
Citation: Hirose, S.; Shikata, J.

Aggregate Entity Authentication

Identifying Invalid Entities with

Group Testing. Electronics 2023, 12,

2479. https://doi.org/10.3390/

electronics12112479

Academic Editor: Juan-Carlos Cano

Received: 28 March 2023

Revised: 16 May 2023

Accepted: 29 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Aggregate Entity Authentication Identifying Invalid Entities
with Group Testing
Shoichi Hirose 1,2,* and Junji Shikata 2,3

1 Faculty of Engineering, University of Fukui, Fukui 910-8507, Japan
2 Japan Datacom Co., Ltd., Tokyo 107-0052, Japan; shikata-junji-rb@ynu.ac.jp
3 Graduate School of Environment and Information Sciences, Yokohama National University,

Yokohama 240-8501, Japan
* Correspondence: hrs_shch@u-fukui.ac.jp

Abstract: It is common to implement challenge-response entity authentication with a MAC function.
In such an entity authentication scheme, aggregate MAC is effective when a server needs to authenti-
cate many entities. Aggregate MAC aggregates multiple tags (responses to a challenge) generated
by entities into one short aggregate tag so that the entities can be authenticated simultaneously
regarding only the aggregate tag. Then, all associated entities are valid if the pair of a challenge
and the aggregate tag is valid. However, a drawback of this approach is that invalid entities cannot
be identified when they exist. To resolve the drawback, we propose group-testing aggregate entity
authentication by incorporating group testing into entity authentication using aggregate MAC. We
first formalize the security requirements and present a generic construction. Then, we reduce the
security of the generic construction to that of aggregate MAC and group testing. We also enhance the
generic construction to instantiate a secure scheme from a simple and practical but weaker aggregate
MAC scheme. Finally, we show some results on performance evaluation.

Keywords: entity authentication; message authentication; aggregate MAC; group testing

1. Introduction
1.1. Background

A MAC function is one of the most basic symmetric-key primitives for cryptography.
Its typical application is challenge-response entity authentication, which assumes that a
server and an entity share a secret key. In this scheme, the server first sends a challenge to
the entity. Next, the entity computes a tag for the challenge using the MAC function with
the shared secret key and returns it to the server. Finally, the server computes the tag in the
same way and verifies the received tag.

Entity authentication is often crucial in identifying invalid entities to secure network
applications and services. Additionally, a server may need to authenticate many devices
simultaneously in an IoT network. In scenarios where an edge device plays the role of an
aggregator, as shown in Figure 1, aggregate MAC [1] is suitable for efficient communication
between the server and the aggregator for entity authentication. Aggregate MAC allows
users to aggregate multiple tags into a tag so that the aggregate tag is as short as each of
the multiple tags. In the situation shown in Figure 1, if the aggregator aggregates tags
from devices and sends the aggregate tag to the server, then the server can authenticate the
devices based only on the aggregate tag. If the aggregate tag is valid, then the server knows
that all devices are valid. On the other hand, if the aggregate tag is invalid, then the server
only knows that one or more invalid devices are included, which cannot be identified. The
problem is if the server can identify invalid devices without knowing individual tags. As
far as we know, it has not been addressed for entity authentication.

Electronics 2023, 12, 2479. https://doi.org/10.3390/electronics12112479 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112479
https://doi.org/10.3390/electronics12112479
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6723-722X
https://orcid.org/0000-0003-2861-359X
https://doi.org/10.3390/electronics12112479
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112479?type=check_update&version=1

Electronics 2023, 12, 2479 2 of 15

Server Aggregator

Figure 1. Targeted system configuration.

1.2. Our Contribution

We observe that group testing [2] can be employed to solve the above problem. For
group testing, each item is assumed to be positive or negative. Multiple items are assumed
to be able to be inspected by a test whose result is positive only if one or more positive
items are included. All positive items can be identified with fewer tests than individual
tests if the number of positive items is relatively small [3].

We introduce and explore group-testing aggregate authentication. It is a protocol
participated in by multiple entities, an aggregator, and a server. Each entity has its own
secret key shared with the server. The aggregator broadcasts a challenge from the server to
the entities and collects their responses. The server then identifies the invalid entities by
verifying the responses with the help of the aggregator.

We first formalizesd the scheme and its security requirements. The security require-
ments are impersonation resistance, completeness, and soundness. Impersonation resis-
tance represents the notion that adversaries cannot impersonate an entity without knowing
its secret key. Completeness requires that a valid response must not be judged invalid.
Soundness requires that an invalid response must not be judged valid.

Furthermore, we present a generic construction combining a group-testing scheme
and an aggregate MAC scheme. For each test in group testing, it aggregates the tags
of entities examined by the test and verifies the aggregate tag. The aggregate tag is
valid (negative) if all the involved tags are valid. Thus, invalid entities can be identified
with fewer tests than by examining them individually. We also show that the generic
construction satisfies impersonation resistance if the underlying aggregate MAC scheme is
unforgeable, completeness if the underlying group-testing scheme satisfies completeness,
and soundness if the underlying aggregate MAC scheme satisfies soundness. Furthermore,
considering that the simple and practical Katz-Lindell aggregate MAC scheme [1] does
not satisfy soundness, we enhance the generic construction to instantiate group-testing
aggregate entity authentication satisfying soundness by using aggregate MAC not satisfying
soundness.

Finally, we evaluate the performance of the proposed construction instantiated with
SHA-256 [4] and HMAC [5] by software implementation.

1.3. Related Work

Katz and Lindell [1] introduced and investigated aggregate MAC. They presented
a provably secure scheme for generating an aggregate tag by XOR of the associated tags.
Eikemeier et al. [6] formalized sequential aggregate MAC and presented provably secure
schemes. Sato et al. [7] proposed a sequential aggregate MAC scheme for aggregating tags
without using the secret keys of associated users. Ishii and Tada [8] presented an aggregate
MAC scheme that aggregates tags following the structure represented by a series-parallel
graph.

Goodrich et al. [9] applied group testing to MAC schemes for identifying tampered
data items. Along this line of research, Minematsu [10] proposed a computationally efficient
scheme of group testing MAC based on PMAC [11]. Minematsu and Kamiya [12] proposed
a method for reducing the number of tags.

Hirose and Shikata [13,14] applied group testing to aggregate MAC for identifying
invalid messages from multiple senders. They used non-adaptive group testing for a generic
construction. Sato and Shikata [15] presented a generic construction using adaptive group

Electronics 2023, 12, 2479 3 of 15

testing. Anada and Kamibayashi [16] followed the discussion by Sato and Shikata [17] and
discussed the quantum security of aggregate MAC combined with non-adaptive group-
testing. Ogawa et al. [18] presented a scheme reducing the number of aggregate tags based
on biorthogonal codes.

1.4. Organization

Section 2 defines notations and cryptographic primitives and describes group testing.
Section 3 provides the syntax and security requirements of aggregate MAC and its concrete
schemes. Section 4 formalizes group-testing aggregate entity authentication and presents
its generic construction, combining group-testing and aggregate MAC. Section 5 discusses
the security of the generic construction and presents its enhancement. Section 6 shows
some results of the performance evaluation by software implementation. Section 7 gives a
brief concluding remark.

This article is an extended and improved version of our conference paper [19]. We
refine the formalization of security requirements, which are described in Section 4, based
on the idea by Bellare and Rogaway [20]. Accordingly, we revise the theorems and proofs,
which are given in Section 5. We also add the results on performance evaluation.

2. Preliminaries
2.1. Notation

{0, 1}l is regarded as the set of all binary sequences of length l. Let {0, 1}∗ :=
⋃

l≥0{0, 1}l.
For binary sequences x, y, their concatenation is denoted by x‖y.

Let S be a set. For v := (v1, . . . , vn) ∈ {0, 1}n and s := (s1, . . . , sn) ∈ Sn, let
v � s := (sj1 , . . . , sjw), where 1 ≤ j1 < · · · < jw ≤ n and vj = 1 iff j ∈ {j1, . . . , jw}.
For u, u′ ∈ {0, 1}n, let u ∨ u′ be their component-wise disjunction. Let s ←← S represent
that s is sampled uniformly at random from S .

2.2. MAC Function and Pseudorandom Function

Let f : K×X → Y be a keyed function with its key space K. f (K, ·) is often denoted
by fK(·).

f is called a secure MAC function or unforgeable if it is intractable to predict unknown
outputs of fK, where K ←← K. An adversary A is given a tagging oracle T f

K and a verification

oracle V
f
K and is allowed to make queries adaptively to them. In response to a query X ∈ X ,

T
f
K returns fK(X). In response to a query (X, Y) ∈ X ×Y , V f

K returns 1 if fK(X) = Y and 0

otherwise. A is not allowed to ask (X, Y) to V
f
K after asking X to T

f
K. AT

f
K ,V f

K is successful

iff V f
K returns 1 in response to at least one query. The advantage of A against f is

Advmac
f (A) := Pr

[
AT

f
K ,V f

K is successful
]
.

f is called a secure pseudorandom function (PRF) if it is intractable to distinguish fK
with K ←← K from a uniform random function ρ : X → Y . An adversary A is given either
fK or ρ as an oracle and is allowed to make adaptive queries in X . A outputs 0 or 1. The
advantage of A against f is

Advprf
f (A) :=

∣∣∣Pr
[
A fK = 1

]
− Pr

[
Aρ = 1

]∣∣∣,
where A is regarded as a random variable which takes values in {0, 1}. It is easy to see that
a secure PRF is a secure MAC function, and that a secure MAC function is not necessarily a
secure PRF.

Electronics 2023, 12, 2479 4 of 15

2.3. Cryptographic Hash Function

A cryptographic hash function H : {0, 1}∗ → {0, 1}τ is often simply called a hash
function. Among its various security requirements, our work is concerned with the random
oracle model and collision resistance.

The random oracle model [21] assumes that H is an ideal function such that, for any
X ∈ {0, 1}∗, H(X) is chosen uniformly at random from {0, 1}τ . H is called a random oracle.

H is said to satisfy collision resistance if it is intractable to find a pair of distinct inputs
of H mapped to the same output. The advantage of an adversary A against H is

Advcol
H (A) := Pr[(X, X′)← A(H) : X 6= X′ ∧ H(X) = H(X′)].

Notice that the above definition is not theoretically precise: H should be sampled from
a sufficiently large number of hash functions at random.

2.4. Group Testing

Suppose that there exists a set of items, each of which is either positive or negative.
It is assumed that a test can inspect multiple items simultaneously and that the result
is positive iff one or more positive items exist among them. Then, it may be possible to
identify positive items with fewer tests than by inspecting all the items individually.

A group-testing algorithm can be described as a sequence of sets of tests. Suppose
that there are n items. Then, each test can be denoted by a vector in {0, 1}n such that
the j-th element equals 1 iff the test examines the j-th item. Let G1,G2, . . . ,Gu ⊆ {0, 1}n

be a sequence of sets of tests, where u is the number of its stages. The sets of tests are
conducted in this order, and the order of the tests in each stage is arbitrary. A group-testing
algorithm is called non-adaptive if all the tests are determined beforehand. Thus, it has
only a single stage. A group-testing algorithm is called adaptive if the tests in the next
stage are determined after the tests in the current stage.

Let G := G1 ∪ G2 ∪ · · · ∪ Gu. It is reasonable to assume that each test examines at least
one item and that the whole set of tests examines all items. Namely, 0n 6∈ G and

∨
g∈G g = 1n.

The group-testing algorithm extracts candidates of positive items in the following way. For
1 ≤ j ≤ n, let idj denote the j-th item. For 1 ≤ i ≤ u, let Gi := {gi,1, gi,2, . . . , gi,|Gi |}. Let
O(g) := {idj | 1 ≤ j ≤ n and gj = 1}, where g := (g1, g2, . . . , gn) ∈ {0, 1}n.

1. J0 ← {id1, id2, . . . , idn}.
2. For 1 ≤ i ≤ u, do the followings: (a) Ji ← Ji−1; (b) For 1 ≤ l ≤ |Gi|, if the result of

gi,l is negative, then Ji ← Ji \ O(gi,l).
3. Output Ju.

We call the group-testing algorithm complete if Ju does not include any negative
elements. We call it sound if Ju includes all the positive elements. It is sound if the results
of the tests are always correct. On the other hand, it may not be complete in general.

For non-adaptive group testing, let us see the matrix G whose rows are the vectors in a
set G of tests, which is called a group-testing matrix. We call G d-disjunct if the component-
wise disjunction of any d columns in G does not equal the component-wise disjunction of
itself and any other single column. Suppose that non-adaptive group testing is represented
by a d-disjunct matrix. Then, it is complete if there are at most d positive items. Specifically,
all the positive items are identified.

Suppose that there are at most d positive items. For non-adaptive group testing, it is
known that there exists a complete algorithm with O(d2 log n) tests [3,22–24]. In addition,
a non-asymptotic lower bound was conjectured as min{(d + 1)2, n} [25] while it is true for
d ≤ 5, and actually derived as min{(d + 2)(d + 1)/2, n} [26] and
min{d2(15 +

√
33)/24, n} [27]. For adaptive group testing, it is known that there exists a

complete algorithm with O(d log(n/d)) tests [3,28,29]. A tight lower bound is shown as
d log(n/d) + o(d log(n/d)) [3].

Electronics 2023, 12, 2479 5 of 15

3. Aggregate MAC
3.1. Syntax

A tuple of algorithms AM := (KG,Tag,Agg,Ver) formalizes an aggregate MAC scheme.
It is associated with an ID space I , a key space K, a message spaceM, a tag space T , and
an aggregate-tag space A.

• KG is a key-generation algorithm such that k ← KG(1κ), where κ is a security pa-
rameter and k ∈ K. Each entity is assigned a secret key independently generated by
KG.

• Tag is a tagging algorithm such that t← Tag(k, m), where (k, m) ∈ K ×M and t ∈ T .
• Agg is an aggregate algorithm such that T ← Agg((id1, m1, t1), . . . , (idp, mp, tp)), where

(idj, mj, tj) ∈ I ×M×T for 1 ≤ j ≤ p and T ∈ A. (idj, mj)’s are required to be distinct
from each other. It is often the case that T depends only on t1, t2, . . . , tp.

• Ver is a verification algorithm such that d← Ver(((id1, k1), . . . , (idp, kp)), ((id1, m1), . . . ,
(idp, mp)), T), where (idj, k j) ∈ I ×K and (idj, mj) ∈ I ×M for 1 ≤ j ≤ p, T ∈ T if
p = 1 and T ∈ A otherwise, and d ∈ {0, 1}. (idj, mj)’s are required to be distinct from
each other. With respect to ((id1, k1), . . . , (idp, kp)), the pair ((id1, m1), . . . , (idp, mp))
and T are valid if d = 1 and invalid otherwise.

AM satisfies correctness. For (id1, k1), . . . , (idp, kp) and (id1, m1), . . . , (idp, mp), let tj ←
Tag(k j, mj) for 1 ≤ j ≤ p and T ← Agg((id1, m1, t1), . . . , (idp, mp, tp)). Then, it holds that
Ver(((id1, k1), . . . , (idp, kp)), ((id1, m1), . . . , (idp, mp)), T) = 1. In particular, for p = 1, if
t← Tag(k, m), then Ver((id, k), (id, m), t) = 1.

3.2. Security Requirement

Unforgeability and soundness are formalized as security requirements for aggregate
MAC. Soundness is required for applying group testing to aggregate MAC [14].

3.2.1. Unforgeability

We introduce a game G uf
AM,A to define unforgeability, where A is an adversary allowed

to make queries adaptively to the oracles T G, KD, and VR.

• T G is called a tagging oracle. It returns t← Tag(kid, m) in response to a query (id, m),
where kid is the key of the entity id.

• KD is called a key-disclosure oracle. It accepts a query id and returns kid.
• VR is called a verification oracle. It accepts a query (((id1, m1), . . . , (idp, mp)), T) and

returns d← Ver(((id1, k1), . . . , (idp, kp)), ((id1, m1), . . . , (idp, mp)), T).

For a query (((id1, m1), . . . , (idp, mp)), T) made by A to VR, we call (idj, mj) a fresh
pair if A does not ask it to T G and does not ask idj to KD prior to the query. VR does not
accept a query with no fresh pair. G uf

AM,A outputs 1 iff A gets 1 from VR for at least one
query. The advantage of A against AM for unforgeability is defined by

Advuf
AM(A) := Pr[G uf

AM,A = 1].

It is informally stated that AM is unforgeable or satisfies unforgeability if, for any
efficient A, Advuf

AM(A) is negligible.

3.2.2. Soundness

To define soundness, we specify a game G snd
AM,A, where A is an adversary allowed to

make queries adaptively to the aggregate-then-verify oracle AVR in addition to the oracles
T G, KD, and VR. AVR accepts a query ((id1, m1, t1), . . . , (idp, mp, tp)) and computes

1. dj ← Ver((idj, k j), (idj, mj), tj) for 1 ≤ j ≤ p,
2. T ← Agg((id1, m1, t1), . . . , (idp, mp, tp)), and
3. D ← Ver(((id1, k1), . . . , (idp, kp)), ((id1, m1), . . . , (idp, mp)), T).

Electronics 2023, 12, 2479 6 of 15

Then, it returns D ∧ (d1 ∨ d2 ∨ · · · ∨ dp). G snd
AM,A outputs 1 iff A gets 1 from AVR for at

least one query. The advantage of A against AM for soundness is defined by

Advsnd
AM(A) := Pr[G snd

AM,A = 1].

It is informally stated that AM is sound or satisfies soundness if, for any efficient A,
Advsnd

AM(A) is negligible.

3.3. Aggregate MAC Scheme by Katz and Lindell

Let F : K ×M → {0, 1}τ be a MAC function. The Katz-Lindell aggregate MAC
scheme [1] using F is specified as follows:

• Each entity id ∈ I is given a secret key kid ←← K.
• The tagging algorithm returns a tag t← Fk(m) in response to (k, m) ∈ K ×M.
• The aggregate algorithm returns an aggregate tag T ← ⊕

1≤i≤p ti in response to
(id1, m1, t1), . . . , (idp, mp, tp) ∈ I ×M×T .

• Taking (id1, k1), . . . , (idp, kp) and ((id1, m1), . . . , (idp, mp), T) as input, the verification
algorithm outputs 1 iff

⊕
1≤i≤p Fki

(mi) = T.

Let AMX denote the Katz-Lindell aggregate MAC scheme. AMX is shown to be un-
forgeable for any efficient adversary asking the verification oracle a single query [1]. It is
also shown to be unforgeable even for any efficient adversary asking the verification oracle
multiple queries:

Proposition 1 ([14]). Let A be any adversary against AMX with ` users. Suppose that A asks the
tagging oracle qt queries and the verification oracle qv queries. Suppose that each verification query
by A consists of at most p pairs of ID and message. Then, there exists some adversary Ȧ satisfying

Advuf
AMX

(A) ≤ `qv ·Advmac
F (Ȧ).

Ȧ asks the tagging oracle at most (qt + p) queries and the verification oracle at most one query. Ȧ’s
running time is at most about that of G uf

AMX,A.

It is easy to see that AMX is not sound. Let Ã be an adversary working as follows. Ã first
asks (id1, m1) and (id2, m2) to the tagging oracle and gets t1 = Fk1(m1) and t2 = Fk2(m2).
Then, Ã gets 1 from the aggregate-then-verify oracle by asking ((id1, m1, t̃1), (id2, m2, t̃2))
such that (t̃1, t̃2) 6= (t1, t2) and t̃1 ⊕ t̃2 = t1 ⊕ t2.

3.4. Aggregate MAC Scheme Using Hashing

We refer to the aggregate MAC scheme using a hash function H : {0, 1}∗ → {0, 1}τ to
aggregate tags [14] as AMH. AMH is specified as follows:

• The key generation and tagging algorithms are identical to those of AMX.
• For (id1, m1, t1), . . . , (idp, mp, tp), the aggregate algorithm returns T ← H(t1‖ · · · ‖tp).

For the uniqueness of the aggregate tag T, (id1, m1, t1), . . . , (idp, mp, tp) are assumed
to be ordered in a lexicographic order.

• Taking (id1, k1), . . . , (idp, kp) and ((id1, m1), . . . , (idp, mp), T) as input, the verification
algorithm outputs 1 if H(Fk1(m1)‖ · · · ‖Fkp(mp)) = T and 0 otherwise.

AMH is shown to be unforgeable if F is unforgeable and H is a random oracle [14]:

Proposition 2. Let A be any adversary against AMH with ` users. Suppose that A asks the random
oracle H qh queries, the tagging oracle qt queries, and the verification oracle qv queries. Suppose
that each verification query by A consists of at most p pairs of ID and message. Then, there exists
some adversary Ȧ satisfying

Advuf
AMH

(A) ≤ `qv ·Advmac
F (Ȧ) + qv/2τ .

Electronics 2023, 12, 2479 7 of 15

Ȧ asks the random oracle at most (qh + qv) queries, the tagging oracle at most (qt + p) queries,
and the verification oracle at most one query. Ȧ’s running time is at most about that of G uf

AMH,A.

The soundness of AMH is reduced to the collision resistance of H [14]:

Proposition 3. For any adversary A against AMH concerning soundness, there exists some
adversary Ȧ satisfying

Advsnd
AMH

(A) ≤ Advcol
H (Ȧ).

The running time of Ȧ is at most about that of G snd
AMH,A.

4. Group-Testing Aggregate Entity Authentication
4.1. Scheme

We present a group-testing aggregate entity authentication scheme. It is a challenge-
response protocol between a server and a set of entities, and they communicate through an
aggregator (Figure 1). It consists of a group-testing algorithm GT and an aggregate MAC
scheme AM := (KG,Tag,Agg,Ver) and is denoted by EA[GT,AM].

Let P := {P1, P2, . . . , Pn} denote the set of entities. Each Pj has an ID idj and shares a
secret key k j ← KG(1κ) with the server. EA[GT,AM] proceeds as follows:

Step 1: The server sends a challenge c←← {0, 1}ν to the aggregator, which broadcasts it to
the entities.

Step 2: In response to c, each entity Pj returns (idj, tj) to the aggregator, where
tj ← Tag(k j, c).

Step 3: The aggregator sends (id1, id2, . . . , idn) to the server.

Step 4: With the help of the aggregator, the server identifies the valid entities using GT,
Agg, and Ver in the following way:

1. J0 ← {id1, id2, . . . , idn}.
2. Let u be the number of stages of GT. For 1 ≤ i ≤ u,

(a) According to GT, both the server and the aggregator determine the set of
tests Gi := {gi,1, . . . , gi,|Gi |}.

(b) The aggregator computes Ti,l ← Agg(gi,l � ((id1, c, t1), . . . , (idn, c, tn)))
for 1 ≤ l ≤ |Gi| and sends (Ti,1, Ti,2, . . . , Ti,|Gi |) to the server.

(c) The server first sets Ji ← Ji−1. Then, for 1 ≤ l ≤ |Gi|, it computes

Di,l ← Ver(gi,l � ((id1, k1), . . . , (idn, kn)), gi,l � ((id1, c), . . . , (idn, c)), Ti,l)

and Ji ← Ji \ O(gi,l) if Di,l = 1. Finally, it sends (Di,1, Di,2, . . . , Di,|Gi |)
to the aggregator.

3. Output Ju.

The communication among the server, the aggregator, and the entities in EA[GT,AM]
is depicted in Figure 2.

For the description above, Step 3 can be merged with the first move of 2(b) in Step 4
if the server knows the number of entities to be authenticated in advance. If GT is non-
adaptive, then u = 1, and both the server and the aggregator know all the tests in advance.
In addition, the server does not have to send the results of the tests to the aggregator in
Step 4(c). If GT is adaptive, then the results of G1, . . . ,Gj determine Gj+1. Since the server
sends the results of the current tests to the aggregator, the aggregator can also determine
the new set of tests.

Electronics 2023, 12, 2479 8 of 15

Challenge

Response

Group testing
st stage

Group testing
-th stage

Server Aggregator Entity

Figure 2. The communication among the server, the aggregator, and the entities in EA[GT,AM].

4.2. Security Requirement

The security requirements of EA[GT,AM] are impersonation resistance, completeness,
and soundness.

4.2.1. Impersonation Resistance

We introduce a game G im
EA[GT,AM],A to formalize impersonation resistance. In this game,

the adversary A is supplied with oracles {S(i) | i ∈ N} working as the server. For the i-th
run of EA[GT,AM], A triggers S(i), which starts the protocol by returning a challenge c(i) to
A. A is also supplied with oracles {P(i)

j | i ∈ N and 1 ≤ j ≤ n} working as entities.

The i-th run of EA[GT,AM] proceeds with the communication between S(i) and A.
Multiple runs may proceed concurrently in general. Each P(i)

j accepts two kinds of queries.

For a tagging query (tag, c), P(i)
j returns Tag(k j, c). For a corrupt query corrupt, it returns

k j. Once A gets c(i), A is allowed to ask it only to P(i)
j . At the end of the run, S(i) outputs the

set J (i) of IDs of invalid entities. S(i) may abort the run if A does not follow the protocol.
G im
EA[GT,AM],A outputs 1 iff there exist some i∗ and j∗ such that idj∗ 6∈ J (i∗), A does not

ask c(i
∗) to P(i∗)

j∗ , and A does not ask corrupt to P(i)
j∗ for any i. The advantage of A against

EA[GT,AM] for impersonation resistance is

Advim
EA[GT,AM](A) := Pr[G im

EA[GT,AM],A = 1].

4.2.2. Completeness and Soundness

Completeness and soundness are security requirements for the identifiability of
(in)valid responses to a challenge. We introduce games G

cmp
EA[GT,AM],A and G snd

EA[GT,AM],A.
In both games, the adversary A is not allowed to corrupt the server and the aggregator, and
the communication channel between them is authenticated. Notice that, if A is allowed to
tamper aggregate tags, then any valid response by an entity can be judged invalid by the
server.

In both of the games, the adversary A is supplied with oracles {SA(i) | i ∈ N} playing the
roles of the server and the aggregator. A is also supplied with oracles {P(i)

j | i ∈ N, 1 ≤ j ≤ n}
working as entities, which are specified in Section 4.2.1. For the i-th run of EA[GT,AM], A
triggers SA(i), which starts the protocol by returning a challenge c(i) to A. Once A gets c(i), A
is allowed to ask it only to P(i)

j . In response to c(i), A returns (id1, t(i)1), (id2, t(i)2), . . . , (idn, t(i)n)

to SA(i). SA(i) runs the protocol step by step. Each step is triggered by A. A can also see
the messages communicated during the protocol. At the end of the run, SA(i) outputs the
set J (i) of IDs of invalid entities. Multiple runs may proceed concurrently in general.

Electronics 2023, 12, 2479 9 of 15

G
cmp
EA[GT,AM],A outputs 1 iff there exists some i∗ such that

J (i∗) ∩ {idj | t
(i∗)
j = Tag(k j, c(i

∗))} 6= ∅.

G snd
EA[GT,AM],A outputs 1 iff there exists some i∗ such that

{idj | t
(i∗)
j 6= Tag(k j, c(i

∗))} \ J (i∗) 6= ∅.

The advantage of A for completeness and soundness of EA[GT,AM] is

Advcmp
EA[GT,AM]

(A) := Pr[G cmp
EA[GT,AM],A = 1], and

Advsnd
EA[GT,AM](A) := Pr[G snd

EA[GT,AM],A = 1],

respectively.

Remark 1. The unforgeability of the tagging algorithm is irrelevant to soundness. This is because,
for soundness, A is allowed to ask (tag, c(i)) and corrupt to P(i)

j for any i and j. If the tagging

algorithm is unforgeable and A is not allowed to ask them to P(i)
j , then it cannot return a valid tag

to c(i). Thus, impersonation resistance can be regarded as weak soundness in that

{idj | t
(i)
j 6= Tag(k j, c(i)) and A neither gets Tag(k j, c(i)) nor corrupts Pj} \ J (i) = ∅.

All in all, impersonation resistance is sufficient to identify invalid entities. Soundness is required
to achieve the same function as individual verification of each response, that is, to identify invalid
responses.

5. Discussion on Security
5.1. Impersonation Resistance

The impersonation resistance of EA[GT,AM] is reduced to the unforgeability of AM:

Theorem 1. For any adversary A against EA[GT,AM] for impersonation resistance, triggering at
most qr runs of EA[GT,AM] and making at most qt tagging queries and qc corrupt queries, there
exists some adversary Ȧ satisfying

Advim
EA[GT,AM](A) ≤ Advuf

AM(Ȧ) + qr(qr + 2qt)/2ν+1.

The number of queries made by Ȧ to T G is at most qt. The number of queries made by Ȧ to KD is
at most qc. The number of queries made by Ȧ to VR is at most the total number of tests completed
by S(i)’s in G im

EA[GT,AM],A. The running time of Ȧ is at most about that of G im
EA[GT,AM],A.

Proof. In G uf
AM,Ȧ, Ȧ runs G im

EA[GT,AM],A. If A makes a tagging query (tag, c) to P(i)
j , then Ȧ

asks (idj, c) to T G and gets tj ← Tag(k j, c), which is returned to A. If A makes a corrupt

query to P(i)
j , then Ȧ asks idj to KD and gets k j, which is returned to A. Ȧ simulates

S(1), S(2), . . . , S(qr) by making use of VR.
Suppose that G im

EA[GT,AM],A outputs 1. Then, there are two cases:

1. There exists some i∗ such that the challenge c(i
∗) of the i∗-th run of EA[GT,AM] collides

with some previous challenge c(i
′) (i′ < i∗) or c in a previous tagging query.

2. There exists some i∗ and j∗ such that, for some test g := (g1, . . . , gn) ∈ {0, 1}n

with gj∗ = 1 during the i∗-th run of EA[GT,AM], Ver(g � ((id1, k1), . . . , (idn, kn)), g �

Electronics 2023, 12, 2479 10 of 15

((id1, c(i
∗)), . . . , (idn, c(i

∗))), T∗) = 1, and A does not ask (tag, c(i
∗)) to P(i∗)

j∗ and

corrupt to any P(i)
j∗ .

For the first case, notice that A triggers at most qr runs of EA[GT,AM] and makes at
most qt tagging queries. Thus, the probability of the first case is at most

(qr(qr − 1)/2)/2ν + qrqt/2ν ≤ qr(qr + 2qt)/2ν+1.

For the second case, Ȧ gets 1 from VR in response to the query (g � ((id1, c(i
∗)), . . . ,

(idn, c(i
∗))), T∗), and (idj∗ , c(i

∗)) is a fresh pair. Thus, G uf
AM,A outputs 1.

5.2. Completeness and Soundness

It is easy to see that the completeness of EA[GT,AM] is reduced to the completeness of
GT since AM satisfies correctness:

Theorem 2. If GT satisfies completeness, then, for any adversary A against EA[GT,AM],

Advcmp
EA[GT,AM]

(A) = 0.

Proof. Since GT satisfies completeness, for any valid tag, there exists some test such that it
examines the tag and all the other tags it examines are valid. Since AM satisfies correctness,
any aggregate tag generated only from valid tags is judged valid.

The soundness of EA[GT,AM] is reduced to the soundness of AM:

Theorem 3. For any adversary A against EA[GT,AM] for soundness, triggering at most qr runs
of EA[GT,AM] and making at most qt tagging queries and qc corrupt queries, there exists some
adversary Ȧ satisfying

Advsnd
EA[GT,AM](A) ≤ Advsnd

AM(Ȧ).

The number of queries made by Ȧ to T G is at most qt. The number of queries made by Ȧ to KD is
at most qc. The number of queries made by Ȧ to VR is at most the total number of tests during the
runs of EA[GT,AM]. The number of queries made by Ȧ to AVR is also at most the total number of
tests during the runs of EA[GT,AM]. The running time of Ȧ is at most about that of G snd

EA[GT,AM],A.

Proof. In G snd
AM,Ȧ, Ȧ runs G snd

EA[GT,AM],A in the similar way described in the proof of Theorem 1.

Ȧ simulates SA(1), SA(2), . . . , SA(qr) by making use of VR. Suppose that A returns
(id1, t(i)1), (id2, t(i)2), . . . , (idn, t(i)n) to SA(i) in response to the challenge c(i). Then, for each
test g := (g1, . . . , gn) ∈ {0, 1}n during the i-th run of EA[GT,AM], Ȧ also makes a query
g � ((id1, c(i), t(i)1), . . . , (idn, c(i)), t(i)n) to AVR.

Suppose that G snd
EA[GT,AM],A outputs 1 in G snd

AM,Ȧ. Then, there exists some i∗ and j∗ such

that {idj∗ | t
(i∗)
j∗ 6= Tag(k j∗ , c(i

∗))} \ J (i∗) 6= ∅. Thus, during the i∗-th run of EA[GT,AM],
there exists some test g∗ := (g∗1 , . . . , g∗n) with g∗j∗ = 1 such that Ver(g∗ � ((id1, k1), . . . , (idn,

kn)), g∗ � ((id1, c(i
∗)), . . . , (idn, c(i

∗))), T∗) = 1 and t(i
∗)

j∗ 6= Tag(k j∗ , c(i
∗)), where T∗ := Agg(

g∗ � ((id1, c(i
∗), t(i

∗)
1), . . . , (idn, c(i

∗), t(i
∗)

n))). Thus, Ȧ gets 1 from AVR in response to g∗ �

((id1, c(i
∗), t(i

∗)
1), . . . , (idn, c(i

∗), t(i
∗)

n)).

5.3. Enhancing the Generic Construction

From the results so far, we confirm that EA[GT,AMX] and EA[GT,AMH] satisfy imper-
sonation resistance and satisfy completeness if GT satisfies completeness. On the other
hand, EA[GT,AMX] does not satisfy soundness, while EA[GT,AMH] satisfies soundness.

Electronics 2023, 12, 2479 11 of 15

We enhance the proposed scheme and present EEA[GT,AM], which achieves soundness
even with AMX.

EEA[GT,AM] is equipped with a PRF R : R× I × {0, 1}ν+τ → {0, 1}τ , whereR is its
key space. A shared secret key r ∈ R is given to the server and the aggregator. Notice
that, for soundness, the communication channel between the server and the aggregator is
assumed to be authenticated. Thus, the assumption is not critical that the server and the
aggregator share a secret key. EEA[GT,AM] is specified as follows:

Steps 1 to 3: Identical to those of EA[GT,AM].

Step 4: tj ← Rr(idj, c‖tj) for 1 ≤ j ≤ n.

Step 5: Identical to Step 4 of EA[GT,AM].

The sole difference between EEA[GT,AM] and EA[GT,AM] is that the former utilizes
R to randomize the tags from the entities. Thus, Theorems 1 and 2 hold for EEA[GT,AM] as
well as for EA[GT,AM]. In addition, EEA[GT,AMX] satisfies soundness if R is a secure PRF:

Theorem 4. Let A be any adversary against EEA[GT,AMX] for soundness. Suppose that A
triggers at most qr runs of EEA[GT,AMX] and makes at most qt tagging queries. Suppose that the
runs of EEA[GT,AMX] conduct at most qv tests in total and R is called at most qp times in total.
Then, there exists some adversary Ȧ such that

Advsnd
EEA[GT,AMX]

(A) ≤ Advprf
R (Ȧ) + q2

r /2ν+1 + qv/2τ .

Ȧ makes at most qp queries to its oracle, and its running time is at most about that of G snd
EEA[GT,AMX],A

.

Proof. Let EEAρ[GT,AMX] be identical to EEA[GT,AMX] except that the former uses ρ : I ×
{0, 1}ν+τ → {0, 1}τ chosen uniformly at random instead of Rr with r ←← R. The adversary
Ȧ against R is given access to either Rr or ρ. Ȧ runs G snd

EEA[GT,AMX],A
or G snd

EEAρ [GT,AMX],A
with

the use of Rr or ρ, respectively. Ȧ outputs 1 iff A is successful for soundness. Then,

Advsnd
EEA[GT,AMX]

(A) ≤ Advsnd
EEAρ [GT,AMX]

(A) + Advprf
R (Ȧ)

since

Advprf
R (Ȧ) =

∣∣Pr[ȦRr = 1]− Pr[Ȧρ = 1]
∣∣

=
∣∣Advsnd

EEA[GT,AMX]
(A)−Advsnd

EEAρ [GT,AMX]
(A)

∣∣.
For G snd

EEAρ [GT,AMX],A
, let Col be the event that there exists a collision among the chal-

lenges generated in the runs of EEAρ[GT,AMX]. Then,

Advsnd
EEAρ [GT,AMX]

(A) ≤ Pr[Col] + Pr[G snd
EEAρ [GT,AMX],A

= 1 | Col].

Since A triggers at most qr runs of EEA[GT,AMX],

Pr[Col] ≤ (qr(qr − 1)/2)/2ν ≤ q2
r /2ν+1.

Finally, let us see that

Pr[G snd
EEAρ [GT,AMX],A

= 1 | Col] ≤ qv/2τ .

Let c(i) be the challenge in the i-th run of EEAρ[GT,AMX] and ti,j := Fkj
(c(i)). If Col

does not occur, then ρ(idj, c(i)‖ti,j) is chosen uniformly at random. Thus, the probability
that the result of a test involving (idj, t′i,j) such that t′i,j 6= ti,j happens to be valid is at most
1/2τ .

Electronics 2023, 12, 2479 12 of 15

6. Performance Evaluation

We implemented the verification algorithms of group-testing aggregate entity authen-
tication for EA[GT,AMX], EEA[GT,AMX], and EA[GT,AMH]. We used the MAC function
HMAC-SHA-256 for tagging and SHA-256 to aggregate tags for AMH. For GT, we adopted
non-adaptive group testing and used d-disjunct matrices generated by the shifted transver-
sal design (STD) [30], where d is the upper bound on the number of invalid entities.

We implemented the algorithms in Python 3.10.9 and utilized the modules hmac and
hashlib for SHA-256 and HMAC-SHA-256. We evaluated the performance of our imple-
mentations on a MacBook Pro with Apple M1, 16 GB of memory, and macOS Ventura 13.3.1.

The results are summarized in Table 1. For the numbers of the entities 100, 1000, and
10,000, the sizes of the matrices are 66× 100, 666× 1000, and 6969× 10,000, respectively.
They are 5-, 17-, and 68-disjunct matrices, respectively.

Each time presented in Table 1 is the smallest of ten measurements. The “Tagging”
column shows the time required to generate all the tags for the entities. Thus, they almost
equal the time to verify all the tags of the entities one by one. For the same number of enti-
ties, there is no significant difference in the times required for verification by EA[GT,AMX],
EEA[GT,AMX], and EA[GT,AMH]. They depend on the numbers of 1’s in the group-testing
matrices, which are 600, 18,000, and 690,000 for 100, 1000, and 10,000 entities, respectively.

Table 1. Runtime (milliseconds).

Number of Entities Tagging Verification
EA[GT,AMX] EEA[GT,AMX] EA[GT,AMH]

100 1.37× 10−1 2.65× 10−1 4.28× 10−1 3.05× 10−1

1000 7.83× 10−1 3.61 4.18 3.66
10,000 7.31 8.88× 101 1.03× 102 1.24× 102

Figure 3 presents more details on the runtime for verification of EEA[GT,AMX] with
1000 entities and 2 ≤ d ≤ 26. Table 2 presents the number of rows and the number of 1’s in
the group-testing matrices used for the experiments. If d ≥ 27, then EEA[GT,AMX] cannot
reduce the amount of communication between the server and the aggregator.

In Figure 3, the orange dots represent the times. For reference, we also give the blue
dots representing the values of (the number of 1’s in the group-testing matrix)/5000. As
shown in Table 2, for group-testing matrices based on STD, the number of rows increases
with the value of d. On the other hand, this is not necessarily the case for the number of 1’s.

0 5 10 15 20 25
0

1

2

3

4

5

d of d-disjunct matrix

T
im
e
(m
s)

Figure 3. Runtime for verification of EEA[GT,AMX] with 1000 entities.

Electronics 2023, 12, 2479 13 of 15

Table 2. The number of rows and the number of 1’s of d-disjunct matrices used for the experiments
on Figure 3.

d 2 3 4 5 6 7 8 9 10

rows 49 77 99 121 169 255 289 361 407
1’s 7000 7000 9000 11,000 13,000 15,000 17,000 19,000 11,000

d 11 12 13 14 15 16 17 18 19

rows 444 481 518 555 592 629 666 703 740
1’s 12,000 13,000 14,000 15,000 16,000 17,000 18,000 19,000 20,000

d 20 21 22 23 24 25 26

rows 777 814 851 888 925 962 999
1’s 21,000 22,000 23,000 24,000 25,000 26,000 27,000

7. Concluding Remark

We have introduced and explored group-testing aggregate authentication. We have
first formalized the scheme and security requirements. Then, we have presented a general
construction utilizing a group-testing scheme and an aggregate MAC scheme. We have
reduced the security properties of the generic construction and its enhancement to those
of the underlying group testing and aggregate MAC. Finally, we have shown results
on the performance evaluation of the proposed construction instantiated with SHA-256
and HMAC.

The proposed construction can easily be deployed due to its simplicity. In addition,
any progress in group testing and aggregate MAC will benefit it. Future work is to improve
the performance further. It is interesting to see if the idea of Minematsu and Kamiya [12] is
effective for our proposed construction.

Author Contributions: Conceptualization, S.H. and J.S.; methodology, S.H. and J.S.; software, S.H.;
validation, S.H. and J.S.; formal analysis, S.H. and J.S.; investigation, S.H. and J.S.; resources, S.H.;
data curation, S.H. and J.S.; writing—original draft preparation, S.H.; writing—review and editing,
S.H. and J.S.; visualization, S.H.; supervision, J.S.; project administration, J.S.; funding acquisition, J.S.
All authors have read and agreed to the published version of the manuscript.

Funding: These research results were obtained from the commissioned research (No.03901) by
National Institute of Information and Communications Technology (NICT), Japan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable to this article.

Acknowledgments: We would like to thank Kazuhiko Minematsu for providing us disjunct matrices
generated by using the STD method.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

MAC Message authentication code
IoT Internet of things
XOR Exclusive or
PRF Pseudorandom function
STD Shifted transversal design

Electronics 2023, 12, 2479 14 of 15

References
1. Katz, J.; Lindell, A.Y. Aggregate Message Authentication Codes. In Proceedings of the Topics in Cryptology—CT-RSA 2008, The

Cryptographers’ Track at the RSA Conference 2008, San Francisco, CA, USA, 8–11 April 2008; Malkin, T., Ed.; Lecture Notes in
Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 4964, pp. 155–169. [CrossRef]

2. Dorfman, R. The Detection of Defective Members of Large Populations. Ann. Math. Stat. 1943, 14, 436–440. [CrossRef]
3. Du, D.Z.; Hwang, F.K. Combinatorial Group Testing and Its Applications, 2nd ed.; Series on Applied Mathematics; World Scientific:

Singapore, 2000; Volume 12.
4. FIPS PUB 180-4; Secure Hash Standard (SHS). National Institute of Standards and Technology: Gaithersburg, MD, USA, 2015.
5. FIPS PUB 198-1; The Keyed-Hash Message Authentication Code (HMAC). National Institute of Standards and Technology:

Gaithersburg, MD, USA, 2008.
6. Eikemeier, O.; Fischlin, M.; Götzmann, J.; Lehmann, A.; Schröder, D.; Schröder, P.; Wagner, D. History-Free Aggregate Mes-

sage Authentication Codes. In Proceedings of the Security and Cryptography for Networks, 7th International Conference,
SCN 2010, Amalfi, Italy, 13–15 September 2010; Garay, J.A., Prisco, R.D., Eds.; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2010; Volume 6280, pp. 309–328. [CrossRef]

7. Sato, S.; Hirose, S.; Shikata, J. Sequential Aggregate MACs from Any MACs: Aggregation and Detecting Functionality. J. Internet
Serv. Inf. Secur. 2019, 9, 2–23. [CrossRef]

8. Ishii, Y.; Tada, M. Structurally aggregate message authentication codes. In Proceedings of the International Symposium on
Information Theory and Its Applications, ISITA 2020, Kapolei, HI, USA, 24–27 October 2020; pp. 339–343.

9. Goodrich, M.T.; Atallah, M.J.; Tamassia, R. Indexing Information for Data Forensics. In Proceedings of the Applied Cryptography
and Network Security, Third International Conference, ACNS 2005, New York, NY, USA, 7–10 June 2005; Ioannidis, J., Keromytis,
A.D., Yung, M., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3531, pp. 206–221.
[CrossRef]

10. Minematsu, K. Efficient Message Authentication Codes with Combinatorial Group Testing. In Proceedings of the Computer
Security—ESORICS 2015—20th European Symposium on Research in Computer Security, Vienna, Austria, 21–25 September 2015;
Proceedings, Part I; Pernul, G., Ryan, P.Y.A., Weippl, E.R., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg,
Germany, 2015; Volume 9326, pp. 185–202. [CrossRef]

11. Black, J.; Rogaway, P. A Block-Cipher Mode of Operation for Parallelizable Message Authentication. In Proceedings of the
Advances in Cryptology—EUROCRYPT 2002, International Conference on the Theory and Applications of Cryptographic
Techniques, Amsterdam, The Netherlands, 28 April–2 May 2002; Knudsen, L.R., Ed.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, Germany, 2002; Volume 2332, pp. 384–397. [CrossRef]

12. Minematsu, K.; Kamiya, N. Symmetric-Key Corruption Detection: When XOR-MACs Meet Combinatorial Group Testing.
In Proceedings of the Computer Security—ESORICS 2019—24th European Symposium on Research in Computer Security,
Luxembourg, 23–27 September 2019; Proceedings, Part I; Sako, K., Schneider, S., Ryan, P.Y.A., Eds.; Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11735, pp. 595–615. [CrossRef]

13. Hirose, S.; Shikata, J. Non-adaptive Group-Testing Aggregate MAC Scheme. In Proceedings of the Information Security Practice
and Experience—14th International Conference, ISPEC 2018, Tokyo, Japan, 25–27 September 2018; Su, C., Kikuchi, H., Eds.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; Volume 11125, pp. 357–372. [CrossRef]

14. Hirose, S.; Shikata, J. Aggregate Message Authentication Code Capable of Non-Adaptive Group-Testing. IEEE Access 2020,
8, 216116–216126. [CrossRef]

15. Sato, S.; Shikata, J. Interactive Aggregate Message Authentication Scheme with Detecting Functionality. In Advanced Information
Networking and Applications, Proceedings of the 33rd International Conference on Advanced Information Networking and Applications,
AINA 2019, Matsue, Japan, 27–29 March 2019; Barolli, L., Takizawa, M., Xhafa, F., Enokido, T., Eds.; Advances in Intelligent Systems
and Computing; Springer: Berlin/Heidelberg, Germany, 2019; Volume 926, pp. 1316–1328. [CrossRef]

16. Anada, H.; Kamibayashi, D. Quantum Security and Implementation Evaluation of Non-adaptive Group-Testing Aggregate Mes-
sage Authentication Codes. In Proceedings of the Eighth International Symposium on Computing and Networking Workshops,
CANDAR 2020 Workshops, Naha, Japan, 24–27 November 2020; pp. 307–313. [CrossRef]

17. Sato, S.; Shikata, J. Quantum-Secure (Non-)Sequential Aggregate Message Authentication Codes. In Proceedings of the Cryptog-
raphy and Coding—17th IMA International Conference, IMACC 2019, Oxford, UK, 16–18 December 2019; Albrecht, M., Ed.;
Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2019; Volume 11929, pp. 295–316. [CrossRef]

18. Ogawa, Y.; Sato, S.; Shikata, J.; Imai, H. Aggregate Message Authentication Codes with Detecting Functionality from Biorthogonal
Codes. In Proceedings of the IEEE International Symposium on Information Theory, ISIT 2020, Los Angeles, CA, USA, 21–26 June
2020; pp. 868–873. [CrossRef]

19. Hirose, S.; Shikata, J. Group-Testing Aggregate Entity Authentication. In Proceedings of the IEEE Information Theory Workshop,
ITW 2023, Saint-Malo, France, 23–24 April 2023.

20. Bellare, M.; Rogaway, P. Entity Authentication and Key Distribution. In Proceedings of the Advances in Cryptology—CRYPTO
’93, 13th Annual International Cryptology Conference, Santa Barbara, CA, USA, 22–26 August 1993; Stinson, D.R., Ed.; Lecture
Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1993; Volume 773, pp. 232–249. [CrossRef]

http://doi.org/10.1007/978-3-540-79263-5_10
http://dx.doi.org/10.1214/aoms/1177731363
http://dx.doi.org/10.1007/978-3-642-15317-4_20
http://dx.doi.org/10.22667/JISIS.2019.02.28.002
http://dx.doi.org/10.1007/11496137_15
http://dx.doi.org/10.1007/978-3-319-24174-6_10
http://dx.doi.org/10.1007/3-540-46035-7_25
http://dx.doi.org/10.1007/978-3-030-29959-0_29
http://dx.doi.org/10.1007/978-3-319-99807-7_22
http://dx.doi.org/10.1109/ACCESS.2020.3041638
http://dx.doi.org/10.1007/978-3-030-15032-7_110
http://dx.doi.org/10.1109/CANDARW51189.2020.00067
http://dx.doi.org/10.1007/978-3-030-35199-1_15
http://dx.doi.org/10.1109/ISIT44484.2020.9174346
http://dx.doi.org/10.1007/3-540-48329-2_21

Electronics 2023, 12, 2479 15 of 15

21. Bellare, M.; Rogaway, P. Random Oracles are Practical: A Paradigm for Designing Efficient Protocols. In Proceedings of the CCS
’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, Fairfax, VA, USA, 3–5 November 1993;
Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V., Eds.; ACM: New York, NY, USA, 1993; pp. 62–73. [CrossRef]

22. Dýachkov, A.G.; Rashad, A.M.; Rykov, V.V. Superimposed distance codes. Probl. Control Inf. Theory 1989, 18, 237–250.
23. Porat, E.; Rothschild, A. Explicit Non-adaptive Combinatorial Group Testing Schemes. In Proceedings of the Automata, Languages

and Programming, 35th International Colloquium, ICALP 2008, Reykjavik, Iceland, 7–11 July 2008; Proceedings, Part I: Tack
A: Algorithms, Automata, Complexity, and Games; Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir,
A., Walukiewicz, I., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5125, pp.
748–759. [CrossRef]

24. Aldridge, M.; Johnson, O.; Scarlett, J. Group Testing: An Information Theory Perspective. Found. Trends Commun. Inf. Theory 2019,
15, 196–392. [CrossRef]

25. Erdös, P.; Frankl, P.; Füredi, Z. Families of Finite Sets in Which No Set Is Covered by the Union of r Others. Isr. J. Math. 1985,
51, 79–89. [CrossRef]

26. Dýachkov, A.G.; Rykov, V.V. Bounds on the Length of Disjunctive Codes. Probl. Inf. Transm. 1982, 18, 7–13.
27. Shangguan, C.; Ge, G. New Bounds on the Number of Tests for Disjunct Matrices. IEEE Trans. Inf. Theory 2016, 62, 7518–7521.

[CrossRef]
28. Li, C.H. A Sequential Method for Screening Experimental Variables. J. Am. Stat. Assoc. 1962, 57, 455–477. [CrossRef]
29. Eppstein, D.; Goodrich, M.T.; Hirschberg, D.S. Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes.

SIAM J. Comput. 2007, 36, 1360–1375. [CrossRef]
30. Thierry-Mieg, N. A new pooling strategy for high-throughput screening: The Shifted Transversal Design. BMC Bioinform. 2006,

7, 28. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/168588.168596
http://dx.doi.org/10.1007/978-3-540-70575-8_61
http://dx.doi.org/10.1561/0100000099
http://dx.doi.org/10.1007/BF02772959
http://dx.doi.org/10.1109/TIT.2016.2614726
http://dx.doi.org/10.1080/01621459.1962.10480672
http://dx.doi.org/10.1137/050631847
http://dx.doi.org/10.1186/1471-2105-7-28
http://www.ncbi.nlm.nih.gov/pubmed/16423300

	Introduction
	Background
	Our Contribution
	Related Work
	Organization

	Preliminaries
	Notation
	MAC Function and Pseudorandom Function
	Cryptographic Hash Function
	Group Testing

	Aggregate MAC
	Syntax
	Security Requirement
	Unforgeability
	Soundness

	Aggregate MAC Scheme by Katz and Lindell
	Aggregate MAC Scheme Using Hashing

	Group-Testing Aggregate Entity Authentication
	Scheme
	Security Requirement
	Impersonation Resistance
	Completeness and Soundness

	Discussion on Security
	Impersonation Resistance
	Completeness and Soundness
	Enhancing the Generic Construction

	Performance Evaluation
	Concluding Remark
	References

