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Abstract: For most rotating mechanical transmission systems, condition monitoring and fault diag-
nosis of the gearbox are of great significance to avoid accidents and maintain stability in operation.
To strengthen the comprehensiveness of feature extraction and improve the utilization rate of fault
signals to accurately identify the different operating states of a gearbox, a gearbox fault diagnosis
model combining Gramian angular field (GAF) and CSKD-ResNeXt (channel shuffle and kernel
decomposed ResNeXt) was proposed. The original one-dimensional vibration signal of the gearbox
was converted into a two-dimensional image by GAF transformation, and the image was used as
the input of the subsequent diagnosis network. To solve the problem of channel independence and
incomplete information caused by group convolution, the idea of channel shuffle is introduced to
enable the branches of the group convolution part to establish information exchange. In addition,
to improve the semantic expression ability of the model, the convolutional kernel of the network
backbone is split and replaced. The model is verified under the different working conditions of
the gearbox and compared with other methods. The experimental results show that the diagnostic
accuracy of the model is up to 99.75%, and the precise identification of gearbox faults is realized.

Keywords: fault diagnosis; gearbox; GAF; ResNeXt; vibration signal

1. Introduction
1.1. Motivation

Rotary machinery is mainly used to drive mechanical equipment and plays a crucial
role in the mechanical equipment. Therefore, the reliability and safety requirements for
rotating machinery are extremely high [1]. At the same time, with the rapid development
of intelligent manufacturing, mechanical equipment tends to have high precision and high
reliability. The failure of a component often causes a chain reaction, leading to a severe
accident, which greatly increases the economic cost of equipment operation [2–4]. The gear
is the one of three basic components of rotating machinery. Gear failure accounts for a large
proportion of mechanical failures [5]. Therefore, it is very crucial to accurately identify
gearbox state and diagnose and predict gearbox fault [6,7].

1.2. Analysis of Related Works

At present, fault diagnosis methods are mainly divided into three types, which include
model-based fault diagnosis methods, signal-processing-based fault diagnosis methods,
and data-driven fault diagnosis methods. In the data-driven fault diagnosis methods, the
methods can be further divided into two types, namely, traditional machine learning fault
diagnosis methods and deep learning fault diagnosis methods.

Model-based fault diagnosis methods utilize the correlation between gearbox fault
features and physical model, analyze its fault mechanism to build and optimize the model,
and realize real-time fault diagnosis and prediction [8]. However, it is difficult to establish
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an accurate gearbox model in practical application, which greatly limits the application of
model diagnosis methods.

The fault diagnosis methods based on signal processing determine the effective indica-
tors of diagnosis by analyzing the correlation between signals and faults. Fault diagnosis
is achieved by constructing fault features through the dimensional and dimensionless
indicators of signals [9,10]. However, the working conditions of the gearbox are com-
plex and changeable, and the selected features are difficult to use in different conditions.
Therefore, mining the commonness of fault data in massive data is an effective means of
fault diagnosis.

In recent years, due to the large increase in training resources and the rapid develop-
ment of computing power, data-driven fault diagnosis methods have gradually attracted
more attention [11,12]. The development of machine learning algorithms provides a new
path for gearbox fault diagnosis. According to the signal processing technology, the signal
is analyzed and the feature vector that can effectively express the fault is constructed. Then,
a machine learning algorithm is adopted for intelligent fault diagnosis, such as support
vector machine (SVM) [13], KNN [14], random forest [15], etc.

However, in traditional machine learning algorithms, the screening and extraction of
fault features still rely on manual operation, which brings uncertainty to fault diagnosis
and fails to achieve the purpose of real intelligent diagnosis. The deep learning method
with a powerful feature-learning ability can realize automatic feature extraction and fault
classification, so it is widely used in the fault diagnosis field [16].

The input of the diagnosis model based on deep learning includes two fault sample
types, which are the one-dimensional (1D) vibration signal and two-dimensional (2D) im-
age [17]. The former directly extracts fault features from 1D vibration signals for diagnosis,
while the latter combines signal processing technology to convert vibration signals into 2D
images. Many studies have utilized signal preprocessing technology to improve sample
quality in the conversion process. It has abundant data and strong computing power in the
current fault diagnosis field. The fault feature extraction method, which inputs fault image
samples into a deep learning model, is a necessary choice for accurate fault identification.

The analysis of the above fault diagnosis methods is shown in Table 1.

Table 1. Analysis of fault diagnosis methods.

Fault Diagnosis Methods Diagnostic Limitations Related Researches

Model-based fault diagnosis method

Fault mechanism and physical models are
combined to analyze the nature of the fault but
are more applicable to systems that can be
modeled accurately.

Saxena A et al. (2016) [18]
Sanchez H et al. (2015) [19]
Sun et al. (2020) [20]

Signal processing-based fault diagnosis method

It does not need to rely on a large amount of
data and also has better performance for signals
with low SNR. However, the signal processing
method is localized, and different research
objects usually correspond to different fault
diagnosis indexes.

Shanbr S et al. (2018) [21]
Wang et al. (2017) [22]
Lv et al. (2014) [23]
Misael Lopez-Ramirez et al.
(2016) [24]
Tang et al. (2021) [25]

Traditional machine learning-based fault diagnosis method

Machine learning algorithms inject intelligence
into the field of fault diagnosis, but the feature
extraction process and classification task are two
independent subjects. How to extract the optimal
features is still a problem that many researchers
are paying attention to.

Zeng et al. (2020) [26]
Wang et al. (2021) [27]
Toma R N et al. (2021) [28]
Pang et al. (2021) [29]

Deep-learning-based fault
diagnosis method

One-dimensional signal as
input

It has low computational complexity and is
suitable for real-time and low-cost applications,
but the applicability of one-dimensional signals
and most network structures is poor. The
internal setup of the model is the problem facing
to improve the applicability of one-dimensional
diagnostic model.

Wang et al. (2019) [30]
Yu et al. (2020) [31]
Zhou et al. (2020) [32]
Yang et al. (2022) [33]

The signal is converted into
a two-dimensional image as
input

The model can learn the most representative
fault features by combining the signal
preprocessing technology with the algorithm
with excellent performance in the field of image
recognition, but this method is restricted by the
amount of data and training cost.

Xu et al. (2023) [34]
Wang et al. (2017) [35]
Zhang et al. (2020) [36]
Huang et al. (2023) [37]
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Based on current research, common deep learning models include long short-term
memory (LSTM) [38], convolutional neural network (CNN) [39], recurrent neural networks
(RNN) [40], artificial neural network (ANN) [41], etc. Because of its powerful feature
extraction and classification ability in the face of complex data, CNN has been widely
used in the field of fault identification [42]. However, gradient dispersion/explosion will
occur in some networks when the depth of the network is increased, such as AlexNet [43]
and VGG [44]. The proposal of BatchNorm can alleviate the gradient problem to a certain
extent [45], but there is network degradation. The problem of network degradation was
solved by ResNet [46], as proposed by He et al. in 2017, but it increased the difficulty of
network design and the cost of calculation. ResNeXt (suggesting the next dimension) [47]
adopted the residual module and added the ideas of group convolution and stack to reduce
the number of hyperparameters and calculation cost on the basis of ensuring accuracy.

ResNeXt has been applied in various recognition and classification tasks because
of its strong comprehensive performance. Gao et al. [48] used ResNeXt50 to identify
individual underwater fish. Zhang et al. [49] used ResNeXt-50 as a backbone network to
detect an abnormal object in X-ray images. Wang et al. [50] identified the degree of maize
disease occurrence by ResNeXt101. Fang et al. [51] realized accurate recognition of dynamic
gesture by using ResNeXt. All the above studies gave full play to ResNeXt’s excellent
image recognition ability and achieved ideal experimental results. Therefore, it is effective
to apply ResNeXt to gearbox fault identification and classification.

1.3. Contributions

Since ResNeXt has an excellent learning ability in “vision”, it is adopted in this paper
as a diagnosis model for gearbox faults, which can make up for the gaps in its application
in the field of fault diagnosis. In view of this, a diagnostic method based on GAF (Gramian
angle field) [52] and CSKD-ResNeXt is proposed in this paper. Using GAF, a signal con-
version method that can preserve the correlation between signal and time and effectively
express valid fault information, one-dimensional gear box vibration data are converted into
two-dimensional images as the input of ResNeXt. To enable the diagnosis model to learn
the gearbox state information more comprehensively, the structure of ResNeXt was opti-
mized to improve the gearbox fault feature extraction ability. The main contributions of
this paper are as follows:

i. In this paper, a Gramian image is used as the sample diagram of model input. After
comparing the performance of GADF (Gramian angular difference field) and GASF
(Gramian angular summation field), one with good effect is selected to process one-
dimensional vibration signals, and the output two-dimensional sample image is used
to express time-dependent signal characteristics.

ii. The 7 × 7 convolutional kernel in the backbone of the ResNeXt model was decom-
posed into three 3 × 3 convolutional kernels, which reduced the feature extraction
ambiguity caused by a large convolutional kernel and improved model semantic
capability. After receiving vibration signals, the convolution kernel can extract more
accurate and detailed feature information and improve the diagnostic accuracy.

iii. For the purpose of feature communication, channel shuffle is added to the group
convolution part to break the isolation between channels and exchange data. The data
flow in the model is enriched to obtain a more competitive feature-mining capability.
In addition, the process of fault identification and classification is demonstrated by
using t-SNE visual dimension reduction.

The remaining sections are outlined as follows. Section 2 provides the methods of
GAF and CSKD-ResNeXt. The introduction and partitioning of the dataset is illustrated
in Section 3. Experimental results are shown in Section 4. Finally, concluding remarks are
given in Section 5.
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2. Methods

In this section, the preliminary knowledge of GAF and ResNeXt and their significance
are first introduced, and then, the problems existing when ResNeXt is used as a fault diag-
nosis model are analyzed. Finally, channel shuffle and kernel decomposed are introduced
to establish CSKD-ResNeXt.

2.1. The GAF

The Gramian angle field uses a one-dimensional time series in the Cartesian coordinate
system for numerical scaling [53], and the matrix based on polar coordinates encodes the time
series into images to maintain the correlation between signals and time, and then uses trigono-
metric functions to generate a GAF matrix and convert it into two-dimensional images [54].
Suppose that the original time series has n values, X = {x1, x2, x3, . . . , xn}, and the sequence
is normalized to between [−1, 1] and [0, 1], denoted as X̃ = {x̃1, x̃2, x̃3, . . . , x̃n}, and x̃i is the
value of the normalized time series. Map data to polar coordinates as x̃i

−1 and x̃i
0:

x̃i
−1 =

(xi −maxX + (xi −minX))

maxX−minX
(1)

x̃i
0 =

xi −minX
maxX−minX

(2)

The time series is represented in polar coordinates; in Equation (2), x̃i is mapped to
angle φi, and time stamp ti is mapped to radius ri.{

φi = arccosx̃i,−1 ≤ x̃i ≤ 1, x̃i ∈ X̃
ri =

ti
N , ti ∈ N

(3)

where X is the time stamp, and the interval [0, 1] is divided into N equal parts, so that
the span of polar coordinate system is regularized. The encoding mapping of Equation (3)
has two important properties. First, the transformation is bijective because cos(φi) is
monotonically decreasing at φi ∈ [0, π]; there is a unique corresponding value in the polar
coordinate system when given a time series, and its inverse mapping is unique. Second,
the transformation preserves the time information, and the time value can be determined
by the radius coordinates.

The correlation between each time point is defined using trigonometric difference or
trigonometric sum:

G =


cos(φ1 + φ1) · · · cos(φ1 + φn)
cos(φ2 + φ1) · · · cos(φ2 + φn)

...
. . .

...
cos(φn + φ1) · · · cos(φn + φn)

= X̃′ · X̃−
√

I − X̃2 ·
√

I − X̃2 (4)

G =


sin(φ1 − φ1) · · · sin(φ1 − φn)
sin(φ2 − φ1) · · · sin(φ2 − φn)

...
. . .

...
sin(φn − φ1) · · · sin(φn − φn)

=
√

I − X̃2
′
· X̃− X̃′ ·

√
I − X̃2 (5)

where φi(i = 1, 2, · · · , n) is the angle of the ith time point in polar coordinates, and I is the
unit row vector. In the formula, the inner product is redefined, < x, y >= x · y−

√
1− x2 ·√

1− y2 and < x, y >=
√

1− x2 · y− x ·
√

1− y2, and a penalty term is added to reduce
the interference of noise.

Figure 1 shows the conversion process of vibration signals into images through GAF:
(a) represents the time series containing 1000 vibration signal points, (b) represents the
representation of vibration signal mapped in polar coordinates through Equation (3), and
(c) represents the two-dimensional image of the final GAF transformation.



Electronics 2023, 12, 2475 5 of 17

Figure 1. Conversion process of GAF: (a) original signal, (b) polar coordinates, and (c) Gramian
angular field.

The advantage of the Gramian angle field in converting time-series data into image
data is that it cannot only retain the complete information of the signal but also maintain the
dependence of the signal on time. Then, the advantages of ResNeXt in image classification
and recognition will be further made full use of for state recognition.

2.2. ResNeXt

On the basis of the residual structure, ResNeXt proposes a new dimension of cardi-
nality and uses group convolution [55] to replace the three-layer convolution structure of
ResNet, which not only improves the accuracy of the neural network but also reduces the
parameter complexity so that ResNeXt performs better in neural network models with
the same complexity. In addition, based on the ResNet structure of ResNeXt, the idea of
parallel topology is introduced to increase the cardinality to 32, as shown in Figure 2. The
residual part of ResNeXt is composed of grouping convolution, which makes ResNeXt
more accurate and more efficient than ResNet.

The increase in cardinality means that the ResNeXt structure contains more parallel
topologies, which can be seen in Equation (6):

out(x) =
n

∑
i=1

(ω ∗ C(x)) (6)

where ω is the weight of different topologies, C(x) is the output value of the flat same
topology, and n is the number of identical branches that a module has.
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Figure 2. Residual block structure of ResNet and ResNeXt.

Although the introduction of cardinality improves the computational efficiency and
identification accuracy of ResNeXt, it also brings the problem of channel independence.
The independence of channels leads to the output only being derived from a small part
of the input channels. As a result, there is no information flow between channels, and the
generated features lack representativeness and weaken the model generalization ability.
In addition, the first convolution layer in the ResNeXt backbone is the first place for
feature extraction after sample input. Whether the extraction of sample information is
comprehensive and accurate has a great influence on the subsequent processing. The
large convolution kernel has less nonlinear ability than the small convolution kernel.
In the case of the same inductive field, multiple small convolution layers have more
nonlinear functions, which can make the decision function more deterministic and play
the role of implicit regularization. In view of the above problems, this paper makes the
following improvements:

(1) Channel Shuffle

ShuffleNet [56], proposed in 2017, solved the problem of feature graph communication
between different groups caused by channel sparse connectivity, such as group convolution.
Different from the dense pointwise convolution (which requires considerable complexity)
adopted by Xception, MobileNet, and other networks, channel shuffle has no expensive
calculation cost or high complexity and can make the input and output channels completely
related. Therefore, channel shuffle is used in this paper to solve the grouping convolution
problem of ResNeXt to provide help for information flow between channels. The main
steps are as follows:

i. Reshape: the input layer is assumed to be divided into g groups, and the total number
of channels is g × n. The input channel dimension is reshaped into two dimensions
(g,n), which represent the number of convolution groups and the number of channels
contained in each convolution group.

ii. Transpose: transpose two extended dimensions into (n,g).
iii. Flatten: the transposed channel flatten is reshaped into dimension g × n, and channel

shuffle can be finished.

After channel mixing, the feature graphs received by the subsequent group convolu-
tion layer from the previous layers are mixed fully correlated.

(2) Kernel Decomposed

By observing the structure of ResNeXt, it can be seen that the first layer in the input
backbone consists of a 7 × 7 convolutional kernel, whose receptive fields are the same
as those of three 3 × 3 convolutional kernels. The computational cost backbone of the
convolution layer is the square of the width of the convolution kernel or the height of the
convolution kernel, so the computational amount of one 7 × 7 convolution kernel is equal
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to 5~6 times that of three 3 × 3 convolution kernels. Meanwhile, adding an activation
function between the additional network layers can increase the nonlinear representation
ability of the network when the receptive field is the same. On the premise that the details
of the convolutional layer are not lost, the number of network model parameters is reduced,
and the mining depth and feature precision of the model are improved.

2.3. Establishing the CSKD-ResNext Network

In this paper, feature graphs after group convolution are first “reorganized”, i.e.,
“uniformly disrupted”, to ensure that information can flow between different groups.
Second, the 7 × 7 convolution kernel in the input backbone is replaced by three 3 × 3
convolution kernels, whose stride is 1; the output channel size is 64, and batch normalization
is adopted. Meanwhile, the LeakyReLU function is adopted as the activation function in the
convolution layer to solve the problems of neuron “extinction” and gradient disappearance
caused by the Relu function. Set the output dimension of the full connection layer to 5,
which corresponds to 5 different states of the gearbox. Table 2 below shows the details of
the CSKD-ResNeXt network structure.

Table 2. Detailed structure of CSKD-ResNeXt.

Layer Type Output Parameter
Conv1 Convolution 64 × 112 × 112 Three 3 × 3 Conv, stride = 1
Pool MaxPooling 64 × 56 × 56 3 × 3, Maxpool, stride = 2

Bottleneck1 Convolution 256 × 56 × 56
(

1× 1Conv
3× 3Conv, Group = 32

1× 1Conv

)
× 3, stride = 1

Bottleneck2 Convolution 512 × 28 × 28
(

1× 1Conv
3× 3Conv, Group = 32

1× 1Conv

)
× 4, stride = 1

Bottleneck3 Convolution 1024 × 14 × 14
(

1× 1Conv
3× 3Conv, Group = 32

1× 1Conv

)
× 6, stride = 1

Bottleneck4 Convolution 2048 × 7 × 7
(

1× 1Conv
3× 3Conv, Group = 32

1× 1Conv

)
× 3, stride = 1

Pool MaxPooling 2048 × 1 × 1 Adaptive Average Pool
FC Fully-connected 2048 × 1 × 1 Fc, Softmax

Based on the above, a gearbox fault diagnosis method based on GAF and CSKD-
ResNeXt is proposed in this paper, as shown in Figure 3. The time series is converted into
GASF and GADF images, which are used as the input of the subsequent convolutional
network. On the basis of ResNeXt-50, the backbone convolutional kernel is split, and the
channel shuffle is introduced to obtain CSKD-ResNeXt, which is used to extract features
from the input sample graph. After three 3× 3 convolutional kernels and four convolutional
layers composed of different block numbers, deep learning and feature mining of samples
in different states are carried out. The final predicted fault category is output through
a softmax classifier after global pooling. The performance of the model was evaluated by
the accuracy and loss of the test set. The t-sne scatter plot and confusion matrix were used
to visually display the diagnostic process and results.
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Figure 3. GAF-ResNeXt.

3. Data Description

In this section, the sources, types, working conditions, and other information of the
datasets are introduced; the division of training sets and test sets and the number of sample
sets are also shown in detail, and the configuration of the experimental platform and the
common parameters of the operating framework are explained.

3.1. Datasets

The gearbox dataset in this paper comes from the experimental setup for a gearbox of
Southeast University in China [57], as shown in Figure 4. The dataset includes 20 Hz–0 V
and 30 Hz–2 V load conditions. The gearbox state has four fault states and one health
state. Each state signal includes the vibration signal of the motor, motor torque, planetary
gearbox in x, y, and z directions, and parallel gearbox in x, y, and z directions. The data
types are shown in Table 3.

Figure 4. Experimental setup for gearbox.
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Table 3. Partitioning of gearbox datasets.

Operating Condition 20 Hz–0 V 30 Hz–2 V

Dataset Type Training Validation Training Validation

Health normal state 666 166 666 166
Chipped crack occurs in the feet 666 166 666 166

Miss missing one of feet in the gear 666 166 666 166
Root crack occurs in root of the gear feet 666 166 666 166

Surface wear occurs in the surface of gear 666 166 666 166
Total 8320 3330 830 3330 830

Each of the 10,000 data points in the dataset was truncated to generate sample graphs
with a size of 224 × 224 RGB three-channel. Under the working condition of 20 Hz–0 V,
each fault has eight columns of vibration data corresponding to eight positions or directions
of the gearbox test stand. Each column contains 1.04 million vibration data points and
generates 104 images, so each failure type has 832 images. The operating data of 30 Hz–2 V
is the same. The gearbox datasets under two working conditions contained a total of
8320 sample graphs, which were divided into training sets and test sets in a ratio of 4:1.
Each fault type was composed of 1332 training samples and 332 test samples.

3.2. Experimental Platform Setting

The gearbox fault diagnosis model runs on the Pytorch framework, and the experimen-
tal platform is configured as follows: 64-bit Windows 10 operating system, Intel (R) Xeon
(R) Gold 6330@ 2.00 GHz (CPU), RTX 3090 (24 GB) (GPU), and code written in the Python
3.8 environment. The adaptive moment estimation (Adam) algorithm [58] is used to update
the network training parameters. The initial learning rate is 0.001. Use ReduceLROnPlateau
to update the learning rate to achieve the self-attenuation process. It takes the accuracy of
the test set as the adjustment indicator, and patience in ReduceLROnPlateau was set as
4 according to the results after repeated experiments. The model loss is calculated using
cross entropy, and the dropout in the model is set to 0.2.

4. Analysis of Model Results

In this section, performance verification and comparison experiments are performed
on the proposed model with accuracy, loss, and other indicators, including comparison
between GADF and GASF, comparison between GAF and STFT and CWT, comparison
between CSKD-ResNeXt and classical networks, and visualization of the fault classification
identification process of key convolution layers.

4.1. Model Verification

To compare the effectiveness of the GADF and GASF methods, the images generated
by GADF and GASF are respectively input into CSKD-ResNeXt, as shown in Table 4. In
this paper, image samples of GADF are selected as the input of subsequent models.

Table 4. Comparison of GADF and GASF effects.

20 Hz–0 V 30 Hz–2 V

Accuracy Loss Accuracy Loss

GADF 0.998 0.016 0.993 0.013
GASF 0.984 0.021 0.980 0.024

The accuracy and loss on the test set of the fault diagnosis model proposed in this
paper under two working conditions are shown in Figure 5. It can be seen that the model
does not converge, and the accuracy fluctuates in the early stage of training. After about
40 epochs, the accuracy fluctuates between 95% and 100%; after 60 epochs, the accuracy
of the two conditions tends to be stable and converges to 99.75% and 99.27%, respectively,
while the loss gradually approaches zero. The accuracy and loss trends of the two conditions
are not too different, which proves that the model has a certain generalization ability.
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Figure 5. Accuracy and loss under two working conditions: (a) accuracy under two working
conditions and (b) loss under two working conditions.

After testing, under the working condition of 20 Hz–0 V, 828 of the 830 gearbox image
samples were correctly classified, and one sample of miss and root, respectively, was
misjudged as normal. Under the working condition of 30 Hz–2 V, a total of six samples
were misjudged, among which miss had the largest number of misjudged samples, four
of which were misjudged as root. In addition, all health and surface samples were judged
correctly, and the two confusion matrices are shown in Figure 6. In general, CSKD-ResNeXt
can avoid state confusion and can identify different faults well.

To prove the superiority of GAF, the following fault diagnosis methods are selected
to compare with the method in this paper. 1© STFT+ CSKD-ResNeXt: a one-dimensional
time series is converted into two-dimensional time-frequency image by STFT, and then, the
two-dimensional image is used as the input of CSKD-ResNeXt. 2© CWT+ CSKD-ResNeXt:
a one-dimensional time series is processed into a two-dimensional time-frequency graph
by continuous wavelet transform, and then, the time-frequency graph is used as the input
of CSKD-ResNeXt. The fault diagnosis results of different methods are shown in Figure 7.
The method in this paper (GAF+ CSKD-ResNeXt) has the best performance, while the
accuracy of the STFT+ CSKD-ResNeXt method is the lowest, which is 94.06% and 95.85%,
respectively, under two working conditions. The accuracy of the CWT+ CSKD-ResNeXt
method can reach 96.75% and 97.69%. Therefore, GAF is used to process time-series signals
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with higher accuracy, which further indicates that the two-dimensional image transformed
by GAF can retain the relevant information between the original time-series data better.

Figure 6. Confusion matrix.

Figure 7. Effects of different methods: (a) effects of different methods at 20 Hz–0 V and (b) effects of
different methods at 30 Hz–2 V.
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To intuitively show the influence brought by channel shuffle and convolution kernel
splitting in CSKD-ResNeXt, ablation experiments were set to show and compare the im-
provement degree of modified parts, as shown in Table 5. ResNeXt represents the network
without channel shuffle and convolutional kernel splitting; 7 × 7-ResNeXt represents the
network with convolutional kernel splitting but without channel shuffle; CSKD-ResNeXt
represents the network with both operations, namely, the network proposed in this paper.
Other settings are consistent, such as LeakyReLU, initial learning rate, ReduceLROnPlateau
(including patience), Adam, etc.

Table 5. Ablation experiment.

Accuracy Loss Precision Recall F1

20 Hz 30 Hz 20 Hz 30 Hz 20 Hz 30 Hz 20 Hz 30 Hz 20 Hz 30 Hz

ResNeXt 0.943 0.945 0.162 0.144 0.946 0.944 0.943 0.945 0.945 0.945
7 × 7 ResNeXt 0.972 0.963 0.024 0.034 0.972 0.964 0.972 0.963 0.972 0.963
CSKD-ResNeXt 0.998 0.993 0.016 0.013 0.998 0.993 0.998 0.993 0.998 0.993

Convolution kernel splitting can improve the comprehensiveness and delicacy of
feature mining, and channel shuffle can make up for the defect of a group convolution’s
independent information channel. Both of these make CSKD-ResNeXt improve the breadth
and depth of feature mining, so as to extract fault features more fully.

4.2. t-SNE Visualization

The popular t-SNE [59] is used to make the output of the representative stage in the
model be low-dimensional mapped and visualized. Five colors represent five gearbox
states. The visualized result of dimensionality reduction is shown in Figure 8. With the
deepening of layers, data points in the same state gradually gather, while data points in
different states gradually separate.

Figure 8. Cont.
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Figure 8. t-SNE dimension reduction results.

4.3. Contrast of Classical Model

To further verify the recognition performance of the proposed GAF+ CSKD-ResNeXt
model and other fault diagnosis models, classical convolutional neural networks AlexNet,
ResNet50, and DenseNet were selected for comparison experiments. The softmax classifier
was used for all comparison models. The comparison results are shown in Figure 9. The
accuracy of the GAF+ CSKD-ResNeXt model is higher than that of other models under
two working conditions, and the convergence and stability of the GAF+ CSKD-ResNeXt
model are better than those of other models.

Figure 9. Cont.
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Figure 9. Effects of different methods: (a) effects of different models at 20 Hz—0 V and (b) effects of
different models at 30 Hz—2 V.

5. Conclusions

In this paper, a gearbox fault detection method combining GAF and improved ResNeXt
is proposed. The performance of the proposed method is verified in two operating con-
ditions of the gearbox, and the accuracy of fault identification can reach 99.75%. The
comparison experiment results between GAF and the time-frequency conversion method
show that GAF has better ability to express different state features. After comparison
between GASF and GADF, GADF is selected to output two-dimensional images according
to the accuracy and loss performance. The ablation experiment shows that the modified
ResNeXt model can promote the information exchange in the network and improve the
feature-mining ability. The experimental results of comparison between the proposed
model and other classical network models show that the GAF-CSKD-ResNeXt method has
higher recognition accuracy and faster convergence speed and can effectively classify gear-
box faults. Our future work will further improve the feature expression ability of vibration
signals, reduce the workload of the feature selection process, and pay more attention to
the interpretability of the feature selection process to further build a model with stronger
generalization ability, higher stability, and better interpretation. Further consideration will
be given to the fault diagnosis of the gearbox under the condition of load, voltage, speed,
and other conditions changing at the same time.
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