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Abstract: Accurate traffic forecasting is crucial for the advancement of smart cities. Although there
have been many studies on traffic forecasting, the accurate forecasting of traffic volume is still a
challenge. To effectively capture the spatio-temporal correlations of traffic data, a deep learning-based
traffic volume forecasting model called the Enhanced Information Graph Recursive Network (EIGRN)
is presented in this paper. The model consists of three main parts: a Graph Embedding Adaptive
Graph Convolution Network (GE-AGCN), a Modified Gated Recursive Unit (MGRU), and a local
information enhancement module. The local information enhancement module is composed of a
convolutional neural network (CNN), a transposed convolutional neural network, and an attention
mechanism. In the EIGRN, the GE-AGCN is used to capture the spatial correlation of the traffic
network by adaptively learning the hidden information of the complex topology, the MGRU is
employed to capture the temporal correlation by learning the time change of the traffic volume, and
the local information enhancement module is employed to capture the global and local correlations of
the traffic volume. The EIGRN was evaluated using the real datasets PEMS-BAY and PeMSD7(M) to
assess its predictive performance The results indicate that the forecasting performance of the EIGRN
is better than the comparison models.

Keywords: traffic forecasting; GCN; spatio-temporal correlations

1. Introduction

The rapid development of urbanization has put significant pressure on traffic man-
agement. Traffic congestion and traffic safety problems caused by growing populations
in cities are becoming increasingly serious. The rapid development of intelligent trans-
portation systems provides a new solution to address these challenges in urban traffic
management. Traffic forecasting is not a port of an intelligent transportation system; rather
it is a utilization of ITS. Traffic forecasting, as an important part of intelligent transportation
systems, aims to predict the state of traffic information (such as traffic flow, speed, traffic
demand, etc.). It plays a vital role in solving traffic congestion, improving travel efficiency,
and strengthening traffic management [1]. With the rapid development of information
technology and the transportation industry, more and more sensors are being placed and a
large number of traffic data are collected through these sensors. These collected data have
laid the foundation for the development of traffic forecasting. To manage road traffic and
provide citizens with travel information and other services, traffic management depart-
ments require accurate and timely prediction of traffic flow. Traffic forecasting has broad
application prospects and important social value. However, due to the high nonlinearity
and spatio-temporal correlations of traffic data, it is still difficult to accurately predict the
traffic status.

In order to accurately forecast the traffic status, extensive research has been conducted.
Statistical methods including ARIMA and its variants [2,3], as well as the Kalman filter [4],
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have gained popularity because they had a robust and widely accepted mathematical
foundation. However, these methods are more suitable for processing linear and stationary
data and cannot deal well with nonlinear and dynamic traffic data, which contradicts
the linear stationary assumption. Traditional machine learning methods, such as support
vector machine [5,6] and the Bayes model [7], can model nonlinearity in traffic data and
extract more complex data correlations. Nevertheless, the predictive ability of these models
is mainly determined by the designed artificial features. The rapid development of deep
learning has established it as a mainstream method for traffic flow prediction. Initially,
recurrent neural networks (RNNs), such as long short-term memory networks (LSTMs)
and gated recursive units (GRUs), or CNNs were typically used to capture the temporal cor-
relation in traffic forecasting tasks. Later, methods based on graph convolutional networks
(GCNs) were more frequently used to capture the spatial correlation of traffic volume. In
order to better capture spatio-temporal correlations, GCNs are typically integrated into
either RNNs or CNNs.

Although these methods have improved traffic forecasting, they still have some flaws
in learning the spatio-temporal correlations. These models only use the topological relations
of the traffic network to capture the spatial correlation so the captured spatial correlation
is incomplete. Moreover, they only consider the global correlation and ignore the local
correlation of traffic volume. To address these problems, a modified traffic forecasting
method, EIGRN is proposed for traffic forecasting tasks. Our contribution is threefold:

(1) Given that a traditional GCN only relies on a given topological graph to obtain the
spatial correlation of data, a graph embedding-based adaptive matrix is designed to
capture the hidden spatial dependence and learn the unique parameters of the GCN
in each node.

(2) In order to incorporate spatial relations while processing time sequences, we make ht
in the GRU pass through the spatial model before entering the GRU so that ht learns
the spatial correlation.

(3) The local information enhancement module is composed of a CNN and an attention
mechanism and is designed to simultaneously capture the global and local correlations
of data.

Our approach is evaluated using two real-world traffic datasets and its effectiveness is
demonstrated by a reduction in the forecasting error compared to the baseline methods.

The rest of the paper is organized as follows. Section 2 summarizes the related works
on traffic volume forecasting. Section 3 describes our method in detail. In Section 4, we
assess the predictive performance of the EIGRN using real-world traffic datasets. Section 5
is the conclusion of this paper.

2. Related Works

Traffic flow forecasting has strong spatio-temporal correlations; therefore, prediction
methods that only consider a single temporal or spatial feature have significant limitations.
In order to more accurately forecast the traffic status, the temporal and spatial relationships
of the traffic volume must be considered at the same time. Given the limitations of tradi-
tional methods in modeling complex spatio-temporal relationships, deep learning models
are widely used in traffic forecasting tasks. To capture the spatio-temporal correlations
of traffic volume at the same time, various spatio-temporal models have been proposed.
FC-LSTM [8] combined a CNN and an LSTM to capture spatio-temporal correlations.
ST-ReNet [9] predicted urban traffic utilizing deep remaining CNN networks. Despite
the good results that have been achieved, these methods are insufficient. This is because
these models rely on a CNN to capture the spatial correlation. A CNN captures the spatial
correlation by splitting traffic data into grids one by one. As a result, these methods are
more suitable for raster data. However, many transport networks are essentially graphical
structures, such as road networks and subway networks. A non-Euclidean correlation
is more suitable for describing road systems. Therefore, a CNN’s method for processing
graph-structured traffic scenes is not optimal.



Electronics 2023, 12, 2519 3 of 16

A GCN extends the convolution operation to the graph structure, which is more
suitable for describing the traffic network and predicting the spatial correlation of traffic
data. The authors of [10–12] introduced traffic forecasting problems on a graph. T-GCN [13]
integrated a GCN and a GRU to capture spatio-temporal correlations of traffic data. The
model captured the spatial correlation of data using predefined road topology; however, it
required a high-precision topological graph and found it challenging to capture hidden
spatial information from the data. In [14], the authors proposed DCRNN, a directed graph
bidirectional diffusion graph convolutional neural network to capture the spatial correlation
of traffic data. With the wider application of GCNs, it was believed that the given graph
structure may not necessarily reflect the real dependencies and that the real relationships
could be lost due to incomplete connections in the graph structure. So, Wu et al. [15]
proposed a self-adaptive adjacency matrix to capture the hidden spatial dependencies.
Bai et al. [16] decomposed the shared parameter part of traditional graph convolutional
networks using a matrix, allowing them to obtain node-specific parameters and capture
node-specific modes. Li et al. [17] proposed a method of generating a time graph. They used
the DTW algorithm to learn the similarity of time series to generate a time graph to replace
the original road topology graph. These methods can better capture the spatial correlation
of data and have achieved good results. In recent years, an attention mechanism [18] has
been used in many deep learning tasks The attention mechanism aims to select critical
information from the input for the task at hand. The attention mechanism is also widely
used in traffic flow forecasting.

Zhang et al. [19] used graph embedding technology to embed spatial structures into a
low-dimensional space and then combined it with an attention mechanism for traffic flow
prediction. An et al. [20] combined an attention mechanism with an information geometry
method to capture the spatial correlation in an urban road network. Wang et al. [21] used a
learning position attention mechanism in a GCN and a Transformer to learn the global cor-
relation. Liao et al. [22] integrated a fusion attention mechanism into ChebNet to enhance
the accuracy of the traffic flow prediction model. Lan et al. [23] constructed a new graph to
obtain the dynamic attributes of the spatial association among nodes by directly mining
historical traffic flow data. They replaced the predefined static adjacency matrix with the
newly constructed graph and designed a spatio-temporal attention module to enhance the
capturing of spatio-temporal information. Although the prediction performance of the
attention mechanism was relatively good, it also had a limitation: locality was impercepti-
ble [24]. In a traditional attention mechanism, the projection calculation of Q, K, and V is
performed separately for each point. However, this approach can lead to problems. For
example, in Figure 1a,b, it can be seen that although the two indicated points exhibited
different trends in the time series, their calculated attention values were close due to the
same absolute value. The two regions indicated in red in Figure 1c exhibited similar trends
but due to their large differences in absolute values, the calculated attention values differed
greatly. So, complementary information was not considered and only the global correlation
was learned. Furthermore, the internal relationships within the data were ignored so the
local correlation was not extracted and the global and local relationships were not captured.
Table 1 shows the advantages and disadvantages of some classical models.

With this background, this study proposes a modified deep learning network method,
which can extract complex spatio-temporal features from traffic data and learn the global
and local correlations of the data.
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Table 1. The advantages and disadvantages of some classical models.

Model Advantage Disadvantage

T-GCN Better spatio-temporal prediction ability Spatial prediction using the original topology is
insufficient

DCRNN Uses diffusion convolution operations to capture spatial
dependencies. The correlation of the data is ignored.

Graph Wavenet Uses an adaptive adjacency matrix to learn hidden spatial
correlation. All nodes share the same parameters.

AGCRN
Two adaptive modules of enhanced graph convolution are
proposed to learn the hidden relationships between
different traffic sequences.

The correlation of the data is ignored.

STGNN

The hidden spatial information of the data is obtained
through the relative position representation of the road,
and the global correlation of the data is captured using an
attention mechanism.

The local information of the data is ignored.

(a) (b)

(c)

.          .          

(c)

Figure 1. An example of the disadvantages of using an attention mechanism to capture data informa-
tion. (a) Traffic speed of PeMSD7 (M) dataset road id 49 at 1:00 on 7 May 2012. (b) Traffic speed of
PeMSD7 (M) dataset road id 49 at 0:55 on 9 May 2012. (c) the traffic speed of road id 49 on PeMSD7(M)
dataset from 6 May 2012 to 11 May 2012.
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3. Methodology
3.1. Problem Definition

In our approach, traffic data information is a general concept that includes speed, flow,
and density. To maintain generality, we use traffic speed as an example in the experimental
section.

Definition 1 (Traffic Networks). We use an unweighted graph G = (V, E) to describe the
topology of the road network and treat each road as a node, where V is a set of road nodes
V = {v1, v2, · · · vN}, N is the number of nodes, and E is the set of edges. The adjacency ma-
trix A represents the connections between roads, A ∈ RN×N . If there is no connection between two
roads, the corresponding element of A is 0. If there is a connection between two roads, it is represented
by 1.

Definition 2 (Traffic Speed Forecasting). Given the traffic network G = (V, E) and the historical
traffic information, Xt is used to represent the traffic volume at time t. Our goal is to build a model,
denoted as f , that takes a sequence of length n as input and predicts the traffic information for the
next T time steps, as shown in Formula (1):

[Xt+1, · · · Xt+T ] = f (G; (Xt−n+1, · · · Xt−1, Xt)) (1)

3.2. Overview

The EIGRN is composed of three parts: a GE-AGCN, an MGRU, and a local informa-
tion enhancement module. The GE-AGCN learns the relevant information of the topology
graph through graph embedding, generates an adaptive matrix instead of the original
topology graph to capture the spatial information of each node, and learns the specific
parameters for each node. Compared to a GRU, the MGRU ’s hidden layer unit, ht, passes
through the spatial model GE-AGCN, thereby strengthening the learning of spatial infor-
mation while capturing the time correlation. The local information enhancement module
is used to simultaneously learn the global and local correlations of the data. It consists
of a CNN, a transposed convolutional neural network, and a Transformer encoder layer.
The Transformer encoder layer is made up of an attention mechanism and a feed-forward
neural network. The attention mechanism is used to capture the global correlation of
the data, whereas the CNN is used to capture the local context information of the data.
They combine to make up for the limitations of the local imperceptibility of the attention
mechanism. To capture different local information, multiple local information enhancement
units are arranged in series in this model. As shown in Figure 2, the historical traffic data
of length n are inputted into the model. The data are entered into the GE-AGCN, which
learns the hidden spatial information of the data and then inputs this information into the
MGRU. The MGRU strengthens the capturing of the spatial correlation while learning the
temporal correlation. Finally, the obtained temporal sequences with spatio-temporal corre-
lations are input into the local information enhancement module to capture the global and
local correlations of the data. At the same time, in order to avoid the vanishing gradients
problem, residual connections [25] are used to connect the outputs.
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GE-AGCN

……

GE-AGCN GE-AGCN

MGRU MGRU MGRU

……

Prediction Layer

Xt+1,Xt+2,…Xt+T

Xt-n+1, …Xt-1,Xt

Xt+1,Xt+2,…Xt+T Xt+1,Xt+2,…Xt+T Xt+1,Xt+2,…Xt+T

Xt-n+1, …Xt-1,Xt Xt-n+1, …Xt-1,Xt

N

…N

Tranformer Encoder Layer

Transpose Convolutiona

Convolutiona

Layer Normalization

Positional 
Encoding

local
information 
enhancement 
module

Figure 2. Framework of the proposed model.

3.3. Methodology
3.3.1. Modeling the Spatial Correlation

A GCN is adopted to transform and disseminate information in the data. The tradi-
tional formula of the GCN is as follows:

Xout = (IN + D−1/2 AD−1/2)Xin · W + b (2)

where W and b represent the parameters for learning, Xin ∈ RN×din represents the histor-
ical traffic data, and Xout ∈ RN×dout represents the output after the GCN operation. IN
represents the N-dimensional identity matrix, A represents the adjacent matrix of the traffic
graph, and D represents the degree matrix.

In Formula (2), the operation is solely based on the road connection information of
the traffic graph. However, in most cases, the spatial correlation is not fully captured. The
adjacency topology of the road does not contain complete information about the spatial
correlation and has no direct relationship with the forecasting task, which may result in
considerable deviation. Meanwhile, through Formula (2), we find that all nodes share the
same parameters W and b. However, the patterns of each node are not exactly the same.
Although sharing the same parameters can reduce the number of parameters and learn
the most prominent patterns in each node, ignoring the patterns of the other nodes is not
desirable. Certain properties of two adjacent nodes such as the POI may differ and two
adjacent nodes may present different or even completely opposite patterns. Therefore, it is
insufficient to capture the shared patterns between all nodes so we allocate a parameter
space for each node to learn node-specific patterns.

To address this issue, the GE-AGCN was proposed to automatically infer the hidden
interdependencies from the data and learn the specific parameters of each node. Firstly, the
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GE-AGCN uses graph embedding to initialize the embedding dictionary using topological
graph information. Graph embedding maps the nodes or edges of a graph to a low-
dimensional vector space, representing high-dimensional complex and dynamic data as
low-dimensional and dense vectors, which preserves the structure and properties of the
graph. Node2vec [26] was used in this experiment.

The Node2vec algorithm is shown in Figure 3. Node2vec is one of the algorithms used
for graph embedding. Based on the idea of text representation, it uses the random-walk
strategy to sample vertices and generates the neighbor sequence of vertices. The Skip-gram
model is then used to learn the vertex representation [27]. Unlike the uniform random-
walk strategy utilized in DeepWalk [28], the Node2vec random-walk strategy incorporates
bias. In addition, it introduces jump hyperparameters p and q to control the random-walk
strategy. Assuming the current random walk has traversed edge (t,v) to vertex v, the
transition probability from vertex v to vertex x is denoted as πvx = αpq(t, x) · wvx, where
wvx represents the weight of edges.

αpq(t, x) =



1
p

, i f dtx = 0

1, i f dtx = 1
1
q

, i f dtx = 2

(3)

where dtx represents the shortest path between vertex t and vertex x, and the vertex
transition probability is as follows:

P(ci = x|ci−1 = v) =


πvx

Z
, i f (v, x) ∈ E

0, otherwise
(4)

where πvx represents the transition probability between vertex v and vertex x, and Z
represents the normalization constant. Node2vec learns the optimal hyperparameters p
and q through the semi-supervised network, achieving the best balance between breadth-
first and depth-first approaches and ensuring that the incorporation of both local and global
network information from the network is balanced.

d1 d2

d2

d3

dn

Random Walk Skip Gram

…

Walk SequencesRoad Network Representation Vector

…

…

…

… …

Figure 3. The Node2vec algorithm.

EA ∈ RN×d is generated using Node2vec, where each row of EA represents the
embedding of a node, and d represents the dimension of node embedding. By multiplying
EA and ET

A, similar to defining the graph based on node similarity, we can infer the spatial
dependencies between each pair of nodes.

D−1/2 AD−1/2 = so f tmax(ReLU(EA · ET
A)) (5)

where the so f tmax function is used to normalize the adaptive matrix, and D−1/2 AD−1/2

is directly generated to avoid unnecessary computations in the training process. In the
training process, EA automatically updates to learn the hidden relationship between differ-
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ent traffic sequences and obtain the adaptive matrix of graph convolution. So, the GCN
formula can be formulated as Formula (6):

Xout = (IN + so f tmax(ReLU(EA · ET
A)))Xin · W + b (6)

Next, the specific parameters for each node are learned by adopting the idea of matrix
decomposition to improve the parameters W and b. A randomized weight pool, denoted
as WG ∈ Rd×C×F, is constructed. We set d << N, which can significantly reduce the
number of parameters and speed up the operation of the model. Then, W can be generated
through W = EA · WG, with EA and WG continuously updated during training to learn
each node-specific pattern. b can also be generated using the same operation. Finally, the
GCN formula can be expressed as Formula (7):

Xout = (IN + so f tmax(ReLU(EA · ET
A)))Xin · EA · WG + EA · bG (7)

By using the above method, we can address the limitations of traditional GCNs, which
are highly dependent on the topological graph and share the same parameters. Moreover,
this method enables us to discover deeper hidden relationships among the nodes.

3.3.2. Modeling the Temporal Correlation

The most commonly used method for capturing the temporal correlation of data is the
RNN. However, the long-term forecasting performance of traditional RNNs is poor [29].
The LSTM and GRU models, which are variations of the RNN, use gated mechanisms
to preserve long-term information, resulting in accurate results in long-term forecasting.
However, the GRU model is simpler and faster than the LSTM model. Therefore, the GRU
model is used to capture the time correlation of the data.

The GRU uses the hidden state of time t− 1 and the current traffic information as
input to obtain the traffic information at time t. As shown in Figure 4, rt is the reset gate,
which controls the extent to which the state information from the previous moment is
disregarded; ut is the update gate, which controls the incorporation of the state information
from the previous moment into the current state; ct is the memory content stored at time t
time; and ht−1 is the hidden state at time t− 1. In order to capture temporal information
and incorporate spatial relationships, we applied an improved GCN operation on the
hidden layer unit of the GRU. Specifically, in the original GRU, ht is fed directly into
the GRU; however, in our approach, ht first enters the GE-AGCN before being fed into
the GRU. Compared to a traditional GRU, our approach allows ht to capture the spatial
correlation of traffic data, which enables the model to capture both the spatial and temporal
information of the data. This means that the MGRU can transform the hidden state ht−1 of
a traditional GRU at moment t into a new hidden state Ht−1, which contains the current
spatial information through the use of the GE-AGCN, as shown in Formula (8):

Ht−1 = (IN + so f tmax(ReLU(EA · ET
A)))ht−1 · EA · WG + EA · bG (8)

The modified GRU formula is shown in Formulas (9)–(12):

ut = σ(Wu[Xout, Ht−1] + bu) (9)

rt = σ(Wr[Xout, Ht−1] + br) (10)

ct = σ(Wc[Xout, (rt × Ht−1)] + bc) (11)

Ht = ut × Ht−1 + (1− ut)× ct (12)

Xout represents the output of the modified GCN and is defined in Formula (7). W and
b are two learnable parameters that represent the weights and biases in the training process.
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As shown in Formula (12), at moment t the current hidden state Ht, which contains the
spatial information, can be obtained using the MGRU.

Ht

Ht-1ht-1 GE-AGCN

XoutXin GE-AGCN

+

+

concatenate

concatenate

+

+

sigmoid sigmoid tach

1-

rt zt ct

Figure 4. The architecture of the MGRU model.

3.3.3. Global and Local Correlations

Each local information enhancement module consists of a CNN with a convolution
kernel size of K, a transposed convolutional neural network with a convolution kernel size
of K, and an attention mechanism. The framework of our local information enhancement
module is shown in Figure 5. First, the traffic data is fed into the CNN with a convolution
kernel with a width of K. The CNN searches for K neighboring elements of the input, and
the padding is set to 0 in this experiment, which maintains the length of each sequence
as K − 1. The data processed by the CNN are then passed into the multiple attention
layer [18]. The multiple attention layer is based on the dot-product attention mechanism.
In the multiple attention layer, each element at sequence position i is related to all the
elements in the sequence. The inputs of the attention function consist of queries and keys
with dimension dk and values with dimension dv of all the positions in the sequence. By
calculating the attention score for each position and using it as the weight, the traditional
attention can be computed, as shown in Formula (13):

Attention(Q, K, V) = so f tmax(
QKT
√

dk
V) (13)

Q, K ∈ RT×dk and V ∈ RT×dv denote the queries, keys, and values for all the nodes. The i-th
row of Q represents the query for position i in the sequence. Multi-head attention allows
the model to simultaneously focus on information from different representative subspaces
at different locations. In contrast, when using a single attention head, the averaging process
hinders this ability. Therefore, multi-head attention is more effective. The equation for
multi-head attention is shown in Formula (14):

MultiHead(Q, K, V) = Concat(head1, · · · headh)WO (14)

where h is the number of heads. The equation for headi is shown in Formula (15):

headi = Attention(QWQ
i , KWK

i , VWV
i ) (15)
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dmodel represents the input dimension in WQ
i ∈ Rdmodel×dk , WK

i ∈ Rdmodel×dk ,
WV

i ∈ Rdmodel×dk , and WO ∈ Rhdv×dmodel . However, the multi-head attention layer ignores
the relative positions in the sequence because it treats different positions equally when
computing the attention function. To ensure that the multi-head attention layer captures
the relative position of position i in the whole sequence, each position is encoded with et,
where et is defined in Formula (16):

et =

{
sin(t/10,0002i/dmodel ), i f t = 0, 2, 4...

cos(t/10,0002i/dmodel ), otherwise
(16)

Xt-n+1, …Xt-1,Xt
Length=n   

Length=n–K+1   

Multi-Head Attention Layer

 Feed Forward Layer

Convolutiona

Positional 
Encoding

Transpose Convolutiona

Layer Normalization

Length=n   

Length=n   

Xt-n+1, …Xt-1,Xt

Figure 5. Framework of the local information enhancement module.

The output of the multi-head attention layer is transmitted to the feed-forward neural
network layer. Then, the data are fed into the transposed convolutional neural network
with a convolution kernel with a width of K. Similarly, the transposed convolutional neural
network searches for K adjacent elements of the input elements without padding, resulting
in an increase in the length of each sequence by K − 1. As shown in Figure 5, after the
transposed convolutional neural network, a normalization layer is used [30]. Together,
these components comprise the local information enhancement module.

To collect information from different local units, several local information enhancement
modules are employed. Each module utilizes a different convolution kernel size. Due to
the different convolution kernel sizes, the obtained receptive fields are also different so
different local information can be captured. In general, the larger the kernel, the larger
the field of perception, which allows for the acquisition of more information and better
characterization of global features. However, too large a convolution kernel leads to an
increase in the parameters, which is not conducive to increasing the depth of the model, as
well as computational power. To account for the data dimension in this experiment, we use
seven local information enhancement modules with convolution kernel sizes of 13, 11, 9, 7,
5, 3, and 1, respectively. Additionally, to better enable the model to learn information from
the data and avoid gradient problems caused by deep layers, the residual connections are
set at the end of the module.
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The EIGRN model is capable of handling complex spatio-temporal data. The GE-
AGCN can better capture spatial information by learning location representations. The
MGRU can capture the dynamic temporal correlation in the traffic volume on the road.
The local information enhancement module improves the ability to capture local spatio-
temporal information while capturing the global correlation using a combination of a CNN
and an attention mechanism.

4. Experiments
4.1. Data Description

We evaluated the effect of the model on two real datasets, the PEMS-BAY dataset and
the PeMSD7(M) dataset. Both datasets are related to traffic speed.

(1) PEMS-BAY: This dataset contains traffic speed data collected by 325 traffic sensors
in the California Bay area over 6 months. The dataset consists of two parts, namely the
adjacency matrix corresponding to the road topology and the collected traffic speed data.
The granularity of traffic speed data is 5 min.

(2) PeMSD7(M): This dataset contains traffic speed data collected by 228 sensors on
California highways on workdays between May and June 2012. The dataset consists of an
adjacency matrix and traffic speed data. The granularity of traffic speed data is 5 min.

In the experiments, the data were processed using Z-Score, and 70% of the data was
used as the training set, 10% was used as the validation set, and 20% was used as the
testing set.

4.2. Evaluation Metrics

We used two metrics to evaluate the forecasting performance of the model:
(1) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
MN

M

∑
j=1

N

∑
i=1

(yj
i − ŷj

i)
2

(17)

(2) Mean Absolute Error (MAE):

MAE =
1

MN

M

∑
j=1

N

∑
i=1

∣∣∣(yj
i − ŷj

i)
∣∣∣ (18)

where yj
i and ŷj

i represent the real traffic information and the predicted information of the
jth time samples in the ith road. M is the number of time samples; N is the number of

roads; Y and Ŷ represent the sets yj
i and

ˆ
yj

i , respectively; and Ȳ is the average of Y.
Specifically, the RMSE and MAE are used to measure forecasting errors, where the

smaller the value, the better the forecasting performance.

4.3. Hyperparameters

The hyperparameters of the model included the learning rate, batch size, number of
local information enhancement modules, and embedding dimension. In the experiment,
we set the learning rate to 0.003, the batch size to 64, the number of local information
enhancement modules to 7, and the embedding dimension to 10.

Baseline Methods

To verify the validity of this model, it was compared with traditional and representa-
tive methods.

(1) History Average (HA) model [31]: This model uses the average traffic information of
the historical period for forecasting.

(2) ARIMA [3]: Parameter model fitting of the observation time series is carried out to
predict future traffic data.
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(3) Fully-connected LSTM (FC-LSTM) [32]: An RNN with fully connected LSTM hid-
den units.

(4) STGCN [33]: The spatio-temporal graph convolution network integrates graph convo-
lution into a one-dimensional convolution unit.

(5) DRCNN [14]: This model combines a GCN with recursive units controlled by an
encoder–decoder gate.

(6) Graph WaveNet [15]: This model combines an adaptive adjacency matrix GCN with
causal convolution.

(7) STSGCN [34]: The STSGCN captures localized correlations independently by using
localized spatial-temporal subgraph modules.

(8) STTN [35]: The STNN dynamically captures spatio-temporal dependence using a
Transformer model.

4.4. Experimental Results

Table 2 shows the MAE and RMSE of the EIGRN and the baselines for different period
steps on the PEMS-BAY and PeMSD7(M) datasets. The results of the EIGRN demonstrate
its good predictive ability. * indicates that the prediction error and the actual gap is large,
so ignored. Moreover, the EIGRN successfully balanced the short-term and long-term
predictions and achieved the best performance in almost all ranges. In order to more
clearly demonstrate the effectiveness of our model, we visualized the prediction results
of all the deep learning methods, as seen in Figures 6 and 7. Additionally, Figure 8
shows the fitting effect of our model on the real and predicted values of the two datasets.
From Table 2 we can see that the forecasting performance of the HA, ARIMA, and FC-
LSTM methods was not good because these time series models can only capture the time
information of the data, and it is difficult to improve the forecasting accuracy when the
spatial information cannot be captured. The spatio-temporal models discussed below can
address the above challenges to some extent. The forecasting performance of a model
can be greatly improved if the spatial information of the data has been captured. In the
generated graph models, the forecasting performance of Graph WaveNet was the best. In
addition, the STSGCN, which is based on spatio-temporal synchronization forecasting,
and the STTN, which is based on Transformer, also demonstrated good performance. In
summary, the spatio-temporal models outperformed the temporal models, including the
HA, ARIMA, and FC-LSTM models, by a large margin. This proves the effectiveness of
spatio-temporal dependency modeling. Compared to other spatio-temporal models, the
EIGRN significantly outperformed the STGCN and surpassed graph-generating-based
approaches such as the DCRNN and Graph WaveNet. Our graph generated using graph
embedding also achieved better results. Moreover, the EIGRN outperformed the spatio-
temporal synchronization forecasting-based approaches such as the STSGCN and surpassed
the Transformer approaches such as the STTN. This demonstrates that our model has better
spatio-temporal forecasting ability. Table 3 shows the number of training iterations for our
two datasets. Figure 9 shows the loss changes of the two datasets. For our experiments, we
selected the MAE as the loss function.

(a)MAE (b)RMSE

Figure 6. The prediction performance of the EIGRN on the PEMS-BAY dataset is compared with that
of other deep learning models.
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Table 2. Forecasting results on the PEMS-BAY and PeMSD7(M) datasets.

Model
PEMS-BAY (15/30/60 min) PeMSD7(M) (15/30/60 min)

MAE RMSE MAE RMSE

HA 2.88 5.59 4.01 7.20

ARIMA 1.62/2.33/3.38 3.30/4.76/6.50 5.55/5.86/6.27 9.00/9.13/9.38

FC-LSTM 2.05/2.20/2.37 4.19/4.55/4.96 3.57/3.92/4.16 6.20/7.03/7.51

DCRNN 1.38/1.74/2.07 2.95/3.97/4.74 2.25/2.98/3.83 4.04/5.58/7.19

STGCN 1.39/1.84/2.42 2.92/4.12/5.33 2.24/3.02/4.01 4.07/5.70/7.55

Graph WaveNet 1.30/1.63/1.95 2.73/3.67/4.63 2.14/2.80/3.19 4.01/5.48/6.25

STSGCN 2.54/2.60/2.71 4.79/4.93/5.28 1.99/2.43/3.04 3.59/4.63/6.01

STTN 1.36/1.67/1.95 2.87/3.79/4.50 2.14/2.70/* 4.04/5.37/*

EIGRN 1.14/1.43/1.81 2.45/3.22/4.21 1.75/2.26/2.91 3.30/4.38/5.75

Table 3. Forecasting iterations on the PEMS-BAY and PeMSD7(M) datasets.

Dataset
Average Training Time (Epoch)

15 min 30 min 60 min

PEMSBAY 238 298 121

PeMSD7(M) 129 98 54

(a)MAE (b)RMSE

Figure 7. The prediction performance of the EIGRN on the PeMSD7(M) dataset is compared with
that of other deep learning models.

(a)

(b)

Figure 8. (a) Visualization results of the predicted and real values of the PEMS-BAY dataset. (b) Visu-
alization results of the predicted and real values of the PeMSD7(M) dataset.
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(a) (b)

Best loss:1.19

.

Best loss:1.46

.

Best loss:1.88

.

Best loss:1.76

.

Best loss:2.31

.

Best loss:2.94

.

Figure 9. (a) Visualization loss of the PEMS-BAY dataset. (b) Visualization loss of the PeMSD7(M)
dataset.

4.5. Ablation Studies

Three ablation experiments were designed to verify the effectiveness of our module. In
EIGRN-G, the spatial model in the EIGRN was replaced with an ordinary GCN. In EIGRN-
R, the improved GRU in the EIGRN was removed. In EIGRN-T, the local information
enhancement module in the EIGRN was removed. The results of the ablation experiments
are shown in Table 4 and the visualization results are shown in Figures 10 and 11. Regarding
the forecasting performance of the EIGRN-G model, we can see that when our spatial
model was replaced with the original GCN, the RMSE and MAE errors increased across
all periods. This indicates that our graph embedding-based generative graph model had
better spatial forecasting ability, thereby proving the effectiveness of our spatial model. In
addition, the forecasting results of the EIGRN-R and EIGRN-T exhibited similar patterns.
This demonstrates that the time-capturing ability of the MGRU improved after capturing
spatial information. In addition, the local information enhancement module captured the
importance of global and local relationships.

Accurate prediction of traffic speed can help traffic management departments monitor
traffic congestion more effectively and implement appropriate traffic control measures. It
also enables traffic management departments and drivers to take necessary actions such as
adjusting speed limits to reduce accidents and improve road safety.

Table 4. Forecasting results on the PEMS-BAY and PeMSD7(M) datasets.

Model
PEMS-BAY (15/30/60 min) PeMSD7(M) (15/30/60 min)

MAE RMSE MAE RMSE

EIGRN 1.14/1.43/1.81 2.45/3.22/4.21 1.75/2.26/2.91 3.30/4.38/5.75

EIGRN-T 1.14/1.43/1.86 2.49/3.28/4.26 1.76/2.29/2.98 3.31/4.45/5.84

EIGRN-R 1.15/1.44/1.86 2.43/3.26/4.21 1.76/2.27/2.96 3.33/4.44/5.88

EIGRN-G 2.16/2.26/2.44 4.44/4.62/5.14 3.81/3.83/4.11 7.47/7.50/7.85

(a)MAE (b)RMSE

Figure 10. The ablation results of the EIGRN on the PEMS-BAY dataset.
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(a)MAE (b)RMSE

Figure 11. The ablation results of the EIGRN on the PeMSD7(M) dataset.

5. Conclusions

A modified traffic volume forecasting model called the EIGRN is proposed in this
paper. By using this model, both the spatio-temporal correlations and the global and local
correlations of the traffic data can be captured simultaneously and more effectively. As a
result, the prediction ability of the model for traffic data is improved. Specifically, a GE-
AGCN is used to capture the spatial correlation of traffic data by using graph embedding
to generate an adaptive matrix. An MGRU is used to capture the temporal correlation by
using gated mechanisms. A local information enhancement unit captures the global and
local information of the data by combining a CNN with different convolution kernels and
attention mechanisms. The presented method is tested on two real traffic datasets and
compared with the HA, ARIMA, FC-LSTM, DCRNN, STGCN, Graph Wavenet, STSGCN,
and STTN models. The experimental results demonstrate that the proposed EIGRN model
outperforms the comparison models across various forecasting levels.
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