
Citation: Anbarkhan, S.H.;

Rakrouki, M.A. An Enhanced PSO

Algorithm for Scheduling Workflow

Tasks in Cloud Computing.

Electronics 2023, 12, 2580. https://

doi.org/10.3390/electronics12122580

Academic Editor: Ying Tan

Received: 2 May 2023

Revised: 2 June 2023

Accepted: 5 June 2023

Published: 7 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

An Enhanced PSO Algorithm for Scheduling Workflow Tasks in
Cloud Computing
Samar Hussni Anbarkhan 1,* and Mohamed Ali Rakrouki 2,3,4

1 Information Systems Department, Northern Border University, Arar 73213, Saudi Arabia
2 College of Computer Science and Engineering, Taibah University, Medina 42353, Saudi Arabia;

mrakrouki@taibahu.edu.sa
3 Ecole Supérieure des Sciences Economiques et Commerciales de Tunis, University of Tunis,

Tunis 1089, Tunisia
4 Business Analytics and DEcision Making Lab (BADEM) at Tunis Business School, University of Tunis,

Bir El Kassaa 2059, Tunisia
* Correspondence: samar.hussni@nbu.edu.sa

Abstract: This paper proposes an enhanced Particle Swarm Optimization (PSO) algorithm in order
to deal with the issue that the time and cost of the PSO algorithm is quite high when scheduling
workflow tasks in a cloud computing environment. To reduce particle dimensions and ensure initial
particle quality, intensive tasks are combined when scheduling workflow tasks. Next, the particle
initialization is optimized to ensure better initial particle quality and reduced search space. Then,
a suitable self-adaptive function is integrated to determine the best direction of the particles. The
experiments show that the proposed enhanced PSO algorithm has better convergence speed and
better performance in the execution of workflow tasks.

Keywords: task scheduling; cloud computing; metaheuristics; particle swarm optimization

1. Introduction

Due to its high performance and distributed computing capabilities, cloud computing
is widely used. The benefits of cloud computing include virtualization, high scalability,
high dependability, on-demand service, huge size, and low cost [1]. As a result, more and
more researchers are beginning to focus on this field. There has been a boom in research on
resource usage, storage performance, and cloud computing system performance. According
to their characteristics, task scheduling assigns the users’ requested tasks to the appropriate
cloud resources for execution. The dependability, availability, and resource usage of cloud
computing are most significantly impacted by the effectiveness of job scheduling. How to
equitably assign jobs of various types and requirements to suitable computer resources is
the focus and challenge of task scheduling algorithm research in cloud computing [2].

Because of its commercial nature, cloud computing is leased to users as a service
provision model in distributed computing. Users use the services provided by cloud
computing, but they do not understand how tasks are processed inside cloud computing
networks. Cloud computing uses its powerful distributed processing capabilities to handle
huge amounts of tasks. Traditional task scheduling is mainly divided into independent
task scheduling and workflow task scheduling. Independent task scheduling has no order
relationship because the tasks are relatively independent and there is no priority in the
execution of tasks. Therefore, the scheduling of independent tasks is relatively simple.
This type of scheduling cannot be used to describe most large-scale applications. Task
scheduling in the cloud computing environment mainly refers to workflow task scheduling.

As shown in Figure 1, task scheduling in a cloud computing environment usually
divides a large task set into several tasks, and then assigns these tasks to appropriate com-
puting resources for processing according to the specific requirements of users, and returns

Electronics 2023, 12, 2580. https://doi.org/10.3390/electronics12122580 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12122580
https://doi.org/10.3390/electronics12122580
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6627-9161
https://doi.org/10.3390/electronics12122580
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12122580?type=check_update&version=2


Electronics 2023, 12, 2580 2 of 17

the processing results to users. The process of task scheduling is relatively complicated. At
the beginning of scheduling,the task set is split and decomposed, divided into several tasks,
and computing resources are allocated to the tasks. This is the task scheduling stage; after
the computing resources are assigned a task, they execute the task, obtain the execution
result of the task, and return the execution result to the user. This is the task execution
phase. In the process of task execution, there are two situations. One is that there is no
sequence relationship between tasks, and the execution of tasks can be processed in parallel.
This kind of task is mainly an independent task; the other is that data transmission is
required between tasks. There are dependencies, and tasks need to be executed sequentially.
This kind of task is mainly a workflow task. No matter what kind of tasks are performed,
the main goal is to meet the needs of users. This is determined by the service-oriented
business model of cloud computing. It is required to ensure that tasks are error-free and
smoothly executed while meeting user quality requirements.

Figure 1. Task Scheduling.

Therefore, the core of task scheduling is allocating the proper resources to jobs in
accordance with user needs so that it can satisfy quality of service (QoS) standards such
as time and cost. Cloud computing is well-liked by users because of its powerful com-
putational capacity and low cost. It draws an increasing number of researchers that are
interested in studying its distributed computing, cloud storage, and virtualization tech-
nologies. Task scheduling for cloud computing is increasingly carried out using Particle
Swarm Optimization (PSO), as an effective heuristic technique.

Task scheduling in cloud computing is anNP-hard problem [3]. The PSO algorithm is
widely used in solving this problem due to its high efficiency and fast convergence speed [4].
A hybrid PSO algorithm that incorporates genetic algorithm operators (i.e., crossover and
mutation) was proposed by Xue and Wu [5]. According to experimental findings, this
approach outperforms the traditional PSO algorithm in terms of cost minimization for a
given execution time. To reduce the overall task flow’s execution costs, Guo et al. [6] sug-
gested a task scheduling model and a PSO technique based on tiny position value criteria.
The experimental results demonstrate that the original algorithm has a rapid convergence
speed and is faster than the other two algorithms when compared to the one incorporated
with crossover and mutation. The research of Varalakshmi et al. [7] on the PSO algorithm
aims to meet the user’s QoS requirements in workflow scheduling and can effectively
improve CPU utilization. A new hybrid PSO algorithm (HPSO) based on heuristic task



Electronics 2023, 12, 2580 3 of 17

scheduling that takes into account the computation cost and data transmission cost was
proposed by Pandey et al. [8]. By lowering the cost of calculation and communication, it is
applied to workflow applications. The experimental findings demonstrate that the HPSO
algorithm can reduce costs and allocate sensible resources when scheduling tasks. The
impact of cutting the time cost is still being determined. The user’s QoS requirements are
the subject of the aforementioned study and PSO algorithm improvement, which focuses
on time, cost, and CPU utilization optimization. The PSO method is used to address the
issue of independent job scheduling in the cloud computing system. Excellent performance,
although the outcome could have been more pleasing for the workflow job scheduling.
The industry rarely engages in research concerning the application of the PSO algorithm in
workflow task scheduling scenarios in a cloud computing environment.

After an in-depth investigation of previous research results, this paper proposes an
Enhanced PSO (EPSO) algorithm based on establishing a workflow task model, which
improves the initialization operation and adaptive function of the particles to meet the
user’s time, cost, and CPU utilization requirements. The workflow task model processing
is designed, the particle dimensions are reduced, the particle swarm optimization process
is optimized, and the execution completion time of the workflow task scheduling in the
cloud computing environment is minimized.

2. Related Works
2.1. Problem Formulation

In a cloud computing environment, users submit multiple tasks to the cloud platform
for scheduling and processing. The tasks submitted by the user to the cloud platform will
enter the scheduling list and be distributed to the virtual machines in the cloud platform
for execution through the scheduler.

When the user has a service demand, they send a request to the cloud system to request
the cloud system to provide services, and the cloud system will dispatch the resources
of the data center to the user. For cloud service providers, the quality of task scheduling
directly affects their income. There are two types of task scheduling in cloud computing:
independent task scheduling and workflow task scheduling. The dependencies between
tasks do not need to be considered in independent task scheduling and there is no sequence
of task execution; workflow task scheduling needs to consider the dependencies and data
transmission between tasks, and task execution has a sequence. The task scheduling
algorithm in cloud computing needs to consider different types of task scheduling effects,
reasonably map different tasks to appropriate resources for execution, and ensure service
quality, such as the shortest execution time and the smallest execution cost.

Definition 1. The set of resources in a cloud computing system is expressed as R = (r1, r2, ..., rm),
where m represents the total number of computing resources. Each resource is represented as follows:

rj = (rj
id, rj

cap) (1)

where rid represents the ID of the computing resource and rcap represents the performance attribute
of the resource. There are many performance attributes of resources. This section mainly considers
the attributes of resources in terms of CPU performance, communication bandwidth, charging price,
etc., to facilitate the subsequent calculation of task execution time, data transmission time, and task
execution cost. Therefore, rcap is expressed as follows:

rcap = (rcomp, rbw, rprice) (2)

where rcomp is the CPU performance of the computing resource, which measures the computing
power of the resource; rbw is the communication bandwidth of the computing resource, which
measures the data transmission capability of the resource; and rprice represents the charging price of
the computing resource.



Electronics 2023, 12, 2580 4 of 17

Definition 2. A directed acyclic graph G = (T, E, ω) represents the task model in the cloud, where
T = {t1, t2, ..., tn} represents the task set, E represents the dependencies between tasks (that is,
(Ti, Tj) ∈ E), and ω : E → R represents the weight function of G, representing the amount of
data that needs to be transmitted between tasks, where n represents the total number of tasks. The
following four-tuple represents the attribute characteristics of task ti, namely,

ti = (ti
id, ti

length, ti
rres) (3)

where tid represents the label information of the task; tlength represents the amount of data that needs
to be calculated when the task is executed; and trres represents the requirement of the task execution
for the allocated resource attributes.

The attributes of resources are mainly manifested in aspects such as CPU performance, commu-
nication bandwidth, and computing price. Therefore, the task’s requirements for computing resource
attributes are also mainly reflected in the following four aspects:

trres = (tcomp, tbw, tprice) (4)

The parameter tcomp of trres indicates the minimum requirement of CPU performance for this
task; tbw indicates the minimum requirement of communication bandwidth for this task; and tprice
indicates the maximum limit of usage price for this task.

The execution completion time of task i is determined by the amount of data required to execute
the task and the CPU performance of the computing resources. When the attribute characteristics of
computing resource rj meet the computing resources requirements of task ti , the algorithm assigns
task ti to computing resource rj for execution. The execution time ET(i, j) of task ti on resource rj is
calculated as follows:

ET(i, j) =
ti
length

rj
comp

(5)

The approximate execution cost of task ti on computing resource rj is calculated as follows:

EC(i, j) = ET(i, j) ∗ rj
price (6)

Definition 3. Matrix W = T × R represents the task execution time cost matrix, where wij is
calculated according to Equation (5), representing the time spent by task ti on resource rj:

Definition 4. Matrix C = R× R measures the communication capability between resource rj and
resource cj, that is, the data transmission capability.

Definition 5. The task resource allocation strategy is defined as matrix X. For a given task set T
and resource set R, the allocation strategy description is shown in Equation (7):

X = {x11, x12, ..., x1m, x21, x22, ..., xnm} (7)

where xij takes a value of 0 or 1, indicating whether to assign task ti to resource rj or not.

Let us define task ti to execute at start time point St(i, j) and execution completion
time point Ft(i, j) on resource rj as follows:

St(i, j) = max
tk∈pred(ti)

{Ft(k, r)} (8)

Ft(i, j) = St(i, j) + wij (9)

Then, the maximum completion time of all tasks is as follows:

makespan = max{Ft(i, j), 1 ≤ i ≤ n, 1 ≤ j ≤ m} (10)



Electronics 2023, 12, 2580 5 of 17

Task ti is executed on resource rj. The start time point St(i, j) is equal to the maximum
completion time of all predecessor tasks of task ti; task ti is executed on resource rj. The
completion time Ft(i, j) when task ti finishes executing on resource rj is equal to the sum of
the start time point when task ti starts executing on resource rj and the execution time of
task ti on resource rj.

How to optimize the PSO algorithm to adapt to the workflow task scheduling in the
cloud computing environment, how to find an optimal task resource allocation strategy
X, and how to minimize the completion time of the workflow task execution are the main
problems to be solved in this paper. According to this description, the objective function is
minimizing the makespan.

2.2. Literature Review

One of the most notable problems with cloud computing systems, which are made up
of numerous heterogeneous computing resources, is the task scheduling problem [9–13].

In the literature, among many metaheuristics, the PSO algorithm has been used to
optimize task scheduling in a cloud computing environment. A small position-value-based
PSO algorithm was introduced by Guo et al. [6] to address the issue of task scheduling
and transfer costs in cloud computing. Studies have shown that when the resource search
range is vast, this algorithm performs better and converges faster than the conventional
PSO algorithm. Awad et al. [14] considered reliability and availability when scheduling
tasks and proposed an enhanced PSO algorithm using a mathematical model. Mirzayi
and Rafe [15] proposed a hybrid PSO algorithm based on a gravitation search algorithm.
In order to optimize the QoS in a cloud computing environment, Xue et al. [16] proposed
a dynamic-adapting PSO algorithm based on a price model. In comparison to the PSO,
gravitational search, and genetic-gravitational algorithms, the suggested technique has
demonstrated good performance. Huang et al. [17] proposed several PSO variants using a
logarithm-decreasing strategy to generate a better scheduling scheme. The experimental
results have shown promising results compared to some population-based approaches.
Alsaidy et al. [18] proposed a PSO algorithm by improving the initialization stage using
two list-based heuristics. The experiments have proven the superiority of the improved
procedure compared to the traditional PSO algorithm.

The literature has taken into account various metaheuristics for dealing with task
scheduling in cloud platforms. Su et al. [19] suggested an improved Ant Colony Op-
timization (ACO) algorithm for scheduling tasks to minimize the time and cost of task
completion, reduce migration time, and increase user satisfaction. Hamed and Alkinani [20]
presented a genetic algorithm (GA) to minimize task completion times and execution costs
while maximizing resource utilization. Chaudhary et al. [21] considered task scheduling
to satisfy QoS requirements using a Harmony Search algorithm. For the same objective,
Gabi et al. [22] proposed a hybrid approach by combining Simulated Annealing and Cat
Swarm optimization algorithms. Chen and Long [23] proposed a hybrid PSO and ACO
algorithm. The experimental results showed better task scheduling performance regarding
cost and running time. Jia et al. [24] considered the problem of task scheduling in a cloud
computing environment with the objective of optimizing execution time, consumption, and
virtual machine load. To deal with this problem, the authors proposed an improved whale
optimization algorithm using an inertial weight-based local search strategy.

Various recent literature reviews on task scheduling in cloud computing environments
can be found in [11–13,25,26].

It is worth noting that PSO is an excellent option for optimizing a wide range of
real-world optimization problems and applications. Recently, Shami et al. [27] presented a
thorough analysis of PSO, covering its fundamental ideas, binary PSO, neighborhood struc-
tures, existing and historical versions, outstanding engineering uses, and its shortcomings.



Electronics 2023, 12, 2580 6 of 17

2.3. Particle Swarm Optimization Algorithm

In this section, our proposed PSO algorithm is described. First, a detailed description
of the classical PSO algorithm is provided. After that, the different techniques used to
improve it are provided, as well as a pseud-code of the algorithm’s implementation.

2.3.1. Principle of the PSO Algorithm

A PSO algorithm is an evolutionary search algorithm proposed by Kennedy [4], which
is mainly inspired by the behavior of birds and animals looking for food. The PSO algorithm
is well-liked because it lacks evolutionary processes such as crossover and mutation. It is
more straightforward than other evolutionary algorithms, such as the genetic algorithm
(GA).

A PSO algorithm regards each particle as a feasible solution to the problem. These
feasible solutions correspond to the collection of resources in the cloud computing system.
Every particle in the search space is a position vector, and the number of dimensions it
has corresponds to the number of tasks. Resources in the cloud are represented by the
number of particles. At the beginning of the algorithm, a group of particles is randomly
initialized, that is, each particle is given a random initial position and initial velocity. In
other literature, the description of speed is different. This paper adopts the description
formula of Kennedy [4] for speed as follows:

vk+1
i = vk

i + ϕ1rd1(pk
besti − xk

i ) + ϕ2rd2(gbest − xk
i ) (11)

xk+1
i = xk

i + vk+1
i (12)

where k is the number of iterations, rd1 and rd2 are random numbers, and ϕ1 and ϕ2 are
learning factors. xk

i and xk+1
i are the current and the next step positions of the particle

i, respectively. vk
i and vk+1

i are the current speed and the next step speed of the particle
i, respectively. pk

besti is the best position experienced by the particle i, that is, the best
historical position. gbest is the best position experienced by all particles, that is, the global
best position.

The best historical position is the best position obtained by the particle so far, and the
global best position is the best value of all the local best positions obtained so far. In each
iteration, the particle updates its position and velocity information by using the historical
or global best positions.

The speed formula has three essential parts. The first part vk
i represents the past

velocity. If no external force is applied to it, the particle will continue to travel in the
original direction, which is called the law of inertia. The second part ϕ1rd1(pk

besti − xk
i )

represents the individual characteristics of a particle, that is, the particle’s previous motion
experience. The individual characteristics of particles mainly affect the local search ability
of particles. The third part ϕ2rd2(gbest − xk

i ) represents the characteristics of the group,
that is, the influence of the position information gbest of other particles on the speed and
position of the current particle mainly affects the global search ability of the particle. In the
case of only the first part, the particles keep moving at the past speed when they do not
reach the boundary value, so the probability of reaching the optimal solution is minimal.
In the case of only the first and second parts, the particle shows a local search ability. The
particle’s search space gradually shrinks over the iterative process, making it likely to settle
on a local optimal solution.

Shi and Eberhart [28] proposed that an inertia coefficient η can be used in the veloc-
ity formula, mainly to maintain the motion inertia of the particles. Therefore, the first
expression in the equation can be changed to ηvk

i , and the setting of this coefficient can
help expand the search space. Smaller values of η result in lesser inertial velocities, smaller
search spaces, and the local optimization ability is relatively strong, although it is still likely
to settle on a local optimal solution; when the value of η is larger, the inertial velocity is
more significant, and the search space is more prominent. The global optimization ability



Electronics 2023, 12, 2580 7 of 17

is relatively strong, but the convergence speed could be faster, and it is not easy to obtain
the optimal solution. The PSO algorithm’s ability to optimize can be adjusted by including
the η variable.

Each particle updates its speed and position in each iteration according to
Equations (11) and (12), and each particle moves in the search space according to the
new position and speed. The particle will repeat the above behavior until it converges to
the best solution.

When each particle updates its position information xk+1
i , the value of its fitness

function F(xk+1
i ) is calculated and compared with its fitness function value F(xk

besti) at
the historical best position. If F(xk+1

i ) ≥ F(xk
besti), that is, the fitness function value of the

current particle is greater than or equal to its fitness function value at the historical best
position, then update the historical best position of the particle and assign it as (xk+1

i );
otherwise, the historical best position of the particle remains unchanged. The following
equation can be used to determine the historical best position calculation of particles:

pk+1
besti =

{
pk

besti; F(xk+1
i ) < F(pk

besti)

xk+1
i ; F(xk+1

i ) ≥ F(pk
besti)

(13)

The global best position of the particle is updated according to the comparison between
the adaptive function value F(pk+1

besti) of the best position in the history of the particle and
the adaptive function value F(gbest) of the global best position. If F(pk+1

besti) ≤ F(gbest), the
global best position gbest is updated as follows:

gbest =

{
pk

besti; F(pk+1
besti) ≤ F(gbest)

gbest; F(pk+1
besti) > F(gbest)

(14)

2.3.2. Task Scheduling Algorithm Based on the PSO Algorithm

The PSO algorithm is applied to the task scheduling of a cloud computing system and
executed as Algorithm 1.

Algorithm 1 PSO Algorithm

Input: m d-dimensional particle swarm S
Output: Particle swarm S with updated velocity and position information

1: repeat
2: for each particle i = 1, 2, ..., m do {For each particle, calculate its fitness value and compare

it with the fitness value of the historical best position.}
3: if F(xk+1

i ) ≤ F(pk
besti) then

4: pk+1
besti = xk+1

i
5: else
6: pk+1

besti = pk
besti

7: end if
8: if F(pk

besti) ≤ F(gbest) then {Compare the fitness value of the current particle’s historical
best position with the fitness value of all particles’ historical best positions.}

9: gbest = pk+1
besti

10: end if
11: Update the velocity information of the particle using Equation (11)
12: Update the position information of particles using Equation (12)
13: end for
14: until Satisfy the termination condition (the number of iterations reaches the maximum,

or the accuracy meets the requirements)

2.3.3. Algorithm Analysis

The PSO algorithm has parallel processing capability and relatively high efficiency.
The main reason is that in the particle swarm, each particle has no dependency and can be



Electronics 2023, 12, 2580 8 of 17

processed in parallel. In addition, in the PSO algorithm, the update of the particle’s best
position depends on the best historical position of the particle and the global historical
best position. Despite the PSO algorithm’s relatively quick convergence speed, it has the
following drawbacks when it comes to workflow task scheduling problems:

1. When the PSO algorithm is scheduling tasks, it does not consider the calculation and
data transmission of workflow tasks and can achieve better performance for indepen-
dent task scheduling. However, the performance under workflow task scheduling is
not satisfactory.

2. In the PSO algorithm, the optimization direction of the particle depends on its best
historical position and the global best position, the convergence speed is fast, and it is
easy to fall into the local optimal solution. Particles update their location based on
their historical and neighborhood information, which can easily make the load on a
single resource node too high, resulting in system instability.

3. PSO Algorithm Optimization
3.1. Particle Encoding Method

The particle encoding approach uses an indirect encoding scheme, and the particle’s
position data are used to determine how task resources should be distributed. The number
of particles and their dimensions are equivalent to the number of tasks and the available
resources, respectively. When there are n tasks to be scheduled in the cloud system
having m resources, there are m particles with a dimension n; for the position information
of each particle in the particle swarm, use xi = {xi1, xi2, ..., xin}; ∀1 ≤ i ≤ m means
that each xi represents a feasible solution of the PSO algorithm, while xi1 represents
that the ith task is assigned to the resource xi1. The speed of particles is expressed as
vi = {vi1, vi2, ..., vin}; ∀1 ≤ i ≤ m. Considering that there are seven particles and that the
particle position information is (7, 5, 4, 3, 6, 2, 1, 2), which means that the particle has eight
dimensions, Table 1 shows the task resource allocation for the particle scheme.

Table 1. Scheme for allocating tasks.

Task 1 2 3 4 5 6 7 8

Resource 7 5 4 3 6 2 1 2

3.2. Improvements to the Initialization of Particles

The PSO algorithm randomly generates the position and velocity of the particles at the
beginning, resulting in relatively low-quality particles. Based on the purpose of minimizing
the task completion time in this chapter, this section uses the amount of data that needs to
be calculated during task execution to construct a high-quality initial particle swarm. First,
the computing performance of resources and the amount of data that must be processed
during task execution are normalized to facilitate the subsequent selection of the most
appropriate resource allocation resources.

Let Urjcomp be the normalized result of the computing capability of the jth resource.
The closer the value is to 1, the higher the computing capability; the closer to 0, the lower
the computing capability. Utilength represents the normalized result of the data that need to
be calculated when the ith task is executed. The closer the value is to 1, the more significant
the amount of data that needs to be calculated; the closer to 0, the smaller the amount
that needs to be calculated. The values of Urjcomp and Utilength are between 0 and 1 and
calculated as follows:

Urjcomp =

∣∣∣∣ rjcomp −min(rcomp)

max(rcomp)−min(rcomp)

∣∣∣∣ (15)

Utilength =

∣∣∣∣∣ tilength −min(tlength)

max(tlength)−min(tlength)

∣∣∣∣∣ (16)



Electronics 2023, 12, 2580 9 of 17

where rjcomp represents the computing performance of the jth computing resource; tilength
represents the amount of data that needs to be calculated when the ith task is executed.
max(rcomp) and min(rcomp) respectively represent the computing power of the resource
with the highest computing power and the resource with the lowest computing power in the
combination of computing resources; max(tlength) and min(tlength) respectively represent
the amount of data that needs to be executed in the task set of the most extensive task and
the task with the smallest amount of data to be executed. The particle initialization process
is shown in Figure 2.

Start

Normalized result
Urj for resource com-
puting performance

Calculate the data
volume normalization
result Uti for the task

Sort resources ac-
cording to Urj value

Sort tasks accord-
ing to Uti value

25% of tasks with a large amount
of data are assigned to resources

with high computing performance

75% tasks are randomly
assigned to resources

End

Figure 2. Particle initialization process.

According to Figure 2, the computing resources and tasks are sorted according to
their Urjcomp and Utilength values. For 25% of tasks in the task set, the computing resources
with higher computing performance are allocated to the tasks with higher computing
performance requirements. For tasks with a relatively large amount of calculated data,
a random allocation strategy is adopted for the remaining 75% of tasks. Adopting this
allocation method can ensure the algorithm has a larger search space while ensuring the
quality of the particles.

3.3. Adaptive Function Design

The adaptive function is a standard for assigning tasks to virtual machines. Its value
is used to judge whether the tasks and resources are appropriate to perform subsequent
operations according to the results. When defining the adaptive function, it is necessary to
consider this paper’s optimization goals: time cost and algorithm convergence.

According to Equation (10), set the adaptive function F′(x) to ensure that the parti-
cle optimization process meets the user’s requirements for the completion time of task
execution. The adaptive function F′(x) is calculated as follows:

F′(x) =
1

makespan
(17)

The adaptive function F′(x) is equal to the reciprocal of the task execution completion
time so that the optimization direction of the particles is the same as the increasing direction
of the adaptive function F′(x).



Electronics 2023, 12, 2580 10 of 17

3.4. Workflow Task Model Processing

The directed acyclic graph G = (T, E) represents the evaluation of the task model in
cloud computing and judges whether the model is computing-intensive or IO-intensive so
that the model can be processed later.

For the set of available resources, its average computing power and average data
transmission capacity are:

comp =
∑m

j=1 rjcomp

m
(18)

bw =
∑m

j=1 rjbw

m
(19)

For the task model G = (T, E), the total calculation data volume total_length and the
total transmission data volume total_data are calculated as follows:

total_length =
n

∑
i=1

tilength (20)

total_data =
n

∑
i=1

n

∑
j=i+1

eij (21)

According to Equations (18)–(21), the average execution time of all tasks and the
average calculation time of tasks are calculated as follows:

comp_time =
total_length

comp
(22)

trans_time =
total_data

bw
(23)

Take the condition comp_time ≥ trans_time; if this condition is met, the task is a
computing-intensive task; otherwise, it is an IO-intensive task.

3.4.1. Computationally Intensive Tasks

The graph G for computationally intensive tasks is simplified according to the follow-
ing steps.

1. Calculate the sum of the node weights on the path from the root node to each leaf
node;

2. “Gather” the path with the largest calculated value above the root node, and update
the weight information of the root node;

3. “Remove” the root node from the graph;
4. Repeat the above process until all the nodes in the graph are “independent nodes”

without successor nodes.

According to the above process, the workflow task is converted into an independent
task. Several independent tasks contain several subtasks. Due to the tremendous amount
of calculation, they are gathered together. When allocating resources in the later stage, a
whole task is allocated to the same resource node with better performance, which reduces
the execution time to a certain extent.

3.4.2. IO-Intensive Tasks

The simplification of the graph G for IO-intensive tasks is similar to that of computa-
tionally intensive tasks, and the simplification is performed according to the following steps.

1. Calculate the sum of weights on the path from the root node to each leaf node;
2. “Gather” the path with the largest calculated value above the root node, and update

the weight information of the root node;



Electronics 2023, 12, 2580 11 of 17

3. “Remove” the root node from the graph;
4. Repeat the above process until all the nodes in the graph are “independent nodes”

without successor nodes.

The processing of IO-intensive tasks is similar to that of computing-intensive tasks.
The difference is that nodes with relatively large data transmissions are gathered together.
When resources are allocated later, they are allocated to one resource as a whole to reduce
the impact of data transmission time on execution completion time.

Workflow task model processing combines intensive tasks into one particle, which
reduces the particle dimension and simplifies the optimization complexity of the subsequent
PSO algorithm.

3.4.3. Algorithm Implementation

This paper improves the PSO algorithm’s task scheduling, and the proposed algorithm
is called Enhanced Particle Swarm Optimization (EPSO). The algorithm execution steps are
as Algorithm 2.

Algorithm 2 EPSO Algorithm

1: According to the directed acyclic graph describing the task and the condition
comp_time ≥ trans_time, it is judged whether the task is computationally intensive or
IO-intensive;

2: According to the different types of tasks, the tasks are processed by the workflow task
model to obtain several sets of “independent tasks” (Section 3.4);

3: Use the set of “independent tasks” as input to the algorithm;
4: Initialize the particles;
5: repeat
6: Traverse the particle swarm;
7: Calculate the adaptive function value of the particle according to Equation (17);
8: Update the historical best position pbest and the global best position gbest of the

particle according to Equations (13) and (14);
9: Update the particles’ position and velocity information according to Equations (11)

and (12);
10: until the number of iterations reaches the maximum

4. Experiments and Analysis

The proposed EPSO algorithm has the advantage of workflow task scheduling, which
can effectively reduce the scheduling time of workflow tasks and obtain lower scheduling
costs. This section compares the EPSO algorithm with the HPSO algorithm proposed
in Pandey et al. [8] to verify the superiority of the EPSO algorithm in terms of time and
cost (computation cost and data transmission cost). These algorithms are tested under
applications containing 10, 20, 50, 100, 150, 200, 250, and 300 workflows and independent
tasks. Each algorithm was run 20 times under different task types and different task
numbers, and the average value was taken as the experimental result. This experiment
uses the cloud environment simulation tool CloudSim to simulate the cloud environment.
The physical node configuration uniformly adopts the configuration of an HP ProLiant
DL380 G9 server (Xeon E5-2667v3, 8 cores), 64 GB. The relevant parameters are initialized
as shown in Table 2.



Electronics 2023, 12, 2580 12 of 17

Table 2. Algorithm/CloudSim parameter settings.

Parameter Value

Maximum number of resources 250
Particle inertia 0.99

The maximum number of iterations 50
Task length 10,000–40,000

The amount of data transferred by the task 150–200
Task computing requirements 500–1000
Task bandwidth requirements 60–100

For costs computation, we used Amazon EC2’s pricing guidelines for various classes
of virtual machine instances while varying the processing costs and assuming one hour
for the completion of all tasks. The communication costs are comparable to what Amazon
CloudFront charges for each unit of data sent between resources. The execution costs are
computed according to Vecchiola et al. [29] while shifting the size of the tasks.

4.1. Workflow Task Scheduling

This section presents the experimental results of the compared algorithms for schedul-
ing workflow tasks with different numbers of tasks in terms of computation time and cost.

4.1.1. Time

Table 3 shows the experimental data of the time spent by the EPSO algorithm, the
HPSO algorithm, and the PSO algorithm for scheduling workflow tasks with different
numbers of tasks.

Table 3. Time performance under different number of workflow tasks (unit: seconds).

Number of Tasks EPSO HPSO PSO

10 102.485 104.485 105.416
20 110.215 115.475 116.125
50 124.596 139.156 145.156

100 170.123 198.417 221.152
150 196.482 232.156 265.478
200 204.151 256.482 298.985
250 235.156 354.545 398.121
300 255.145 394.156 459.562

Figure 3 shows the line chart of Table 3. When the number of tasks is less than 50,
there is no significant difference in the performance of the three algorithms. This is mainly
because when the number of tasks is relatively small, the search performance of the three
algorithms is equivalent, and the best solution can be obtained in a limited search space.
The EPSO algorithm shows significantly superior performance as the number of tasks
increases. This is mainly because the EPSO algorithm performs workflow task model
processing on workflow tasks, effectively reducing the dimension of particles in the particle
swarm and making the algorithm optimization process faster. In addition, the processing of
the workflow model enables intensive tasks to be aggregated and assigned to appropriate
resource nodes, reducing the time needed to complete task execution. At the same time,
the initialization operation of the EPSO algorithm on the particle swarm makes it have
high-quality particles, ensuring that the particles have a relatively high quality. The EPSO
algorithm can find a better solution than the other two algorithms.



Electronics 2023, 12, 2580 13 of 17

10 20 50 100 150 200 250 300
0

100

200

300

400

500

Number of tasks

Ti
m

e
(s

)

EPSO
HPSO
PSO

Figure 3. A graphical representation of the results given in Table 3.

4.1.2. Cost

Figure 4 shows the cost of the EPSO algorithm, HPSO algorithm, and PSO algo-
rithm for workflow task scheduling under different task numbers, and Table 4 shows the
experimental data in Figure 4.

Table 4. Cost performance under different number of workflow tasks (unit: US dollars).

Number of Tasks EPSO HPSO PSO

10 11.5 11.3 12.1
20 24.3 22.5 25.9
50 56.3 59.4 77.4

100 167.6 175.1 180.2
150 218.1 246.2 286.9
200 307.2 335 350.8
250 359.1 397.4 439.5
300 401.5 459.8 558.3

10 20 50 100 150 200 250 300
0

100

200

300

400

500

600

Number of tasks

C
os

t

EPSO
HPSO
PSO

Figure 4. A graphical representation of the results given in Table 4.

There is not much of a cost difference between the algorithms when the number of
tasks is limited, but it can still be seen that the cost of the EPSO algorithm is slightly lower
than the other two. With the gradual increase in the number of tasks, the EPSO algorithm is



Electronics 2023, 12, 2580 14 of 17

superior to other algorithms. The main reason is that the EPSO algorithm has advantages
in workflow task scheduling.

4.2. Independent Task Scheduling
4.2.1. Time

Table 5 shows the experimental data of the time spent by the EPSO algorithm, HPSO
algorithm, and PSO algorithm on the scheduling of independent tasks with different
numbers of tasks, and Figure 5 shows the line chart of Table 5.

According to Figure 5, it can be seen that when dealing with independent tasks, the
EPSO algorithm is slightly better than the HPSO algorithm and obviously better than
the PSO algorithm; that is, the EPSO algorithm can also achieve good performance when
dealing with independent tasks. This is mainly due to the initial processing of the particles
by the EPSO algorithm to obtain high-quality initial particles. The design of the adaptive
function also ensures the optimal direction of the particles and improves the quality of the
feasible solution.

Table 5. Time performance under different number of independent tasks (unit: seconds).

Number of Tasks EPSO HPSO PSO

10 72.325 83.534 92.785
20 81.563 95.265 108.783
50 99.125 114.255 127.678

100 127.425 154.678 189.425
150 151.897 178.787 217.454
200 178.578 212.673 259.425
250 198.435 226.524 287.542
300 225.523 254.246 327.789

10 20 50 100 150 200 250 300
0

50

100

150

200

250

300

350

Number of tasks

Ti
m

e
(s

)

EPSO
HPSO
PSO

Figure 5. A graphical representation of the results given in Table 5.

4.2.2. Cost

Table 6 shows the experimental data of EPSO algorithm, HPSO algorithm, and PSO
algorithm on the cost of different task numbers, and Figure 6 shows the results of Table 6.

It can be seen from Figure 6, similar to the processing of workflow tasks, that the cost
of the EPSO algorithm is lower than the other two algorithms. While the EPSO algorithm
achieves a shorter completion time, it also optimizes the cost to a certain extent.



Electronics 2023, 12, 2580 15 of 17

Table 6. Cost performance under different numbers of independent tasks (unit: US dollars).

Number of Tasks EPSO HPSO PSO

10 8.2 9.3 11.9
20 21.7 22.4 26.8
50 49.1 57.4 72.3

100 142.8 167.7 196.4
150 214.7 239.1 290.9
200 298.3 325.7 389.5
250 353.3 382.4 457.5
300 391.5 432.8 554.7

10 20 50 100 150 200 250 300
0

100

200

300

400

500

600

Number of tasks

C
os

t

EPSO
HPSO
PSO

Figure 6. A graphical representation of the results given in Table 6.

4.3. Convergence

In order to verify the convergence of the EPSO algorithm, a workflow containing 100
tasks was selected to increase the number of iterations. The EPSO algorithm was run, and
the completion time was recorded. The results are shown in Figure 7.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

250

300

Number of iterations

C
om

pl
et

io
n

ti
m

e
(s

)

EPSO

Figure 7. Convergence of the EPSO algorithm when the number of iterations increases.

As seen in Figure 7, the EPSO algorithm has better convergence, primarily because of
the reduction in particle dimensions when the number of iterations is more than 25, and
the completion time does not alter with the increase in iterations. When the algorithm is



Electronics 2023, 12, 2580 16 of 17

first executed, a high-quality particle swarm is ensured by optimizing the initial position
information of the particles, and an effective optimization direction is ensured by using the
proper adaptive function design. This improves the quality, speed, and convergence of the
EPSO algorithm.

It can be seen from the above experiments that the EPSO algorithm shows good
convergence in the solution process, can obtain high-quality solutions in a short time, and
has an indelible advantage in workflow task scheduling.

5. Conclusions

In this paper, based on previous research on the task scheduling of the PSO algorithm
and taking into account the problem of time cost in the case of workflow task process-
ing, a workflow task model processing algorithm was proposed, putting forward the
optimization of the PSO algorithm under the condition of optimizing the execution time
and execution cost. Through workflow task model processing, particle dimensionality is
reduced, and tasks with large amounts of data are merged. The algorithm’s search space
and convergence speed are guaranteed by improving the particle initialization operation.
The problem of time constraints in task scheduling is solved by improving the adaptive
function. Experiments clearly showed that the proposed EPSO algorithm is effective in
reducing the time and the cost.

The following areas of future work will receive the majority of attention:

• The adaptive function can be improved according to different application scenarios in
the future.

• The optimization target can be broadened in order to consider other important objec-
tives, such as load balancing, CPU utilization, and energy consumption.

• The integration and evaluation of the proposed algorithm in the context of a real-world
unified cloud management platform can be investigated.

Author Contributions: The authors confirm contribution to the paper as follows: study conception
and design: S.H.A. and M.A.R.; data collection: S.H.A. and M.A.R.; analysis and interpretation of
results: S.H.A. and M.A.R.; draft manuscript preparation: S.H.A. and M.A.R. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data used and analyzed during the current study are available
from the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Marston, S.; Li, Z.; Bandyopadhyay, S.; Zhang, J.; Ghalsasi, A. Cloud computing—The business perspective. Decis. Support Syst.

2011, 51, 176–189. [CrossRef]
2. Hoffa, C.; Mehta, G.; Freeman, T.; Deelman, E.; Keahey, K.; Berriman, B.; Good, J. On the use of cloud computing for scientific

workflows. In Proceedings of the 4th IEEE International Conference on eScience, eScience 2008, Indianapolis, IN, USA, 7–12
December 2008; pp. 640–645. [CrossRef]

3. Chenhong, Z.; Shanshan, Z.; Qingfeng, L.; Jian, X.; Jicheng, H. Independent tasks scheduling based on genetic algorithm in
cloud computing. In Proceedings of the 5th International Conference on Wireless Communications, Networking and Mobile
Computing, WiCOM 2009, Beijing, China, 24–26 September 2009. [CrossRef]

4. Kennedy, J. Particle Swarm Optimization. In Encyclopedia of Machine Learning; Sammut, C.; Webb, G.I., Eds.; Springer: Boston,
MA, USA, 2011; pp. 760–766. [CrossRef]

5. Xue, S.J.; Wu, W. Scheduling Workflow in Cloud Computing Based on Hybrid Particle Swarm Algorithm. Telkomnika Indones. J.
Electr. Eng. 2012, 10 . [CrossRef]

6. Guo, L.; Zhao, S.; Shen, S.; Jiang, C. Task scheduling optimization in cloud computing based on heuristic Algorithm. J. Netw.
2012, 7, 547–553. [CrossRef]

7. Varalakshmi, P.; Ramaswamy, A.; Balasubramanian, A.; Vijaykumar, P. An Optimal Workflow Based Scheduling and Resource
Allocation in Cloud. In Advances in Computing and Communications; Abraham, A., Lloret Mauri, J., Buford, J.F., Suzuki, J., Thampi,
S.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 411–420.

http://doi.org/10.1016/j.dss.2010.12.006
http://dx.doi.org/10.1109/eScience.2008.167
http://dx.doi.org/10.1109/WICOM.2009.5301850
http://dx.doi.org/10.1007/978-0-387-30164-8_630
http://dx.doi.org/10.11591/telkomnika.v10i7.1452
http://dx.doi.org/10.4304/jnw.7.3.547-553


Electronics 2023, 12, 2580 17 of 17

8. Pandey, S.; Wu, L.; Guru, S.M.; Buyya, R. A particle swarm optimization-based heuristic for scheduling workflow applications in
cloud computing environments. In Proceedings of the International Conference on Advanced Information Networking and
Applications, AINA, Perth, WA, Australia, 20–23 April 2010; pp. 400–407. [CrossRef]

9. Arunarani, A.R.; Manjula, D.; Sugumaran, V. Task scheduling techniques in cloud computing: A literature survey. Future Gener.
Comput. Syst. 2019, 91, 407–415. [CrossRef]

10. Motlagh, A.A.; Movaghar, A.; Rahmani, A.M. Task scheduling mechanisms in cloud computing: A systematic review. Int. J.
Commun. Syst. 2020, 33, e4302. [CrossRef]

11. Bulchandani, N.; Chourasia, U.; Agrawal, S.; Dixit, P.; Pandey, A. A survey on task scheduling algorithms in cloud computing.
Int. J. Sci. Technol. Res. 2020, 9, 460–464.

12. Ibrahim, I.M.; Zeebaree, S.R.M.; M.Sadeeq, M.A.; Radie, A.H.; Shukur, H.M.; Yasin, H.M.; Jacksi, K.; Rashid, Z.N. Task Scheduling
Algorithms in Cloud Computing: A Review. Turk. J. Comput. Math. Educ. (TURCOMAT) 2021, 12, 1041–1053. [CrossRef]

13. Houssein, E.H.; Gad, A.G.; Wazery, Y.M.; Suganthan, P.N. Task Scheduling in Cloud Computing based on Meta-heuristics:
Review, Taxonomy, Open Challenges, and Future Trends. Swarm Evol. Comput. 2021, 62, 100841. [CrossRef]

14. Awad, A.I.; El-Hefnawy, N.A.; Abdel-Kader, H.M. Enhanced Particle Swarm Optimization for Task Scheduling in Cloud
Computing Environments. Procedia Comput. Sci. 2015, 65, 920–929. [CrossRef]

15. Mirzayi, S.; Rafe, V. A hybrid heuristic workflow scheduling algorithm for cloud computing environments. J. Exp. Theor. Artif.
Intell. 2015, 27, 721–735. [CrossRef]

16. Xue, S.; Shi, W.; Xu, X. A Heuristic Scheduling Algorithm based on PSO in the Cloud Computing Environment. Int. J. u- e- Serv.
Sci. Technol. 2016, 9, 349–362. [CrossRef]

17. Huang, X.; Li, C.; Chen, H.; An, D. Task scheduling in cloud computing using particle swarm optimization with time varying
inertia weight strategies. Clust. Comput. 2020, 23, 1137–1147. [CrossRef]

18. Alsaidy, S.A.; Abbood, A.D.; Sahib, M.A. Heuristic initialization of PSO task scheduling algorithm in cloud computing. J. King
Saud Univ.—Comput. Inf. Sci. 2022, 34, 2370–2382. [CrossRef]

19. Su, Y.; Bai, Z.; Xie, D. The optimizing resource allocation and task scheduling based on cloud computing and Ant Colony
Optimization Algorithm. J. Ambient. Intell. Humaniz. Comput. 2021. [CrossRef]

20. Hamed, A.Y.; Alkinani, M.H. Task scheduling optimization in cloud computing based on genetic algorithms. Comput. Mater.
Contin. 2021, 69, 3289–3301. [CrossRef]

21. Chaudhary, N.; Kalra, M.; Scholar, P.G. An improved Harmony Search algorithm with group technology model for scheduling
workflows in cloud environment. In Proceedings of the 4th IEEE Uttar Pradesh Section International Conference on Electrical,
Computer and Electronics, UPCON 2017, Mathura, India, 26–28 October 2017; pp. 73–77. [CrossRef]

22. Gabi, D.; Ismail, A.S.; Zainal, A.; Zakaria, Z.; Al-Khasawneh, A. Hybrid cat swarm optimization and simulated annealing for
dynamic task scheduling on cloud computing environment. J. Inf. Commun. Technol. 2018, 17, 435–467. [CrossRef]

23. Chen, X.; Long, D. Task scheduling of cloud computing using integrated particle swarm algorithm and ant colony algorithm.
Clust. Comput. 2019, 22, 2761–2769. [CrossRef]

24. Jia, L.W.; Li, K.; Shi, X. Cloud Computing Task Scheduling Model Based on Improved Whale Optimization Algorithm. Wirel.
Commun. Mob. Comput. 2021, 2021, 4888154. [CrossRef]

25. Keivani, A.; Tapamo, J.R. Task scheduling in cloud computing: A review. In Proceedings of the 2nd International Conference
on Advances in Big Data, Computing and Data Communication Systems, Winterton, South Africa, 5–6 August 2019; pp. 1–6.
[CrossRef]

26. Sharma, P.; Shilakari, S.; Chourasia, U.; Dixit, P.; Pandey, A. A survey on various types of task scheduling algorithm in cloud
computing environment. Int. J. Sci. Technol. Res. 2020, 9, 1513–1521.

27. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization:
A Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]

28. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the IEEE Conference on Evolutionary Computation,
ICEC, Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [CrossRef]

29. Vecchiola, C.; Kirley, M.; Buyya, R. Multi-Objective Problem Solving With Offspring on Enterprise Clouds. In Proceedings of
the 10th International Conference on High Performance Computing in Asia-Pacific Region, Kaohsiung, Taiwan, 2–5 March 2009;
pp. 132–139. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/AINA.2010.31
http://dx.doi.org/10.1016/j.future.2018.09.014
http://dx.doi.org/10.1002/dac.4302
http://dx.doi.org/10.17762/turcomat.v12i4.612
http://dx.doi.org/10.1016/j.swevo.2021.100841
http://dx.doi.org/10.1016/j.procs.2015.09.064
http://dx.doi.org/10.1080/0952813X.2015.1020524
http://dx.doi.org/10.14257/ijunesst.2016.9.1.36
http://dx.doi.org/10.1007/s10586-019-02983-5
http://dx.doi.org/10.1016/j.jksuci.2020.11.002
http://dx.doi.org/10.1007/s12652-021-03445-w
http://dx.doi.org/10.32604/cmc.2021.018658
http://dx.doi.org/10.1109/UPCON.2017.8251025
http://dx.doi.org/10.32890/jict2018.17.3.8260
http://dx.doi.org/10.1007/s10586-017-1479-y
http://dx.doi.org/10.1155/2021/4888154
http://dx.doi.org/10.1109/ICABCD.2019.8851045
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1109/icec.1998.699146
http://dx.doi.org/10.48550/arXiv.0903.1386

	Introduction
	Related Works
	Problem Formulation
	Literature Review
	Particle Swarm Optimization Algorithm
	Principle of the PSO Algorithm
	Task Scheduling Algorithm Based on the PSO Algorithm
	Algorithm Analysis


	PSO Algorithm Optimization
	Particle Encoding Method
	Improvements to the Initialization of Particles
	Adaptive Function Design
	Workflow Task Model Processing
	Computationally Intensive Tasks
	IO-Intensive Tasks
	Algorithm Implementation


	Experiments and Analysis
	Workflow Task Scheduling
	Time
	Cost

	Independent Task Scheduling
	Time
	Cost

	Convergence

	Conclusions
	References

