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Abstract: The Internet of Vehicles (IoV) empowers intelligent and tailored services for intelligent
connected vehicles (ICVs). However, with the increasing number of onboard external communication
interfaces, ICVs face the challenges of malicious network intrusions. The closure of traditional
vehicles had led to in-vehicle communication protocols, including the most commonly applied
controller area network (CAN), and a lack of security and privacy protection mechanisms. Therefore,
to protect the connected vehicles and IoV systems from being attacked, an intrusion-detection method
is proposed based on the features extracted from the arbitration identifier (ID) field of CAN messages.
Specifically, a sliding window is used to continuously extract a frame of streaming CAN messages
first. Afterward, the weighted self-information of the CAN message ID is defined, and both the
weighted self-information and the normalized value of an ID are extracted as features. Based on
the extracted features, a lightweight one-class classifier, the local outlier factor (LOF), is used to
identify the outliers and detect malicious network intrusion attacks. Simulation experiments were
conducted based on the public CAN dataset provided by the HCR Lab. The proposed method, using
four different one-class classifiers, was analyzed, and it is also benchmarked with three information
entropy-based intrusion-detection methods in the literature. The experimental results indicate that,
compared to the benchmarks, the proposed method dramatically improves the detection accuracy
for injection attacks, namely denial-of-service (DoS) and spoofing, especially when the number of
injected messages is low.

Keywords: network intrusion detection; one-class classifier; controller area network (CAN);
intelligent connected vehicle (ICV)

1. Introduction

The upcoming 5G-Advance and 6G mobile communication networks can boost the
development of the Internet of Vehicles (IoV). In the IoV, by the exploitation of embedded
communications, sensing, and information-processing modules, intelligent connected
vehicles (ICVs) can intelligently be aware of transportation environments and effectively
exchange information with pedestrians, peer vehicles, and roadside infrastructures. The
integration of communications, sensing, and computation facilitates ICVs with intelligent
services such as advanced driver-assistance systems (ADAS) and autonomous driving [1,2].

Meanwhile, with the increasing number of embedded electronic control units (ECUs)
and external communication interfaces, the in-vehicle network (IVN) has been developed
from a simple point-to-point control bus to a distributed and heterogeneous communica-
tion and control network to guarantee controls and communications among the onboard
modules [3]. A diagram of an ICV with a heterogeneous in-vehicle network in the IoV is
provided in Figure 1.
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Figure 1. Diagram of an intelligent connected vehicle with a heterogeneous in-vehicle network in the
Internet of Vehicles.

With external communication interfaces, the IoV can provide intelligent and tailored
services to connected vehicles while bringing potential malicious network intrusion to the
IVN. The closure of traditional IVN has resulted in the existing in-vehicle communication
protocols, especially the most widely deployed controller area network (CAN), and a lack
of security and privacy protection mechanisms, including access control, authentication,
and encryption. Due to the lack of access control mechanisms, attackers can directly invade
the IVN by cracking external communication interfaces. If malicious intrusion cannot be
detected in time, the attacker can manipulate the compromised vehicle by controlling the
CAN bus. For example, Miller and Valasek forced a Jeep Cherokee running on the highway
to brake and rush to the roadside by remotely intruding on the CAN bus. Chrysler had to
recall 1.4 million vehicles [4]. The Keen Security Lab of Tencent implemented the remote
intrusion and absolute control of the CAN bus of Tesla S series vehicles in parking and
driving states through a Wi-Fi interface, forcing Tesla to update its IVN system [5,6].

Moreover, if the compromised vehicle fails to detect malicious network intrusion
in time, the intruder can invade and control other connected vehicles through the IoV.
However, the cost of updating and manufacturing makes it difficult to replace current
in-vehicle network architecture and communication protocols such as the CAN bus. At
the same time, due to the limitations of in-vehicle network resources, the network security
mechanisms used for computer networks are too complex to be applied to IVNs directly.
Therefore, it is critical to develop intrusion-detection methods for IVNs based on existing
network architecture and protocols to detect malicious network intrusions in a timely and
accurate manner, thus preventing further attacks and threats.

Malicious intruders manipulate the compromised vehicles by injecting messages.
Message injection can incur an abnormal pattern of CAN message information entropy,
which is the information entropy of the CAN message arbitration identifier (ID) per unit of
time. Therefore, some research efforts have been dedicated to ID entropy-based intrusion
detection. Müter and Asaj detected flooding and injection attacks with a specific ID based
on the fluctuations of the CAN message ID information entropy and relative entropy in
a unit time window for the first time [7]. In [8], the authors further proposed the concept
of relative distance to detect an injection attack with a legal ID. Using the information
entropy of different message IDs in a unit time window as features, Wu et al. [9] proposed
a novel sliding-window strategy with a fixed number of messages to avoid the interference
of different baud rates and aperiodic CAN messages on the information entropy. Tradi-
tional message information entropy-based intrusion-detection methods can detect flooding
attacks and other injection attacks with massive and high-frequency message injections.
However, it can hardly detect attacks with few injected messages that have little impact on
information entropy.
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To resolve the above issues, a CAN message ID features-based intrusion-detection
method is proposed in this work. First, a sliding window is used to continuously extract
a frame of streaming CAN messages. Subsequently, the weighted self-information of the
CAN message ID is defined, and both the weighted self-information and the normalized
value of an ID are extracted as features. A lightweight one-class classifier, the local outlier
factor (LOF), is then used to identify the outliers and detect malicious network intrusion
attacks. Simulations have been conducted based on the public CAN dataset provided by
the HCR Lab. The proposed method is analyzed using four different one-class classifiers,
namely LOF, support vector data description (SVDD), isolation forest (iForest), and Ellipti-
cEnvelope. The traditional information entropy-based intrusion-detection methods in the
literature [7–9] are adopted as benchmarks. Experimental results indicate that, compared
to the benchmarks, the proposed method dramatically improves the detection accuracy of
injection attacks, namely denial-of-service (DoS) and spoofing, especially when the number
of injected messages is low. The results also unveil that, considering the detection accuracy
and the time complexity, LOF is the preferred one-class classifier for this work.

The rest of the paper is organized as follows. The structure of the CAN data frame
is introduced in Section 2 first. Afterward, the CAN message ID features-based intrusion-
detection method is described in Section 3. In Section 4, the performance of the proposed
method is evaluated. Finally, the paper is concluded in Section 5.

2. CAN Data Frame

The structure of the CAN data frame is shown in Figure 2.
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Figure 2. Structure of CAN data frame.

• SOF (Start Of Frame) and EOF (End Of Frame) indicate the range of the data frame.
• Arbitration ID is a unique identifier for destination receiver filtering and priority

identifying. The lower ID indicates the higher priority.
• RTR (Remote Transfer Request) flags a remote frame.
• IDE (IDentifier Extension) flags the extension format.
• RB0 (Reserved Bit 0) is a reserved bit.
• DLC (Data Length Code) indicates the length of the data payload. Data field comprises

the data payload of the message.
• CRC (Cyclic Redundancy Check) field checks the error of data transmission.
• ACK (ACKnowledgement) flags the normal CRC.

3. Intrusion Detection Based on CAN Message ID Feature Extraction

The concept of weighted self-information of a CAN message ID is clarified first,
followed by the two-dimensional ID features-based intrusion-detection method.

3.1. Weighted Self-Information of CAN Message ID

The structure of the CAN data frame is shown in Figure 2. The message ID occupies
11 bits in the frame, which is used to identify the destination and priority. The lower value
of ID indicates a higher priority. Within a time window, the probability of message ID being
i is calculated as

pi = ni/nall , (1)



Electronics 2023, 12, 2510 4 of 10

where ni is the number of messages with ID i within the time window, while nall is the total
number of all the messages within the time window.

The self-information is thus determined by

Ii = − log2 pi. (2)

The weighted self-information of a message ID being i is defined as

Iw
i = −pi log2 pi. (3)

The entropy of message ID within a time window is calculated as

H(ID) = ∑
i∈ID

Iw
i = ∑

i∈ID
−pi log pi, (4)

where ID is the set of all the message IDs showing up within the time window.

3.2. Local Outlier Factor (LOF)

The local outlier factor is a density-based unsupervised outlier detection method [10].
In this work, it is used as a one-class classifier, which can be applied to unknown attack
detection. The LOF is detailed as follows.

3.2.1. k-Distance

For a data point xi in a N−sized dataset X, the Euclidean distance to the rest of the
data points in the same set is calculated by

dist(xi, xj) = ‖xi − xj‖2, ∀j ∈ [1, N], j 6= i, (5)

where ‖ · ‖2 is the l2 norm.
The k-distance of data point xi is denoted as distk(xi). It is defined by there being at

least k data points in the rest of the set that meet the condition dist(xi, xj) ≤ distk(xi) and
at most k− 1 data points meet the condition dist(xi, xj) < distk(xi).

Based on the definition of k-distance, the set of k-nearest neighbors (kNN) of the data
point xi is thus defined as

Nbk(xi) = {xj ∈ Xj 6=i|dist(xi, xj) ≤ distk(xi)}. (6)

Please note that |Nbk(xi)| ≥ k as there is possibly more than one data point with the kth
distance.

3.2.2. Reachability Distance

The reachability distance (RD) from data point xi to xj is defined as

RDk(xi, xj) = max{dist(xi, xj), distk(xj)}, (7)

where dist(xi, xj) is the Euclidean distance between xi and xj, and distk(xj) is the k-distance
of xj. Please note that the RD is directional, such that RDk(xi, xj) may not be equal to
RDk(xj, xi).

3.2.3. Local Reachability Density

Based on kNN and RD, the local reachability density (LRD) of data point xi is given by

LRDk(xi) =
|Nbk(xi)|

∑xj∈Nbk(xi)
RDk(xi, xj)

, (8)

which evaluates the average reachability of xi to its kNN.
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3.2.4. LOF Score

The LOF score is finally defined as

LOFk(xi) =
1

|Nbk(xi)| ∑
xj∈Nbk(xi)

LRDk(xj)

LRDk(xi)
, (9)

where the local reachability density of data point xi is compared with that of its kNN. The
LOF score is used for outlier detection,

Label(xi) =

{
inlier, LOFk(xi) ≤ δ,
outlier, LOFk(xi) > δ,

(10)

where δ is the detection threshold determined by the specific applications.

3.3. Intrusion Detection Based on Extracted ID Features

A block diagram of the proposed ID features-based intrusion-detection method is
depicted in Figure 3, and the pseudocode is listed in Algorithm 1. The specific procedures
are provided as follows.

Algorithm 1 ID Features-based Intrusion Detection

1: Input: streaming CAN message number n = 0, window size nall , threshold δ
2: while True do
3: cumulate streaming CAN message n = n + 1
4: if n = nall then
5: # ID is the CAN message ID set of the time window
6: for i ∈ ID do
7: calculate the weighted self-information of ID i by (3)→ Iw

i
8: normalize the ID i by (11)→ i
9: calculate the LOF score of ID i by (9)→ LOFk([Iw

i , i])
10: if LOFk([Iw

i , i]) > δ then
11: intrusion alert
12: end if
13: end for
14: n = 0
15: end if
16: end while

• A sliding window is used to accumulate several consecutive messages, where the
window size, namely the total number of messages within a sliding window, is nall .

• Features of the message IDs are extracted. In this work, two features are extracted.
One is the proposed to be weighted self-information. The other is the normalized ID,
which is calculated as

i = i/0x07ff, (11)

where i ∈ ID, and 0x07ff is the upper limit of CAN message IDs due to the pre-defined
length of 11 bits.

• A lightweight one-class (OC) classifier LOF that takes the two-dimensional ID features
as input is used to identify the abnormal messages incurred by the malicious network
intrusion.
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Figure 3. Diagram of the intrusion detection based on extracted ID features.

4. Performance Evaluation

In this section, the practical dataset used for simulation experiments and the metrics
used for performance evaluation are introduced first. Subsequently, the simulation experi-
ments are described, and an insightful analysis of the experimental results is provided.

4.1. Experimental Dataset

The public dataset provided by the HCR Lab of Korea University was adopted for
the simulation experiments [11]. The dataset used for intrusion detection is described in
Table 1. As illustrated in Table 1, we adopted 30,000 samples of the attack-free dataset
that were collected from normal driving conditions. For the analysis of DoS and spoofing
attack detection, 200 groups of attacks were randomly injected into the dataset, and the
number of injected messages ranged from 5 to 50. A DoS attack floods the CAN using
the message ID with the highest priority, i.e., 0x0000, to prevent normal communications
and services. A spoofing attack pretends to be a normal ECU and sends messages with
a legal ID, such as 0x0316, to manipulate the vehicles with malicious operations, such as
urgent brake and acceleration. In the simulation experiments, attack-free data were used
for classifier training and validation, where the ratios were 80% and 20%, and the data with
attacks were used for testing. The window size was fixed at 50.

Table 1. Experimental Dataset.

Count ID Range

Attack-free 30,000 0x0001∼0x07ff
DoS Attack 31,000∼40,000 0x0000∼0x07ff

Spoofing Attack 31,000∼40,000 0x0001∼0x07ff

4.2. Evaluation Metrics

The metrics used for evaluation are accuracy (ACC ), precision (PRE ), recall (REC ),
and an F1-score (F1S ) [12,13].

ACC = (TP + TN)/(TP + FP + FN + TN), (12)

PRE = TP/(TP + FP), (13)

REC = TP/(TP + FN), (14)

F1S = 2 ∗ PRE ∗ REC/(PRE + REC), (15)

where TP, FN, FP, and TN refer to the true positive, false negative, false positive, and true
negative results, respectively.

4.3. Experimental Results

To evaluate the performance of the proposed method, the traditional entropy-based
method [7], sliding-window entropy-based method [9], and relative distance-based
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method [8] were adopted as benchmarks. In terms of the lightweight one-class classifiers,
except for the LOF used in this work, SVDD [14], iForest [15], and EllipticEnvelope [16]
were also considered.

4.3.1. Analysis of Attack Group Size

The detection accuracy of a DoS attack and spoofing attack under different numbers
of injected messages per attack group are provided in Tables 2 and 3, respectively. From
Tables 2 and 3, we can come to the following conclusions.

• The relative distance-based method [8] can detect the spoofing attack with different
attack group sizes accurately but can hardly be applied to the DoS attack detection
due to its definition. In [8], the DoS attack is detected by the traditional entropy-based
method [7].

• The detection accuracy of the DoS attack and spoofing attack using the benchmarks,
namely traditional entropy-based method [7] and sliding-window entropy-based
method [9], is below 90% when the attack group size is smaller than 20, jumping to
around 95% when the attack group size increases to 30. The reason for this is that the
traditional methods calculate the overall information entropy of all CAN messages
within a time window. Thus, the methods can detect the intrusion with massive and
high-frequency message injection but can hardly detect the intrusion with few injected
messages that have little impact on the information entropy.

• The proposed method outperforms the benchmarks, especially when the number of
injected messages is low. This is because the proposed method extracts the weighted
self-information and normalized ID as features, which considers the information
entropy of the messages with different IDs individually. Hence, it is more sensitive
to the information entropy variation than the traditional methods considering the
information entropy of all the messages.

• In terms of the proposed method with different one-class classifiers, the detection accu-
racy of DoS attack ranking in descending order is LOF > SVDD > EllipticEnvelope >
iForest. The detection accuracy of spoofing attack ranking in descending order is
LOF > SVDD > iForest > EllipticEnvelope.

Table 2. DoS attack detection accuracy vs attack group size.

Attack Group Size 5 10 20 30 40 50

Traditional Entropy 79.02 80.46 81.55 95.94 96.27 94.22
Sliding-Window Entropy 78.59 81.25 85.38 94.26 95.68 95.33

Relative Distance – – – – – –
Proposed + LOF 97.42 97.73 97.55 97.85 97.78 97.78

Proposed + SVDD 97.11 97.07 97.03 96.98 96.82 97.32
Proposed + iForest 83.46 82.52 84.95 82.32 81.49 80.72

Proposed + EllipticEnvelope 89.95 89.76 90.17 89.85 89.49 90.06

Table 3. Spoofing Attack Detection Accuracy vs Attack Group Size.

Attack Group Size 5 10 20 30 40 50

Entropy 78.03 78.93 80.10 97.15 96.46 95.15
Sliding-Window Entropy 73.46 79.31 82.86 94.36 95.84 94.18

Relative Distance 99.27 99.80 99.25 98.30 97.22 95.72
Proposed + LOF 98.33 98.52 98.33 98.62 98.53 98.59

Proposed + SVDD 96.28 96.87 96.53 96.82 96.52 96.20
Proposed + iForest 98.05 97.89 97.67 95.39 90.60 91.38

Proposed + EllipticEnvelope 89.65 89.78 90.00 89.73 89.38 89.09
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4.3.2. Analysis of One-Class Classifier

To further analyze the performance of the proposed method with different one-class
classifiers under the small-scale attack, the accuracy, precision, recall, and F1-score of DoS
and spoofing attack detection under the attack group size of 5 are listed in Tables 4 and 5,
respectively. For DoS attack detection, the average performance of these four metrics
in descending order is LOF > SVDD > EllipticEnvelope > iForest. For spoofing attack
detection, the average performance of these four metrics in descending order is LOF >
iForest > SVDD > EllipticEnvelope.

The time complexity of one-class classifiers is compared in Table 6. It can be seen that
the descending order of the complexity of these classifiers is SVDD > LOF > iForest >
EllipticEnvelope.

Overall, in terms of detection accuracy, LOF and SVDD perform better than iForest and
EllipticEnvelope. For time complexity, iForest and EllipticEnvelope are less complex than
SVDD and LOF. Thus, there is a tradeoff between detection accuracy and time complexity.
Considering the detection accuracy and the time complexity, LOF is the preferred one-class
classifier for this work.

Table 4. DoS Attack Detection: Attack Group Size = 5.

Classifier Accuracy Precision Recall F1-Score

LOF 97.42 97.96 99.44 98.69
SVDD 97.11 99.93 97.05 98.49
iForest 83.46 99.63 83.1 90.54

EllipticEnvelope 89.95 99.16 90.26 94.56

Table 5. Spoofing Attack Detection: Attack Group Size = 5.

Classifier Accuracy Precision Recall F1-Score

LOF 98.33 98.87 99.45 99.16
SVDD 96.82 99.90 96.84 98.36
iForest 98.05 99.92 98.07 98.99

EllipticEnvelope 89.65 98.86 90.55 94.52

Table 6. Time Complexity of One-Class Classifier.

Classifier LOF SVDD iForest EllipticEnvelope

Complexity O(n2) O(n3) O(nlogn) O(n)

5. Conclusions

To protect connected vehicles and IoV systems from being attacked, a CAN message
ID features-based intrusion-detection method was proposed in this work. First, a sliding
window was used to continuously extract a frame of streaming CAN messages. Afterward,
the weighted self-information of the CAN message ID was defined, and both the weighted
self-information and the normalized value of an ID were extracted as features. Subsequently,
a lightweight one-class classifier LOF was used to identify the outliers and detect the
malicious network intrusion attack. Simulations were conducted based on a public CAN
dataset. The proposed method was analyzed with four different one-class classifiers, namely
LOF, SVDD, iForest, and EllipticEnvelope. The three traditional information entropy-
based intrusion-detection methods were adopted as benchmarks. The experimental results
indicated that the proposed method dramatically improved the detection accuracy of DoS
and spoofing attacks compared to the benchmarks, especially when the number of injected
messages was low. Furthermore, LOF was the preferred one-class classifier for the proposed
ID features-based intrusion detection based on the analysis of the detection accuracy and
time complexity.
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Abbreviations

The following abbreviations are used in this manuscript:

ACK ACKnowledgement
ADAS advanced driver-assistance systems
CAN controller area network
CRC cyclic redundancy check
DLC data length code
ECU electronic control unit
EOF end of frame
ICV intelligent connected vehicle
ID identifier in arbitration field
IDE identifier extension
iForest isolation forest
IoV Internet of Vehicles
IVN in-vehicle network
LOF local outlier factor
RB0 reserved bit 0
RTR remote transfer request
SVDD support vector data description
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