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Abstract: Contrastive learning shows great potential in deep clustering. It uses constructed pairs to
discover the feature distribution that is required for the clustering task. In addition to conventional
augmented pairs, recent methods have introduced more methods of creating highly confident
pairs, such as nearest neighbors, to provide more semantic prior knowledge. However, existing
works only use partial pairwise similarities to construct semantic pairs locally without capturing
the entire sample’s relationships from a global perspective. In this paper, we propose a novel
clustering framework called graph attention contrastive learning (GACL) to aggregate more semantic
information. To this end, GACL is designed to simultaneously perform instance-level and graph-
level contrast. Specifically, with its novel graph attention mechanism, our model explores more
undiscovered pairs and selectively focuses on informative pairs. To ensure local and global clustering
consistency, we jointly use the designed graph-level and instance-level contrastive losses. Experiments
on six challenging image benchmarks demonstrate the superiority of our proposed approach over
state-of-the-art methods.

Keywords: contrastive learning; deep clustering; graph neural network

1. Introduction

Recently, research on unsupervised learning has become increasingly important due to
the high cost of labeling large-scale datasets in supervised learning. As an important branch
of unsupervised learning, clustering can group similar samples according to their underly-
ing distribution without any labels; as a result, it has become increasingly crucial in many
applications, such as facial expression recognition [1], video action recognition [2], recom-
mendation systems [3], and domain adaptation [4–6] due to its good hidden correlation
exploiting capability.

Conventional clustering methods, such as KMeans [7], spectral clustering [8], and sub-
space clustering, have been widely utilized, but they cannot perform satisfactorily when
dealing with excessively high-dimensional data. To tackle this issue, deep clustering [9–12]
methods use deep neural networks to achieve better representations. Owing to the power-
ful modelling capacities of deep learning networks, deep clustering methods have achieved
fairly remarkable results.

As a representative branch of self-supervised learning, contrastive learning (CL) [13,14]
jointly uses various augmentations and contrastive losses to learn discriminative repre-
sentations. It shows great potential in real-world clustering scenarios [15,16] since it can
make up for a lack of labels by naturally constructing augmented pairs. Inspired by the
introduction of informative pairs, subsequent methods [17–19] have proposed to construct
semantically confident pairs to guide the training process. SCAN [19] regards samples and
their nearest neighbors as the most semantic pairs. NNM [18] extends the matching process
for the nearest neighbors from a mini-batch to the overall feature.

Although their approaches can provide more semantic prior knowledge to the model,
the exploration of semantic relations is restricted to the mining of local information. As
shown in Figure 1, traditional CL only selects semantic pairs with the highest confidence
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scores or the smallest distance. Since the number of cluster partitions is much smaller
than that of samples, the samples and their second-nearest neighbors are likely to belong
to the same cluster; however, they are excluded in traditional CL, resulting in abundant
false-negative pairs. Furthermore, traditional CL only requires pairwise constraints on
samples and does not guarantee the consistency of overall sample distributions.
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Figure 1. (a) Traditional contrastive learning with limited sample pair constraints. (b,c) Our proposed
instance-level and graph-level contrastive learning, with more exploration on semantic sample pairs
and more constraints on the overall sample distribution.

To address the problems above, we propose a novel deep graph attention contrastive
learning framework (GACL). It simultaneously utilizes instance-level and graph-level
contrasts to explore latent semantic relationships. Specifically, to contain more possible
semantic pairs, e.g., false-negative pairs, GACL is performed across the K-nearest neighbor
graph. Additionally, a novel graph attention mechanism is designed to selectively focus on
the most informative pairs and eliminate deviated neighbors. The attention mechanism
reweights the distance score based not only on the distance but also on the relative position
of the samples in the graph.

Furthermore, we introduce instance-level and graph-level contrastive losses to ensure
local and global clustering consistency. The instance-level loss supplements the false-
negative sample constraints that were ignored in the previous methods, including the
comparisons of inter-graph and intra-graph pairs (orange and green lines in Figure 1).
Compared with the instance-level pairwise constraints, the graph-level loss has a constraint
on the overall distributions of samples under two different augmentation, i.e., constraints on
relationships between samples and their neighbors. Experimental results on six challenging
datasets validate the effectiveness of the proposed method. We also perform an extensive
ablation analysis to demonstrate the superiority of GACL.

The contributions of this paper can be summarized as follows:

• We propose a novel graph attention contrastive learning framework. By selecting
and filtering samples through our graph attention framework, we can introduce
more confident and informative semantic pairs to the clustering task and thus further
improve clustering performance.
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• Instance-level contrastive learning treats the local false-negative pairs as positive pairs,
including the inter-graph and intra-graph situations. Meanwhile, the graph-level
contrastive learning constrains neighbors’ relationships from a global perspective.

• We conduct extensive experiments on the image clustering task, and our proposed
method achieves significant improvements on various datasets. We also conduct exten-
sive ablation and case studies to validate the effectiveness of each proposed module.

2. Related Work

Our method aims to solve the problem of deep clustering using contrastive learn-
ing. In this section, we briefly overview some developments of deep clustering and
contrastive learning.

2.1. Deep Clustering

Benefiting from the powerful representation ability of deep neural networks, deep
clustering [9,10] has shown promising performance on complex datasets. Various methods
have been proposed to combine feature learning and clustering and have achieved great
success. For example, JULE [11] combines the hierarchical agglomerative clustering idea
with deep learning with a recurrent framework that merges the clusters that are close to each
other. Analogously, DeepClustering [12] groups the features using k-means and updates the
deep network according to the cluster assignments in turn. However, their performances are
likely to be unstable due to the accumulation of errors during alternation. Simultaneously,
some online clustering methods have been proposed to jointly learn representations and
cluster assignments. For example, IIC [16] discovers clusters by maximizing mutual
information between the cluster assignments of data pairs. DCN [20] adopts auto-encoder
and K-means to estimate cluster assignment and learn a “clustering-friendly” latent space.
These approaches achieve good results, but they ignore the connections between cluster
assignment learning and representation learning. As a contrast, our method considers their
connections and simultaneously learns both feature representation and cluster assignment.

2.2. Graph-Based Clustering

Graph-based clustering is a fundamental yet challenging task that aims to reveal the
underlying graph-based relationship structure and divides the nodes into several disjoint
groups. The existing deep graph clustering methods can be roughly categorized into three
classes according to their learning mechanisms: generative methods [21–24], adversarial
methods [25–27], and contrastive methods [28–30]. The pioneer graph clustering algorithm
MGAE [31] embeds nodes into the latent space with GAE [32] and then performs clustering
over the learned node embeddings. Subsequently, DAEGC and MAGCN [33] improved
the clustering performance of earlier works with the use of attention mechanisms [34].
GALA [35] and AGC [36] enhanced the performance of GAE with the use of a symmetric
decoder and high-order graph convolution operation, respectively. In addition, ARGA [25]
and AGAE [27] improved upon the discriminative capability of samples through adver-
sarial mechanisms. Moreover, SDCN [22], AGCN [24], and DFCN [23] verify the effective-
ness of the attribute–structure fusion mechanisms to improve the clustering performance.
Although they have been verified to be effective, since most of these methods adopt a
clustering-guided loss function to force the learned node embeddings to have the minimum
amount of distortion against the pre-learned clustering centers, their clustering performance
is highly dependent on good initial cluster centers, thus leading to manual trial-and-error
pre-training. As a consequence, their performance consistency, as well as their convenience
of implementation, is largely decreased. Unlike the above methods, however, our proposed
method replaces the clustering-guided loss function by designing a novel neighbor-oriented
contrastive loss function, thus eliminating the need for trial-and-error-based pretraining.
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2.3. Deep Contrastive Clustering

Contrastive learning is an attention-getting unsupervised representation learning
method with the goal of maximizing the similarities of positive pairs while minimizing
those of negative pairs in a feature space. This learning paradigm has lately achieved
promising performance in computer vision. Recently, contrastive learning [37], which
utilizes self-supervisory information to discriminate each instance, has shown great poten-
tial in deep clustering. The basic idea of contrastive learning is to map the original data
to a feature space wherein the similarities of positive pairs are maximized, while those
of negative pairs are minimized. Contrastive clustering could be constructed using the
following two strategies under an unsupervised setting. One is to use clustering results as
pseudo-labels to guide the construction of pairs [38]. The other, which is more direct and
commonly used, is to construct data pairs through data augmentation [39] and guiding the
training. To be specific, the positive pair is composed of two augmented views of the same
instance, and the other pairs are defined as negative pairs. For example, DAC [40] adopts a
binary pairwise classification framework for image clustering to make the feature learning
occur in a “supervised” manner. CC [15] treats cluster labels as special representations
so that instance- and cluster-level representation learning can be conducted in the row
and column spaces, respectively. The latest works are mostly based on mining seman-
tic information outside the augmented pair. DCCM [17] comprehensively explores the
correlation between negative and positive pairs with triplet mutual information loss [41].
PICA [42] introduced a partition uncertainty index to quantify the global confidence of the
clustering assignment. SCAN [19] provides more semantic prior knowledge by mining
nearest neighbors. NNM [18] further improves clustering performance by matching the
nearest neighbor from both the batch and overall features.

Despite achieving remarkable improvements, existing works are still restricted to the
mining of local information. Many informative semantic pairs are regarded as negative
pairs, yielding semantically less plausible results. Our method addresses this limitation
by extending pairwise semantic relationships to graph-wise ones. This technique helps us
discover various high-confidence relationships behind the data and simultaneously allows
the learning of cluster-friendly representations and compact cluster assignments from a
global perspective.

3. Method

In the following section, the notation, definition, and the basic concept of contrastive
learning are first introduced, followed by detailed descriptions of each module of our
method. GACL can be adaptively integrated to any contrastive learning framework to
provide more semantic relationships with its plug-and-play property.

3.1. Preliminaries

Given a set of unlabeled images I = {I1, I2, · · · , IN}, deep clustering aims to learn
(1) a feature embedding network that maps images into a compact vector subspace contain-
ing key semantic information; i.e., fθ : I → x ∈ Rd, where d is the embedding dimension;
and (2) a classifier, φ, that projects the feature vectors into C partitions, i.e., fφ : x → y,
y ∈ {1, 2, · · · , C}, expecting that similar samples are grouped into the same cluster, while
dissimilar ones are divided into different clusters.

Due to its powerful representation ability, contrastive learning is used to obtain dis-
criminative representations, which learn the intrinsic data structure without any additional
supervisory signals. Specifically, given an image instance Ii, it is applied with two random
data transformations Ta and Tb from the same family of augmentations T, resulting in two
samples denoted as tai = Ta(Ii) and tbi = Tb(Ii). The previous works have suggested that
a proper choice of augmentation strategy is essential to achieving a good performance
in downstream tasks. In this work, five types of data augmentation methods are used
(see Section 4.3 for more details). Then, one shared deep neural network fθ(·) is used
to extract features for the augmented samples via xai = fθ(tai) and xbi = fθ(tbi). As for
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the architecture of the network, theoretically, our method does not depend on a specific
network. Here, we simply adopt ResNet-18 as the backbone for a fair comparison.

Contrastive learning regards different augmented versions of an image as positive
pairs, while different images in a mini-batch are taken as negative pairs. The loss functions
are designed to pull positive pairs together and push negative ones away. The most
common contrastive loss is InfoNCE, which is defined as follows:

LNCE(xai, xbi) = − log ψ(xai ,xbi)

ψ(xai ,xbi)+∑B
j=1 1j 6=iψ(xai ,xbj)

− log ψ(xbi ,xai)

ψ(xbi ,xai)+∑B
j=1 1j 6=iψ(xbi ,xaj)

,
(1)

ψ(xai, xbj) = exp(sim(xai, xbj)/τ), (2)

where τ is the temperature parameter, B is the batch size, and sim(·) represents the cosine
similarity between two input vectors. 1j 6=i is an indication function; when j 6= i, its value
is 1, but otherwise, its value is 0. Obviously, in Equation (1), for a sample xpi, p ∈ {a, b},
this classic loss includes constraints on its one positive pair and 2B− 2 negative pairs.

3.2. Framework

As shown in Figure 2, our framework consists of three jointly learned components,
namely, a graph construction layer that builds a nearest neighbor graph based on latent
representations, a graph attention layer to selectively focus on informative pairs, and a pair
of instance-level and graph-level contrastive losses for local and global constraints on the
cluster assignments. We present the details of GACL below.
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Figure 2. The overall structure of GACL. It consists of three jointly learned components, namely,
a graph construction layer that builds a nearest neighbor graph based on the latent representation,
a graph attention layer to selectively focus on informative pairs, and a pair of instance-level and
graph-level contrastive losses for local and global constraints on the cluster assignments.

3.2.1. Graph Construction Layer

In a mini-batch, we assume that the representations generated by the backbone form a
set, denoted as X ∈ R2B×d, where d is the dimension of the embedding features. However,
the deep learning model usually fluctuates during training, resulting in representation bias
after each epoch. We take advantage of the moving average to obtain robust representations
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before the construction of the graph. To be specific, assuming that x(t)pi , p ∈ {a, b} is
generated in the t-th epoch, the moving average of the representation can be defined as

x̄(t)pi =
αx(t)pi + (1− α)x(t−1)

pi

||αx(t)pi + (1− α)x(t−1)
pi ||2

, i = 1, 2, · · · , B, (3)

where α is a parameter for the trade-off of current and past effects and v̄(0)pi = v(0)pi .
As demonstrated in [18], nearest neighbors provide important supervision information,

which could be viewed as positive samples of the original samples. However, the nearest
mining method only captures partial semantic relationships. To discover more available
potential relationships, we propose to construct the entire K-nearest neighbor (KNN) graph
instead of only using the nearest neighbor pairs. The KNN graph is constructed as follows:

A(t)
p,i,j =

{
1, if x̄(t)pj ∈ N

k(x̄(t)pi ) or x̄(t)pi ∈ N
k(x̄(t)pj )

0, otherwise
, (4)

where N k is the K-nearest neighbors and i, j ∈ {1, . . . , B}.

3.2.2. Graph Attention Layer

The construction of the KNN graph helps us consider more confidence sample pairs.
However, while alleviating the problem of false-negative samples, this method also intro-
duces redundant noise, resulting in semantic pairs with low confidence being included.
Therefore, how to select the appropriate semantic pair is still a very critical issue.

As we mentioned before, even if relatively closer samples can be found through KNN,
it is not reasonable to simply classify them into the same category as the target sample.
There exist two common situations: (1) it is not simple to choose a suitable value of k so
that the number of selected neighbors is not higher or lower, as shown in Figure 3a; (2) if
two samples with close distances are on the classification boundary, their other neighbors
might belong to different classes, as shown in Figure 3b. In these situations, it is biased to
judge the semantic relationships based only on the pairwise distance.

In order to solve the above problems, we designed a graph attention mechanism to
comprehensively consider pairwise similarities and all relationships between samples in
the latent space. The attention mechanism is normalized via softmax as follows:

αpij =
exp(score(xpi, xpj))

∑t∈N k(pi) exp(score(xpi, xpt))
, (5)

where score(·) is an alignment function that measures the relationship between the target
sample and its neighbor. score(·) can be any measured function such as cosine similarity.
Here, score(·) is defined as the output of the following feed-forward network with a single
hidden layer:

score(xpi, xpj) = σ(WT [xpi||xpj] + b), (6)

where σ is a non-linear transformation, W is the weight matrix, || denotes the concatenation
of xpi and xpj, and b is the bias vector.

A feed-forward network has sufficient capacity to approximate any arbitrary function
and can be trained to learn deeper relationships within the data. Through the softmax
calculation in the attention mechanism, we can minimize the interference introduced by
unimportant neighbors. Specifically, when the relationship between two samples on one
edge is different from the other edges in the neighbor graph, the attention mechanism can
adaptively detect the anomaly and weaken its weight.
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Figure 3. Two situations in which samples with close distances might not belong to one cluster.
(a) Hard to set a suitable number of the neighbors, (b) two samples with close distances may have
different neighbors set.

3.2.3. Instance-Level Contrastive Learning

Instance-level contrastive learning contains two constraints. One is the similarity of
representations, and the other is the consistency of cluster assignments. For representations,
we stack a two-layer nonlinear MLP fψ(·) to map the representations to a new feature
subspace via zpi = fψ(xpi) ∈ Rd, where the instance-level contrastive loss is applied. For the
cluster assignments, following the idea of “label as representation”, when projecting a data
sample into a space whose dimensionality equals the number of clusters, the i-th element
of its feature can be interpreted regarding its probability of belonging to the i-th cluster,
and the feature vector denotes its soft label accordingly. We also stack a two-layer nonlinear
MLP fθ(·) to map representations to a cluster subspace via cpi = fθ(xpi) ∈ RC. The total
instance-level loss for a given positive pair u and its augmentation u′ is in the form of

Laug = LNCE(u, u′)− log〈cu, cu′〉, (7)

where 〈·, ·〉 is the dot product operator that measures the similarity.
The total instance-level loss for a sample u and its K-nearest neighbor N k(u) is in the

form of
Lnear = LNCE(zu, zN (u))− log

〈
cu, cN (u)

〉
. (8)

Through the graph attention mechanism, more semantic confident pairs are included,
as shown in Figure 1. In each mini-batch, a false-negative sample is randomly selected in
proportion, where the proportion value is equivalent to the attention coefficient α. The total
instance-level loss for a sample u and its intra-graph false-negative sample RN (u) is in
the form of

Lintra = LNCE(zu, zRN (u))− log
〈

cu, cRN (u)

〉
, (9)

whereRN (u) denotes a proportionally random neighbor of u.
As above, the total instance-level loss for a sample u and its inter-graph false-negative

sampleRN (u′) is in the form of

Linter = LNCE(zu, zRN (u′))− log
〈

cu, cRN (u′)

〉
. (10)
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The overall instance-level contrastive loss function could be summarized as

Linstance = Laug + Lnear + Lintra + Linter (11)

3.2.4. Graph-Level Contrastive Learning

Benefiting from the construction of the neighbor graph, our comparison targets are
also extended from the instance-level to the graph-level. The advantage of a graph-level
comparison is that it can simultaneously constrain all relationships, thereby forcing all
pairs belonging to the same cluster closer. It is naturally suitable for the learning of cluster-
friendly representations. The general contrastive learning method cannot compare global
relationships; hence, we introduce the recently widely discussed graph contrastive learning
to compare the differences between graphs.

We developed a variant of the graph convolutional network (GCN) as the encoder.
The GCN encoder consists of a stack of single encoder layers, each of which aggregates
the feature information from the neighboring samples of the target sample. By stacking
multiple encoder layers, the GCN encoder can aggregate the feature information from the
multi-hop ego-network of the target node, which is taken as the local subgraph of the target.
Given the input xpi, a single GCN layer can be formalized as follows:

xT
pi = σ( ∑

j∈N k(xpi)

apijWxT−1
pj ), (12)

where T is the graph convolution layer, σ represents the nonlinear activation function,
x0

pi = xpi, the weight matrix W ∈ RF×F′ uses a linear transformation to map inputs to

higher-level features, and N k(xpi) is the set of node xpi’s neighbors in its K-nearest graph.
apij is the aggregation weight between the target sample xpi and its neighbor xpj, which
uses the value of αpij in Equation (5) as the aggregation weight to re-weight the distance.

In order to make comparisons between graphs, we stack a two-layer nonlinear MLP
fγ(·) to map multiple node representations into one graph-level representation, as follows:

gpi = fγ(xT
p1||xT

p2|| · · · ||xT
pk) (13)

where k is the number of nodes in the neighbor graph and || is the concatenation operation.
The total graph-level loss for a given positive pair u and its augmentation u′ is in the

form of:
Lgraph = LNCE(gu, gu′) (14)

3.3. Model Training

Given the instance- and graph-level losses, the overall training objective is to minimize
their summation.

Ltotal = Linstance + Lgraph. (15)

The objective function is differentiable and can be optimized in an end-to-end manner,
enabling the use of the conventional stochastic gradient descent algorithm for model
training. The training procedure is summarized in Algorithm 1.
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Algorithm 1 Graph Attention Contrastive Learning.

Require: Training images I = I1, I2 · · · , IN , training epochs E, batch size B, and number of
clusters K

1: for epoch = 1 to E do
2: Sample a mini-batch from I
3: Generate augmentations for the sampled images
4: Compute feature representations xi
5: Construct neighbor graph using Equation (3)
6: Select informative semantic pairs using Equation (4)
7: Compute instance-level contrastive loss using Equations (7)–(11)
8: Compute graph-level contrastive loss using Equation (14)
9: Compute total contrastive loss using Equation (15)

10: end for
11: // test
12: for Ii in I do
13: Extract feature representation xi
14: Compute cluster assignments
15: end for

4. Experiments
4.1. Datasets

We conducted extensive experiments on six widely adopted benchmark datasets. For a
fair comparison, we used the same experimental setting as [40]. The characteristics of these
datasets are introduced in the following.

• CIFAR-10/100: [43] A commonly used dataset with a joint set of 50,000 training
images and 10,000 testing images for clustering. In CIFAR-100, the 20 super-classes
are considered ground-truth labels. The image size is fixed to 32× 32.

• STL-10: [44] An image recognition dataset consisting of 500/800 training/test images
for each of 10 classes. An additional 100,000 samples from several unknown classes
are also used for the training stage. The image size is fixed to 96× 96.

• ImageNet-10 and ImageNet-Dogs: [40] The ImageNet subsets contain samples from
10 randomly selected classes or 15 dog breeds with each class composed of 1300 images.
The image size is fixed to 96× 96.

• Tiny-ImageNet: [45] Another ImageNet subset on a larger scale, with 100, 000 samples
evenly distributed in 200 classes. The image size is fixed to 64× 64.

4.2. Evaluation Metrics

Three standard clustering metrics, namely clustering accuracy (ACC), normalized
mutual information (NMI), and adjusted Rand index (ARI), were used to measure the
consistency of cluster assignments and ground-truth memberships. All these metrics scale
from 0 to 1, and larger values indicate better performances.

4.3. Experimental Settings

We utilized PyTorch to implement all our experiments. In our framework, we used
ResNet-18 as the main network architecture and trained networks on four Tesla P100 GPUs.
The SGD optimizer was adopted, with lr = 0.1, a weight decay of 0.001, and a momentum
coefficient of 0.9. The batch size was set to 256. The temperatures in instance head and graph
head were all set to 1. For the construction of the KNN graph, we set K = 8 and utilized
the efficient similarity search library “Faiss” (https://github.com/facebookresearch/faiss
access date: (1 May 2018)). Even for 1 million samples with 256-dimensional features on
a CPU with 64 cores and 2.5 GHz, it took about 80 seconds to construct a KNN graph.
Therefore, its time cost was neglectable, and the construction of the KNN graph did not
limit its application to large-scale datasets. We set T = 2 graph convolution layers as
GCN encoders.

https://github.com/facebookresearch/faiss
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We used five types of data augmentation methods, including ResizedCrop, ColorJitter,
Grayscale, HorizontalFlip, and GaussianBlur. Specifically, ResizedCrop crops an image to a
random size and resizes the crop to the original size; ColorJitter changes the brightness, con-
trast, and saturation of an image; Grayscale converts an image to grayscale; HorizontalFlip
horizontally flip an image; and GaussianBlur blurs an image with a Gaussian function.
For a given image, each augmentation was applied independently with a certain probability
following the settings in SimCLR [14].

4.4. Performance Comparison

We compared the proposed method with both traditional and deep-learning-
based methods, including K-means, spectral clustering (SC) [8], agglomerative clus-
tering (AC) [46], nonnegative-matrix-factorization (NMF)-based clustering [47], auto-
encoder (AE) [48], denoising auto-encoder (DAE) [48], GAN [49], deconvolutional
networks (DECNN) [50], variational auto-encoding (VAE) [51], deep embedding clus-
tering (DEC) [10], jointly unsupervised learning (JULE) [11], deep adaptive image
clustering (DAC) [40], invariant information clustering [16], deep comprehensive cor-
relation mining (DCCM) [17], partition confidence maximization (PICA) [42], doubly
contrastive deep clustering (DCDC) [52], contrastive clustering (CC) [15], graph con-
trastive clustering (GCC) [53], and nearest neighbor matching [18].

As shown in Table 1, we present the clustering results of our method and other related
methods on these six challenging datasets. From the results, we have the following observations.

Table 1. Performanceof different clustering methods on six challenging datasets. The best results are
shown in boldface.

Datasets CIFAR-10 CIFAR-100 STL-10 ImageNet-10 ImageNet-Dogs Tiny-ImageNet
Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-means 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061 0.119 0.241 0.057 0.055 0.105 0.020 0.065 0.025 0.005
SC 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048 0.151 0.274 0.076 0.038 0.111 0.013 0.063 0.022 0.004
AC 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140 0.138 0.242 0.067 0.037 0.139 0.021 0.069 0.027 0.005

NMF 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046 0.132 0.230 0.065 0.044 0.118 0.016 0.072 0.029 0.005
AE 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161 0.210 0.317 0.152 0.104 0.185 0.073 0.131 0.041 0.007

DAE 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152 0.206 0.304 0.138 0.104 0.190 0.078 0.127 0.039 0.007
DCGAN 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139 0.225 0.346 0.157 0.121 0.174 0.078 0.135 0.041 0.007
DeCNN 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162 0.186 0.313 0.142 0.098 0.175 0.073 0.111 0.035 0.006

VAE 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146 0.193 0.334 0.168 0.107 0.179 0.079 0.113 0.036 0.006

JULE 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164 0.175 0.300 0.138 0.054 0.138 0.028 0.102 0.033 0.006
DEC 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186 0.282 0.381 0.203 0.122 0.195 0.079 0.115 0.037 0.007
DAC 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257 0.394 0.527 0.302 0.219 0.275 0.111 0.190 0.066 0.017
ADC - 0.325 - - 0.160 - - 0.530 - - - - - - - - - -
DDC 0.424 0.524 0.329 - - - 0.371 0.489 0.267 0.433 0.577 0.345 - - - - - -

DCCM 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262 0.608 0.710 0.555 0.321 0.383 0.182 0.224 0.108 0.038
IIC - 0.617 - - 0.257 - - 0.610 - - - - - - - - - -

PICA 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531 0.802 0.870 0.761 0.352 0.352 0.201 0.277 0.098 0.040
DCDC 0.585 0.699 0.506 0.310 0.349 0.179 0.621 0.734 0.547 0.817 0.879 0.787 0.360 0.365 0.207 0.287 0.103 0.047

CC 0.705 0.790 0.637 0.431 0.429 0.266 0.764 0.850 0.726 0.859 0.893 0.822 0.445 0.429 0.274 0.340 0.140 0.071
GCC 0.764 0.856 0.728 0.472 0.472 0.305 0.684 0.788 0.631 0.842 0.901 0.822 0.490 0.526 0.362 0.347 0.138 0.075
NNM 0.748 0.843 0.709 0.484 0.477 0.316 0.694 0.808 0.650 0.867 0.913 0.844 0.497 0.533 0.373 0.356 0.144 0.081

GACL 0.793 0.875 0.753 0.496 0.488 0.321 0.783 0.863 0.744 0.871 0.903 0.841 0.513 0.543 0.397 0.356 0.148 0.079

First, we can see that deep-learning-based methods achieve much better results than
traditional clustering methods. Taking the NMI value on CIFAR-10 as an example, it can
be seen that most deep-learning-based clustering methods achieve values much higher
than 0.3, while others are below 0.25. Among the deep learning methods, the contrastive-
learning-based methods, such as PICA, CC, GCC, and NNM, achieve another performance
improvement. This demonstrates that they can provide more discriminative supervision
information for the clustering task. Another interesting observation is that GCC performs
more poorly than CC on some datasets. This may be due to their simple and straightforward
manner of constructing graphs, which may result in redundant information and noise in
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the neighbors. Compared with these former methods, our method significantly surpasses
them by a large margin on most benchmarks under three different evaluation metrics.
These remarkable results demonstrate the powerful clustering ability of GACL, which
benefits from the design that introduces and contrasts more confident semantic pairs.

4.5. Ablation Study

In this section, we conduct several ablation studies to demonstrate the effect of different
choices in GACL.

4.5.1. Effect of the Proposed Losses

We assessed the effect of the proposed loss and provide the results in Table 2. From the
upper section of the Table, we can observe that the instance loss plays a more important
role in learning discriminative features, while the basic augmentation pairs provide the
most confident supervision information for the instance-level loss. On this basis, it can be
said that each of the proposed losses partially improve the performance of the model.

Table 2. Effect of the proposed loss on CIFAR-10 dataset.

GACL w/o Linstance w/o Lgraph w/o Laug w/o Lnear w/oLintra w/o Linter

NMI 0.793 0.703 0.764 0.314 0.734 0.751 0.750
ACC 0.875 0.807 0.845 0.462 0.826 0.835 0.834
ARI 0.753 0.691 0.726 0.338 0.718 0.717 0.721

4.5.2. Effect of the Number of Nearest Neighbors

In this part, we design an ablation experiment to explore whether the number of
nearest neighbors affects the performance and provide the experimental results in Table 3.
According to the presented results, the greater the number of neighbors that are included,
the better the clustering performance is; additionally, the performance will no longer
increase after a certain number of neighbors. This demonstrates that introducing more con-
fidence pairs can provide effective supervision information to the model. At the same time,
our model has good adaptability to the number of neighbors without manual selection.

Table 3. Effect of number of global nearest neighbors on CIFAR-10 dataset.

K-Nearest Neighbor 1 3 5 8 12

NMI 0.728 0.762 0.793 0.791 0.795

ACC 0.815 0.849 0.875 0.872 0.878

ARI 0.703 0.722 0.753 0.749 0.755

4.6. Qualitative Study

In this section, we conduct several qualitative studies to visually analyze the confident
samples and failure cases.

4.6.1. Visualization on the Most Confident Neighbors

We visualized the different clusters after finishing training the model. Specifically,
we provided the most confident samples in each cluster of STL-10. For the query image,
our method and nearest neighbors, respectively, provide the samples with the highest
confidence, as shown in Figure 4. It can be seen that the results given by these two methods
are close to the query image. The confidence samples given by the nearest-neighbor method
are closer to the original image in terms of shape and color. However, in the dog category,
it chose a deer with a similar shape to the query image. In contrast, our method chose the
correct category, which may be because GACL uses other similar dog images in the dataset
to increase the confidence in this selection.
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Figure 4. The most confident samples for the query images on STL-10.

4.6.2. Visualization on Classification Results

Following [42], we evaluated our method to obtain extra insight by investigating
both successful and failure cases. We studied three cases for each one of four categories
from STL-10: (1) success cases, wherein samples are correctly assigned to a target class;
(2) false-negative failure cases, wherein samples of a target class are misassigned to other
classes with high probability; and (3) false-positive failure cases, where, in terms of a target
class, samples of other classes are wrongly assigned to this class with high probability.
As shown in Figure 5, GACL can keenly capture the common characteristics between
the same categories. For false-negative failure cases, our method mostly fails in isolated
samples. It can be observed that the foreground and background interferences in the failed
sample are very large, resulting in rarely close neighbors in the dataset, which greatly
affects our model. The question of how to distinguish false-positive failure cases in a
fine-grained manner is still unresolved.

Figure 5. Cases studies of four classes on STL-10. (Left) Successful cases, (Middle) false-negative
cases, and (Right) false-positive failure cases.

5. Conclusions

In this paper, we propose a novel graph attention contrastive learning framework
(GACL). Different from previous methods that only use pairwise semantic samples, GACL
provides a novel mechanism for insight, in which semantic instance-level pairs can be
extended to graph-level pairs to supervise the clustering assignment. The designed graph
attention mechanism is applied to focus on more undiscovered semantic pairs. Instance-
level and graph-level contrastive losses are adopted to learn cluster-friendly representations
and compact cluster assignments. Experimental results on real-world datasets demon-
strate that our method achieves significant performance gains compared to state-of-the-art
methods. In the future, we will apply our method to more relevant directions, such as
domain adaptation.
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