Analysis

In this section, we describe the experiments of the proposed Diplin model based on
WGAN, transfer learning, and EfficientNetV2.

4.1. Comparison of Transfer Learning Experiment Results

We first used Kaggle’s public datasets “Parkinson’s Drawings” and “Oral Cancer
(Lips and Tongue) images” to compare the experimental results with and without transfer
learning. The specific content is shown in Figure 4.
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Figure 4 compares the experimental results trained when the batch_size is set to 8 and
learning_rate is set to 0.0001, and the optimizer uses Adam. As can be seen from Figure 4, in
the case of the same dataset and the same training parameters, the accuracy and precision
of using transfer learning are higher than those without using transfer learning.

4.2. Comparison of Experimental Results of Different Optimizers

In order to understand the impact of different optimizers on the model, in this paper,
we used the spiral sub-dataset in the dataset “Parkinson’s Drawings”, publicly available on
Kaggle, to compare the experimental results of the model using different optimizers. The
specific content is shown in Figure 5.
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Figure 5 compares the experimental results trained when the batch_size is set to 8 and
the learning_rate is set to 0.0001. As shown in Figure 5, the accuracy of the model using the
two optimizers Nadam and Adam is relatively high, and the accuracy of the model using
the two optimizers RMSprop and Adam is relatively high.

In this paper, to gain a deeper understanding of the experimental results of the model
using different optimizers, we use the spiral sub-dataset in the Kaggle public dataset
“Parkinson’s Drawings” and compare the accuracy curve and loss curve of the model using
different optimizers. The specific content is shown in Figure 6.
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Accuracy curve. (b) Loss curve.

Figure 6 compares the experimental result curves trained when batch_size is set to 8,
epochs are set to 1000, and learning_rate is set to 0.0001. Figure 6a shows that the accuracy
fluctuation of the model using the two optimizers, Nadam and Adam, is relatively small.
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Figure 6b shows that underfitting occurs when the model uses the two optimizers, Ftrl
and SGD.

As seen from Figure 6b, the loss curve of the model using the Adam optimizer con-
tinues to decline. In order to further observe the accuracy curve and loss curve of the
optimizer using Adam, we set the batch_size to 8, the learning_rate to 0.0001, and the
epochs to 1300 when the optimizer uses Adam. The accuracy and loss comparison curves
of the training set and the verification set are shown in Figure 7.
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Figure 7. Comparison of experimental results curves for the model using the Adam optimizer on the
training and validation sets. (a) Accuracy curve. (b) Loss curve.

As seen in Figure 7a, the training and validation accuracy fluctuation ranges have
begun to stabilize. It can be seen from Figure 7b that both training loss and validation loss
have begun to converge, and the difference between them tends to be smaller and smaller.

4.3. Comparison of Experimental Results with Different Learning Rates

In this paper, we used the spiral sub-dataset in the Kaggle public dataset “Parkinson’s
Drawings” to compare the experimental results of the model using different learning rates.
The specific content is shown in Figure 8.
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Figure 8 compares the experimental results trained when the batch_size is set to 8,
the epochs are set to 1250, and the learning_rate is set to 0.01, 0.001, 0.0001, and 0.00001,
respectively. As seen from Figure 8a, when the learning_rate is set to 0.001, 0.0001, and
0.00001, the model’s accuracy on the validation set is relatively high. As shown in Figure 8b,
when the learning_rate is set to 0.001 and 0.0001, the loss begins to converge.

4.4. Model Optimization

In order to further improve the accuracy and AUC (area under ROC curve) value of the
Diplin model, we optimized the composition of the sample feature preprocessing module
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and the composition of the sample classification module in the Diplin model. On the spiral
sub-dataset in the dataset “Parkinson’s Drawings” released by Kaggle, the accuracy and
AUC values of the Diplin model before and after optimization are compared, as shown
in Figure 9.

Electronics 2023, 12, x FOR PEER REVIEW 15 of 21 
 

 

In this paper, we used the spiral sub-dataset in the Kaggle public dataset “Parkinson’s 

Drawings” to compare the experimental results of the model using different learning 

rates. The specific content is shown in Figure 8. 

  

(a) (b) 

Figure 8. Comparison of experimental results curves for models using different learning rates. (a) 

Accuracy curves. (b) Loss curve. 

Figure 8 compares the experimental results trained when the batch_size is set to 8, 

the epochs are set to 1250, and the learning_rate is set to 0.01, 0.001, 0.0001, and 0.00001, 

respectively. As seen from Figure 8a, when the learning_rate is set to 0.001, 0.0001, and 

0.00001, the model’s accuracy on the validation set is relatively high. As shown in Figure 

8b, when the learning_rate is set to 0.001 and 0.0001, the loss begins to converge. 

4.4. Model Optimization 

In order to further improve the accuracy and AUC (area under ROC curve) value of 

the Diplin model, we optimized the composition of the sample feature preprocessing 

module and the composition of the sample classification module in the Diplin model. On 

the spiral sub-dataset in the dataset “Parkinson’s Drawings” released by Kaggle, the ac-

curacy and AUC values of the Diplin model before and after optimization are compared, 

as shown in Figure 9. 

  

(a) (b) 

Figure 9. Comparison of the accuracy, precision, recall, specificity, F1 score, and AUC value of the 

Diplin model before and after optimization. (a) Comparison of accuracy, precision, recall, specific-

ity, and F1 scores. (b) Comparison of AUC values. 

Figure 9 compares the experimental results trained when the batch_size is set to 8 

and the learning_rate is set to 0.0001. As seen in Figure 9a, the optimized model has an 

accuracy rate of 98%, a precision rate of 97%, a recall rate of 96%, and a specificity of 95% 

Figure 9. Comparison of the accuracy, precision, recall, specificity, F1 score, and AUC value of the
Diplin model before and after optimization. (a) Comparison of accuracy, precision, recall, specificity,
and F1 scores. (b) Comparison of AUC values.

Figure 9 compares the experimental results trained when the batch_size is set to 8
and the learning_rate is set to 0.0001. As seen in Figure 9a, the optimized model has an
accuracy rate of 98%, a precision rate of 97%, a recall rate of 96%, and a specificity of 95%
on the spiral dataset. The F1 score reached 97%. Figure 9b shows that the AUC value of the
optimized Diplin model has reached 1.0 on the spiral dataset.

4.5. Comparison of Experimental Results of Different Algorithms

Standard algorithms in image classification include MobileNet, EfficientNet, Xception,
DenseNet, and Inception. In this paper, to understand the practical effect of using different
algorithms to build the Diplin model, we use the spiral sub-dataset in the Kaggle public
dataset “Parkinson’s Drawings”. We built a classification model using MobileNetV3-
Small, EfficientNetV2, Xception, DenseNet201, and InceptionResNetV2. In the process of
building the Diplin model using the five algorithms, MobileNetV3-Small, EfficientNetV2,
Xception, DenseNet201, and InceptionResNetV2, the optimizer uses Adam, the batch_size
setting is 8, and the learning_rate setting is 0.0001. We compared the accuracy, precision,
recall, specificity, F1 score, and ROC curve of the Diplin model constructed using different
algorithms. The specific content is shown in Figures 10–12.
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As shown in Figure 10a, the accuracy of the model built using EfficientNetV2 is the
highest, reaching 98%. As shown in Figure 10b, the accuracy of the model built using
EfficientNetV2 is the highest, reaching 97%.
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(a) Comparison of recall rates. (b) Comparison of specificity rates.

As shown in Figure 11a, the recall rate of Diplin based on EfficientNetV2 is the
highest, reaching 96%. As shown in Figure 11b, the specificity of the model built using
EfficientNetV2 is the highest, reaching 95%.
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As seen in Figure 12a, the F1 score of the model built using EfficientNetV2 is the
highest, reaching 97%. As shown in Figure 12b, the AUC value of the model built using
EfficientNetV2 is the highest, reaching 1.0.

In summary, among the five standard image classification algorithms (MobileNetV3-
Small, EfficientNetV2, Xception, DenseNet201, and InceptionResNetV2), the accuracy,
precision, recall, specificity, F1 score, and AUC obtained by the EfficientNetV2 algorithm in
the experiment have the highest value.

4.6. Experimental Results on Other Datasets

According to our research, collecting images of hand-drawn curves and mouths in
nursing homes is relatively convenient. Therefore, in order to further verify the reliability
and accuracy of the Diplin model method, we use the wave sub-dataset in “Parkinson’s
Drawings” and the “Oral Cancer (Lips and Tongue) images” dataset for further verification
tests. The specific content is shown in Figure 13.
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Figure 13 compares the experimental results trained using the wave dataset and the
“Oral Cancer (Lips and Tongue) images” dataset when the batch_size is set to 8 and the
learning_rate is set to 0.0001. Figure 13a shows that the accuracy, precision, recall, specificity,
and F1 score of the Diplin model method on the wave dataset and the “Oral Cancer
(Lips and Tongue) images” dataset have reached more than 90%. Figure 13b shows that the
AUC value of the Diplin model method on both the wave dataset and the “Oral Cancer
(Lips and Tongue) images” dataset reached 1.0.

The contribution of this paper is to apply the algorithm to the actual scene in combina-
tion with the hardware configuration of the nursing home.

In this section, we conduct comparison experiments from various perspectives, such
as transfer learning, optimizer, learning rate, and base algorithm. Through optimization,
we obtained the best model with an accuracy rate of 98%, precision rate of 97%, recall rate
of 96%, specificity of 95%, F1 score of 97%, and AUC value of 1.0. In order to further verify
the method of Diplin model design and implementation, we use the wave dataset and
the “Oral Cancer (Lips and Tongue) images” dataset to verify the method of Diplin model
design and implementation. The above experimental data show that the Diplin model can
evaluate health risks without relying on professional medical testing equipment.

5. Conclusions

In this paper, we use Kaggle’s public datasets “Parkinson’s Drawings” and “Oral
Cancer (Lips and Tongue) images” as sample data and propose a Diplin model based
on WGAN, migration learning, and EfficientNetV2. After optimizing the sample feature
extraction module and sample classification module, the accuracy rate of the Diplin model
on the verification set reached 98%, the precision rate reached 97%, the recall rate reached
96%, and the specificity reached 95%. The F1 score reached 97% and the AUC value
reached 1.0. Most current research studies on disease risk prediction use datasets collected
by professional medical equipment. Disease data collected by non-medical devices are
minimal, and the samples used in this paper are only for Parkinson’s disease and oral cancer.
In the future, we hope to add more disease samples to improve the comprehensiveness
of the model. In addition, the proportion of subject data is relatively low in this study. In
the following research, we will further increase the subject data to improve the prediction
effect of the Diplin model.
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