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Abstract: The utilization of cryptography in applications has assumed paramount importance with
the escalating security standards for Android applications. The adept utilization of cryptographic
APIs can significantly enhance application security; however, in practice, software developers fre-
quently misuse these APIs due to their inadequate grasp of cryptography. A study reveals that
a staggering 88% of Android applications exhibit some form of cryptographic misuse. Although
certain tools have been proposed to detect such misuse, most of them rely on manually devised rules
which are susceptible to errors and require researchers possessing an exhaustive comprehension of
cryptography. In this study, we propose a research methodology founded on a neural network model
to pinpoint code related to cryptography by employing program slices as a dataset. We subsequently
employ active learning, rooted in clustering, to select the portion of the data harboring security issues
for annotation in accordance with the Android cryptography usage guidelines. Ultimately, we feed
the dataset into a transformer and multilayer perceptron (MLP) to derive the classification outcome.
Comparative experiments are also conducted to assess the model’s efficacy in comparison to other
existing approaches. Furthermore, planned combination tests utilizing supplementary techniques
aim to validate the model’s generalizability.

Keywords: slicing; android; cryptography; application security; transformer; clustering; active
learning

1. Introduction

Due to its open source nature and expansive features, Android has emerged as the
predominant operating system for smart mobile devices, owing to the rapid advancements
in technology witnessed in recent years. Java offers an extensive array of user-friendly
function libraries and third-party resources, making it a preferred choice among developers
who appreciate its open source nature and versatility.

According to the Android app dataset Androzoo [1], there exists a global community
of over a million Android developers, and this dataset has amassed a sample of more
than 10 million Android applications from the worldwide app marketplace. However,
Android applications are not without their flaws. Subsequently deployed on users’ devices,
these applications may harbor exploitable vulnerabilities and defects, primarily due to
developer limitations and a lack of thorough code review and security checks during
the development phase. Although these vulnerabilities are generally not introduced
intentionally by the developers, malicious actors can exploit them through man-in-the-
middle attacks, compromising user system security and pilfering sensitive user data.
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Given the significant amount of personal user information stored on smart devices, such
vulnerabilities have the potential to inflict irreparable harm upon consumers.

Cryptographic security assumes a pivotal role in software security, with the use of
system-provided APIs offering explicit encryption standing as a conventional technique for
safeguarding critical information within Android applications. Although these interfaces
aid developers in comprehending the intricacies of cryptographic primitives and mitigating
workload, it remains imperative to ensure the accuracy and dependability of these API
parameters during utilization.

A study conducted by researchers revealed that a staggering 88% [2] of the Android
applications they examined exhibited at least one instance of misuse, defining six prevalent
categories of faults when employing cryptography APIs. To address this issue, numerous
researchers have been devising innovative methods for detecting cryptographic API misuse
in Android applications. Noteworthy examples of static detection tools include Cryp-
toLint [2], CMA [3], CogniCryptSAST [4], and CryptoGuard [5]. Although these tools have
achieved some success, they predominantly rely on manually constructed rules or models,
often requiring a substantial understanding of cryptography and being susceptible to er-
rors. Furthermore, various machine learning techniques, such as probabilistic model-based
approaches and support vector machine (SVM) classification [6], have been employed to
explore cryptographic APIs. These techniques have improved detection efficacy while
reducing false positives. Consequently, the proper utilization of system-provided APIs for
encryption stands as an exception rather than the norm. This underscores the necessity for
further research to uncover the underlying causes of frequent misuse.

In this research, we offer a method for identifying intelligent cryptographic misuse
based on program slicing, which combines program slicing with deep learning to create a
neural network model to examine the usage of cryptographic APIs in Android applications.
The following are the contributions made by this paper:

1. In this paper, we employ program slicing to identify the locations of cryptographic
APIs and acquire code slices about cryptographic APIs with more focused
data samples.

2. Irregularly sliced code lengths and contextual links between codes are resolved using
the transformer model, which can accommodate varying-sized inputs.

3. Active learning and a new deep learning model are incorporated into the training.
The experimental results demonstrate that the system outperforms the models in other
relevant studies regarding cryptographic misuse detection.

2. Related Work

This section encompasses several contemporary research studies that are relevant to
our work. The concept of program slicing, which involves decomposing a program into its
smallest constituents to achieve a desired behavior, was initially elucidated by Weiser [7]
in their seminal research conducted in 1984. Hoffmann [8] subsequently employed this
method to scrutinize malware and applied it to Smali code to attain slicing outcomes for An-
droid applications. In response to the inadequacy of the conventional attention mechanism
to achieve parallelism, the Google team, led by Vaswani, proposed a model architecture
named the transformer [9], which hinges on the attention mechanism. Transformer signifi-
cantly broadens the application of the attention mechanism by introducing a multi-headed
attention mechanism. The k-means approach, originally delineated by Macqueen [10]
in 1967, offers an effective means to handle vast datasets by enabling efficient clustering.
In order to iteratively refine the model and incorporate human expertise into the machine
learning framework, active learning entails the acquisition of challenging sample data that
defies categorization by machine learning methods. This process facilitates manual vali-
dation and review followed by retraining the manually labeled data utilizing supervised
or semi-supervised learning models. Settles [9] provided a comprehensive exposition on
active learning, encompassing a review of relevant literature, solutions, a framework for
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query strategy, analysis of active learning, considerations in variable setting, applicability
to real-world problems, and related areas of study.

In order to scrutinize the ramifications of improper SSL/TLS utilization in Android
applications, Fahl et al. [11] initially divulged a plethora of vulnerabilities associated
with SSL/TLS in Android applications in 2012. Six cryptographic API protocols were
established, and Egele et al. [2] subsequently assessed the accurate implementation of these
cryptographic APIs in congruence with encryption principles. To adhere to the notion of
IND-CPA security, CryptoLint was devised and developed, leveraging the Androguard [12]
static analysis framework tool. In order to present CMA, a detection tool predicated on
pattern matching for identifying cryptographic API misuse, Shao et al. [3] meticulously
examined and analyzed instances of password misuse in Android applications. They
encapsulated their findings in a password misuse model, employing a combination of
static and dynamic analysis. Ma et al. [13] proposed the employment of a tool named
CDRep to automatically rectify defects resulting from cryptographic misuse in Android
applications. CDRep harnesses an existing program [2,3] to identify such misuse and
generates a set of manual patch templates for the targeted code alteration. Drawing
inspiration from the work of CryptoLint, Muslukhov et al. [14] constructed an advanced
BinSight, a static detection tool that primarily focuses on ascertaining whether the program
itself or third-party libraries are culpable for the misuse of cryptographic APIs. In their
quest to detect instances of cryptographic abuse in Android applications, Krüger et al. [4]
proposed CogniCryptSAST , a static tool that redefined the rule set by utilizing the definition
language CrySL in the Java Cryptographic Architecture document. This tool leverages a
whitelist to manually define the appropriate utilization of cryptographic APIs. Unfavorable
outcomes were discovered by Gao et al. [15] when they employed the CogniCryptSAST
tool to evaluate whether API misuse in Java programs had been adequately addressed in
a recent software upgrade. Rahaman et al. [5] introduced CryptoGuard, a static analysis
tool that examines Java projects and Android applications for cryptographic API misuse
by employing a novel slicing method along with 16 specific usage rules. Fischer et al. [15]
employed a support vector machine (SVM) model as a learning mechanism to extract
and scrutinize all security-related code snippets from Stack Overflow posts that discussed
Android encryption. Xu et al. [16] devised a probabilistic model-based technique to explore
how Android applications employ cryptographic APIs. Grounded in hidden Markov
and n-gram models, their study generated a dataset of cryptographic API sequences,
incorporating parameters for intelligent detection of Android applications.

In addition to the detection of cryptography in Android applications, there have been
recent advancements in identifying cryptographic misuse in various languages and plat-
forms. Zhang et al. [17] devised and implemented CRYPTOREX, an innovative tool capable
of detecting cryptographic abuse in IoT devices. Their study revealed that a staggering
24.2% of firmware images violate cryptographic regulations. Li et al. [18] on the other hand,
developed CryptoGo utilizing sophisticated techniques in static contamination analysis,
employing 12 cryptographic rules. Their findings indicated that 83.33% of cryptographic el-
ements in the Go programming language demonstrate at least one instance of cryptographic
misuse. An et al. [19] proposed a BiLSTM-based approach for cryptographic detection,
which facilitates bidirectional learning. They devised the CryptoDetection tool specifically
for Java source code and achieved an impressive accuracy rate of 92%. Wickert et al. [20]
created a static analysis tool catered to Python projects, encompassing five distinct cryp-
tographic rules known as LICMA. Their research revealed that 52.26% of Python projects
exhibit at least one instance of cryptographic misuse. Rahaman et al. [21] developed a static
tool named TAINTCRYPT, tailored for detecting cryptographic implementations in C/C++
programming languages. They utilized a specification language of deterministic finite
automata (DFA).Rodrigues et al. [22] proposed an innovative methodology that combines
graph embedding techniques with machine learning models to detect instances of crypto-
graphic abuse in source code. They leveraged the Node2vec [23] and Bag of Graphs [24]
models as embedding generators for representing source code graphs.
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3. Methods

In this section, we present a method for classifying cryptographic API abuse in An-
droid applications and specify the implementation details and model selection for the
method.

3.1. Overview

Figure 1 illustrates the overarching workflow of the system. This study endeavors to
develop an intelligent detection system, centered on program slicing, to identify instances
of cryptographic misuse within Android applications. More specifically, the focus is on
identifying cryptographic misuse APIs. Initially, we preprocessed the dataset to extract
Smali code files. Subsequently, the Smali files underwent static analysis to extract a compi-
lation of code slices related to cryptography, in line with the defined slicing criteria. Lastly,
the collected code slices were utilized to train our deep learning model, ensuring that it met
our accuracy requirements for classifying the code slices. The specific steps are as follows:

1. Preprocessing: we processed the Dalvik bytecode [25] (.apk) Android application file
into a Smali code file and parsed it to create an object representation.

2. Static slicing: a standard appropriate for this work was created based on the security
criteria established by abstract slicing patterns. By executing static backtracking, all
potential execution routes were tracked, and the set formed by all reachable nodes
was determined and represented by a graph.

3. Security classification: then, unsupervised learning was applied to the slice set using
the k-means clustering to obtain several classes. Lastly, active learning was used to
label the code segments in various classes in order to train the model.

Figure 1. Overall system workflow.

We provide further details on each stage in the sections that follow.

3.2. Preprocessing

To mitigate the risk of failure, we utilize the Dalvik bytecode decompilation technique,
which transforms the Android program into register-based intermediate code represented
as Smali code. Direct decompilation to Java source code carries a certain probability
of failure. In this stage, the .apk file undergoes decompilation using the Apktool [26]
tool, resulting in the production of the classes.dex file. Subsequently, the baksmali6 tool
processes this file, generating a list of files that resemble Java code. We then parse these
files into an object representation, encompassing all fundamental attributes and blocks.

3.3. Locating API Abuse in Android Apps

The program slicing methods we employ, the slicing criteria we derive from defining
slicing patterns, and the quick ways to obtain slices will all be discussed further below.
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3.3.1. Slicing Criteria

We have implemented the slicing schema proposed by Johannes [27], which serves as
a conceptual representation of the resource or object to be monitored in XML format. This
choice is crucial, as program slicing heavily relies on the specific criteria employed for a
given line of program code. The adoption of this schema enables us to effectively identify
use–def chains by examining calling statements that conform to the designated schema.
Consequently, we can derive our slicing criterion. To achieve this, we meticulously inspect
each line of code within the application, subjecting the specified method signature to
scrutiny. We consider any supplementary program statements associated with each match-
ing instance, akin to the initial slice. By establishing a connection between the index of each
occurrence register and the designated parameter of interest, we are able to determine the
name of the register that requires tracing. Ultimately, this process yields an optimal set of
slicing criteria.

3.3.2. Backtracking

We employed a generalized static backtracking approach for Smali codes, as proposed
by Hoffmann et al. [8], to perform forward slicing. During the execution of a static traceback
of registers, we employ the use–def method for code traversal, meticulously documenting
all pertinent program statements as nodes and incorporating them into the slicing tree.
The tracing halts, and the slicing does not proceed further down the tree when a constant
value is assigned to the register currently under scrutiny. Additionally, the slicing process
terminates when the traced register is overwritten or becomes inaccessible. This procedure
generates one or more slicing criteria based on the slicing pattern, which are subsequently
added to the queue, also known as a first in, first out (FIFO) queue. Each register is
backtracked until the queue is depleted, provided that the registers discovered during
the initial search for a matching call opcode fill the queue. The forward and backward
slicers obtain their input from the to-do list, encompassing all monitored registers, fields,
return values, and arrays. Furthermore, the to-do list ensures that no monitored items are
reprocessed, as their references are retained. When requested by the slicer, the queue yields
the next object to be traced, containing the registers to be monitored and the location of the
subsequent opcode.Pseudocode for the backtracking algorithm is shown in Algorithm 1.

Algorithm 1: Backtracking Algorithm

Data: Initialising the queue:Q;
Slicing criteria:C

Result: Slicer
r = C.p[index]; visited[r] = 1; r Join the queue Q;
while Queue Q is not empty do

Queue head element of r_temp = Q out of queue;
visited[r_tem] = 0;
Search up the opcode to find statement S ;

if S Existence then
Register for operating r_temp = Q in w = S;

else
if wnot visited then

w Join the queue Q;
Search up the opcode to find statement S ;

end
end

end

We consider the Smali code example fragment in Figure 2. The diagram depicts a
symmetric encryption algorithm. The developer creates a Cipher object, calls the getInstance



Electronics 2023, 12, 2460 6 of 14

method of the Cipher, and passes it the value of the requested conversion as a parameter.
The conversion value usually includes the name of the encryption algorithm, the mode of
operation, and the padding scheme. The figure “AES/CBC/PKCS5Padding” describes the
conversion value for this method, where the algorithm name is AES, the mode of operation
is CBC, and the padding scheme is PKCS5Padding. The ECB mode has been proven to be
an insecure encryption mode and should no longer be used. The developer should provide
a non-random IV when CBC mode is chosen for encryption. An encryption vulnerability
will occur if no IV is given or if the IV value is predictable.

Figure 2. Example Smali code snippet.

For the encryption algorithm in Figure 2, there will be two backtracks. Firstly, de-
termine all calls to the method Cipher → getInstanceinit() and backtrack the first param-
eter, register v1, to save the conversion value for each call. Find all possible execution
paths where the endpoint is similar to the conversion or specifies a symmetric block ci-
pher, e.g., AES, until the path reaches the end of the constant endpoint. Then, for all
Cipher → init() calls that use the AlgorithmParameterSpec object as the second parameter
operation mode, backtrack the value of that parameter. Using the list of constants found,
verify that an object of type IvParameterSpec is created by calling its constructor. If it is not
found, abort. A subpath from each available slice path starting with the iv parameter is
extracted and passed to the constructor of the IvParameterSpec object.

3.3.3. Collection of Slices

We construct a tree encompassing all encountered slicing nodes by aggregating all
reachable nodes. The foremost node in the specified slicing pattern invariably serves as the
slicing criterion, akin to the point of origin for all potential execution paths. The lines of
code that have been excised reside in the lowermost nodes. In situations where multiple ex-
ecution paths exist, as seen in conditional evaluations, a slicing node may have connections
from various predecessor nodes. When code statements undergo numerous iterations, such
as those within a for or while loop, loops are formed among the vertices. Each intermediate
node retains a catalog of all precursor nodes, accompanied by the initial register names and
register names associated with the current program statement.

A slicing tree is comprised of one or more terminal nodes, with each terminal node
representing either a constant value or an abruptly terminated slicing process. When a
constant value (such as an integer or a string) is copied into a trace register, the slicing
process typically concludes due to the alteration of the register’s value. This implies that,
in the context of backward slicing, the operation has modified the value of one or more
slicing conditions. In the case of forward slicing, it indicates that the data stream has reached
its endpoint and will be inserted into the terminal node to ensure the slicer maintains
continuity. Consequently, the tracked register will not impact subsequent operations.
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3.4. Transformer-Based Label Efficient Error Detection Model

The overall procedure is depicted in Figure 3. Subsequently, the features are extracted
from the slicing code associated with cryptography using the transformer, which then
channels these features into the MPL layer for detection. Following the input of annotation
features into the MPL layer utilizing the k-means clustering-based active learning approach,
the detection outcomes are produced. After being fed into the MPL layer for detection,
the results are subsequently output. A loss computation is then performed on the results
and annotated samples. To ensure adherence to our accuracy standards, the process is
terminated after a predetermined number of iterations.

Figure 3. Classification model with active learning for data label.

In this study, we employ a transformer [28] as the feature extractor. The assortment
of slices related to cryptographic abuse in Section 3.3 is obtained, serving as our input.
The transformer initially converts the lexicon into a vector of the same embedding dimen-
sion. Because attention lacks the ability to recognize the order of the sequence, position
embedding is introduced to assign numerical values to each position. Each word vector
is now accompanied by a position vector, aiding in its identification. The creation of the
new vector is achieved by combining the location and word vectors. The position encoding
algorithm is as follows:  PE2i(p) = sin

(
p/100002i/dpos

)
PE2i+1(p) = cos

(
p/100002i/dpos

) (1)

Suppose the word embedding is dpos characters long. In that case, we must create a
position encoding vector PE that is dpos characters long, where p stands for the word posi-
tion, PEi(p) is the value of the i th element in the position vector of the p th word position
vector, and p is the current word position. The word vector and the position vector are then
added together. In this work, we use sine and cosine functions of different frequencies.
Each dimension of the positional encoding corresponds to a sinusoid. The wavelengths
form a geometric progression from 2π to 10,000·2π. This function was chosen because we
assumed that it would allow the model to learn easily by relative position, because for
any fixed offset k, PEpos+k can be expressed as a linear function of PEpos. Using positional
encoding ensures that the positional relationships are maintained after our code slices are
converted to vectors, which benefits the results. The sinusoidal version was chosen because
the length of the slicing code produced by program slicing is variable, and the sinusoidal
version allows the model to infer longer sequences than those encountered during training.

The transformer obtains the attention value through the multi-headed attention mod-
ule. First, we generate three corresponding vectors for the input word vector X: query, key,
and value. With Q, K, and V vectors, we first calculate the similarity of K and Q by point
accumulation. To prevent the similarity from being too large in SoftMax, the point of the
point is divided by

√
dk, of which

√
dk is the dimension of K dimension. The output of

the self-attention at that position is created using the SoftMax normalized values, which
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are then multiplied by the “V” vector matrix and added together. The formula is recorded
as follows:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V. (2)

Among the variables, Q, V, and K represent the queries, keys, and values matrix of the input
sentence; each line of the matrix corresponds to the query, key, value vector corresponding
to each word; and

√
dk represents the vector length.

Multi-headed attention consists of numerous sets of attention, similar to the one
described above, but it uses various heads to obtain distinct feature expressions. Afterwards,
the features will be combined, but the weights assigned to each attention group will not be
distributed equally. The following is the calculation formula:

headi = Attention
(

QWQ
i , KWK

i , VWV
i

)
. (3)

MultiHead(Q, K, V) = Concat(head1, · · · headh)Wo. (4)

The following equation provides a multiple-dimensionality reduction by optimizing
full connectedness:

FFN(x) = max(0, xW1 + b1)W2 + b2. (5)

In order to obtain the results, we finally input the MLP with the properties of the transformer.

3.5. Active Learning Based on K-Means Clustering

We employ active learning [29] based on clustering [30] because manually annotating
each sample requires much time and effort. By training the model with fewer annotated
examples, active learning seeks to improve results. We first discuss k-means clustering and
then explain how to obtain high-quality labeled data using the clustering results.

We obtain the dimensionality reduction features using the procedures in Section 3.4
and subsequently group the dimensionality reduction features using the k-means algorithm.

This is demonstrated by choosing random locations as the initial clustering centers in
the K feature space of the vector.

Euclidean

√√√√ k

∑
i=1

(xi − yi)
2. (6)

d =
√
(xn − x1) + (yn − y1). (7)

The distance to the K centers is calculated for each of the remaining points, after which
the remaining points select the cluster center closest to them as their own labeled category.
After that, each cluster’s new center point is calculated.

Py =
n

∑
i=1

Piy/n. (8)

Px =
n

∑
i=1

Pix/n. (9)

The repeat ends if the calculated new center point is the same as the original one.
Otherwise, the second step of the process will be repeated. When the result of each
iteration is unchanged, the algorithm is considered to converge, and clustering is complete.
Otherwise, the second step of the process is repeated. The method is said to have converged
when the outcome of each iteration stays the same.

In order to obtain our one-pass classification results in this paper, we first choose a
small number of samples from each center of clusters. Then the labeled data are used as
supervised information to train the transformer model. The cluster coreset algorithm is
used to re-select the labeling samples if the entropy output is high, until the model satisfies
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our accuracy standards. In order to conduct experiments, we designate 200, 400, 600, 800,
and 1000 training samples in this work.

4. Experimentation and Evaluation

This study assesses the suggested technique utilizing the APK dataset as an experi-
mental subject to validate the efficacy of the program slicing-based cryptographic misuse
analysis method for Android applications presented in Section 3.

4.1. Dataset Preprocessing

The dataset used in this experiment consists of a selection of APKs downloaded from
Androzoo between 2020 and the present, totaling 1255 applications. We concentrated on
the libraries “javax. crypto”, “java. security”, and “java.net.ssl” because we are studying
cryptographic APIs. We kept a total of 1178 APKs after performing a fast review of
the gathered APKs to remove those that did not use any cryptographic APIs from the
downloaded application libraries. When the APK files were deleted, 1146 viable APKs
remained. All samples were examined using the decompiler Apktool, and our criteria
determined their slices. A total of 3788 slices about cryptography were acquired, and this
dataset served as the basis for our tests.

4.2. Evaluation Criteria for Cryptographic Misuse Detection Model

The following measures were employed in this study to evaluate the effectiveness of
the cryptographic misuse detection and classification system.

Accuracy means the proportion of samples that were properly categorized by a clas-
sifier to all samples. In general, improved detection or classification results from higher
accuracy. This indicator’s expression is as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
. (10)

Precision measures the percentage of samples that the system correctly predicts
cryptographic misuse, i.e.,

P =
TP

TP + FP
. (11)

Recall rate measures the proportion of samples of cryptographic misuse that the detec-
tion system believes to be present as a percentage of the actual samples of
cryptographic misuse,

R =
TP

TP + FN
. (12)

F1 value combines accuracy and recall and is thought to provide a more accurate view
of the system’s ability to detect cryptographic misuse, i.e.,

F1 =
2 · P · R
P + R

, (13)

where TP is the number of samples the system determined to have cryptographic misuse
and are misused; FP is the number of samples the system decided were misused but were
not misused in reality; and FN is the number of samples the system determined to not have
misuse but contained misuse in actuality.

4.3. Experimental Details

Our work’s primary optimization goal is a focal loss of γ = 6. We utilize the command
line utility “gpustat” with a tiny batch size of 1 and forgo generating any gradients to assess
the model’s GPU memory utilization. Note that we only use one GPU card for training
and inference. We conducted our trials using the PyTorch framework. For the training, we
used tiny batches of size 6. All tests were carried out on a workstation with two NVIDIA
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3090 GPU cards. The transformer model we employed has a depth of four layers, which is
relatively simple to obtain and can handle input of varying lengths. It was pre-trained in
natural language processing.

4.4. Label Standards

Due to the active learning methodology used in this study, only minimal annotation
was required for training in the clusters split by clusters. We annotate them in accordance
with the norms of cryptographic algorithms, and our annotation criteria are as follows.
This system aims to classify cryptographic methods and assess whether there is misuse.

(1) The following situations will be considered instances of SSL/TLS abuse:
(a) The developer’s implementation of the X509Trust Management interface’s Verify
Server Trusted method accepts all certificates without verifying the server certificate.
(b) The developer’s implementation of the verify method under the hostname verifier
interface accepts all domain names. It does not check if the hostname associated with
the URL matches the server’s hostname. The server’s hostname and the hostname
associated with the URL match, but it allows all domain names. (c) SSLSocket Factory,
which sets the domain name verification parameter to ALLOW ALL HOSTNAME
VERIFIER and creates sockets for secure connections. (d) No use of SSL or a combina-
tion of secure and insecure connections. (e) Use of an outdated SSL/TLS version.

(2) Under the following scenarios, the symmetric encryption algorithm will be deemed
to have been abused: (a) The use of unsafe symmetric encryption techniques, such
as DES, 3DES, RC2-64-bit cipher, RC4-stream cipher, etc. (b) The ECB algorithm is
selected while the AES algorithm is under-configured. (c) The block mode’s initializa-
tion vector (IV) is not randomly produced. (d) Oracle chooses PKCS1.5 for padding,
etc. (e) The mechanism of encrypting keys is hard-coded.

(3) Under the following situations, asymmetric encryption techniques will be deemed
to be improperly applied: (a) The RSA algorithm is insecure when the key length is
less than 3072; then, asymmetric encryption algorithms will be deemed to be misused.
(b) The ECC algorithm is insecure when the key length is less than 224, and optimal
asymmetric encryption padding is not used by the RSA method (OAEP).

(4) The following situations constitute misuse of a hash function: (a) employ of a crypto-
graphic hash method that is unsafe (e.g., MD2, MD5, SHA-1, etc.). (b) Use of the less
secure KDF algorithms PBKDF2 and Bcrypt.

(5) Under the following circumstances, random number generation will be deemed to
have been abused: Using the random number generator random.

4.5. Experiments and Analysis of Results
4.5.1. Model Effect Analysis

Of the data used for the experiments in this paper, 80% were used as the training set,
and the remaining 20% were used as the test set. The objective was to determine whether
using program slicing and constructing a cryptographic misuse detection system based
on the transformer model could better detect cryptographic misuse. This article evaluates
the model’s precision, recall, accuracy, and F1 values at different classification head levels.
This article consider insecure samples as positive and secure ones as negative. Thus,
the precision score measures how many of the predicted unsafe segments are indeed
unsafe, the recall score assesses how unsafe many of the true unsafe segments retrieved
from all unsafe elements are, and the accuracy score measures the overall classification
performance considering both positive and negative samples.

Based on the experimental results shown in Table 1, the best results obtained by this
method when considering all evaluation criteria were: accuracy (0.953), precision (0.978),
recall (0.935), and F1 value (0.956), with three classification head layers. These results will
be used in subsequent experiments to compare with other detection systems.
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Table 1. Comparing outcomes of this system’s indicators at various classification head levels.

Number of Layers in the
Classification Head Accuracy Precision Recall F1

1 0.873 0.953 0.733 0.869
3 0.953 0.978 0.935 0.956
5 0.944 0.965 0.901 0.932
10 0.876 0.923 0.811 0.863

4.5.2. Comparative Analysis of Our Approach and the SVM Model

The literature [15] provides an SVM-based approach to cryptographic misuse detection.
A comparison between the system in this paper and the SVM system was conducted to
ascertain whether the system in this research has better cryptographic misuse detection
performance compared to other detection systems based on the Android cryptographic
misuse detection model. The current method and SVM methods were compared based on
various metrics when different sample sizes were selected. The results are presented in
Tables 2–5.

Table 2. Comparison of recall scores.

Model 200 400 600 800 1000

SVM 0.581 0.645 0.711 0.737 0.763
Transformer 0.742 0.789 0.822 0.887 0.935

Table 3. Comparison of Accuracy scores.

Model 200 400 600 800 1000

SVM 0.844 0.874 0.881 0.887 0.889
Transformer 0.921 0.944 0.954 0.921 0.953

Table 4. Comparison of Precision scores.

Model 200 400 600 800 1000

SVM 0.827 0.822 0.831 0.829 0.826
Transformer 0.934 0.953 0.962 0.943 0.978

Table 5. Comparison of F1.

Model 200 400 600 800 1000

SVM 0.835 0.844 0.854 0.858 0.856
Transformer 0.925 0.945 0.935 0.940 0.970

We used our dataset as input to the tuned SVM model, as has been suggested in the
literature [15], and tuned the model to the best possible parameters. Table 2 shows that
our system’s average F1 value is 9.7% higher than that of this system, which shows that
our system’s capacity to identify sample cryptographic misuse thoroughly is significantly
better than Fischer’s model. This system’s accuracy in determining whether cryptographic
misuse of samples has dramatically increased, as it is 8.3% greater than that of this model.
As demonstrated in Table 4, when comparing accuracy, our model performs better than
the SVM model, with an average improvement of roughly 6%. As shown in Table 5,
when precision is compared, our model surpasses the SVM model by an average of 13.1%.
Furthermore, when we label the data as 200, our system’s F1 value is 9% higher than the
SVM model’s, along with its recall rate of 16%, the accuracy rate of 7.7%, and precision of
10.7%. Based on the data above, it can be inferred that when we perform a precise small
amount of annotation, the system’s effectiveness in this paper is significantly higher than
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that of the SVM model put forth by Fischer. This finding demonstrates the effectiveness
of our active learning to select annotated samples, i.e., we only need to annotate a small
number of samples to obtain good results.The SVM model is chosen to use TF-IDF for
feature extraction, and finally the code fragment is fed directly into the SVM model as text
input, so that the contextual relationship in the code is blurred, while this method proposes
the experimental transformer model for feature extraction, using the position encoding
method to represent the contextual relationship to enhance the detection effect.

4.5.3. Comparison with Rule-Based Matching Tools

To validate the performance of the proposed detection method, the tools in this paper
were compared with the state-of-the-art rule-based matching password misuse detection
techniques CogniCryptSAST [4] and CryptoGuard [5]. We manually analyzed a random
selection of 50 APKs from Androzoo downloaded applications and found 138 cryptographic
misuses, of which CogniCryptSAST and CryptoGuard found 108 and 101, respectively.
A comparison of the performance of the detection tool proposed in this paper with existing
detection tools is shown in Figure 4. From the figure, it can be seen that the detection
accuracy, precision, recall, and F1 scores of the detection tool proposed in this paper
were 0.925, 0.917, 0.92, and 0.91, respectively. In comparison, the best detection tools in
CogniCryptSAST and CryptoGuard were 0.842, 0.84, 0.732, and 0.783, respectively. This is
because different tools use different sets of cryptographic rules, and any one tool is limited
in its identification methods and recognition capabilities and cannot cover the full range of
rules, resulting in performance differences between the evaluation metrics. Our tool, on the
other hand, is unlimited by the encryption rule set.

Figure 4. Performance comparison of the proposed detection tool and the existing ones.

4.5.4. Integration with Other Methods

This study also aims to integrate the techniques in this research with other machine
learning techniques in order to anticipate better classification outcomes. To this end, we fix
the MLP at two and conduct trials combining the methods.

The results shown in Table 6 demonstrate that the model created in this work performs
noticeably better than the model developed using other methods, proving that our model
was more successfully created. The results of the experiments demonstrate how much
more effective our approach is in detecting Android cryptography misuse. The results
of classifying our data using the SVM model after two layers of MLP are superior to
those of Fischer’s suggested model without using MLP, as seen in the table. Additionally,
the transformer-based method integrates well with other methodologies, demonstrating
the generalizability of transformer-based feature extraction.
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Table 6. Integration with other methods.

Model Accuracy Precision Recall F1

MLP 0.953 0.978 0.935 0.956
MLP + Decision Trees 0.844 0.903 0.902 0.902

MLP + SVM 0.923 0.934 0.911 0.922
MLP + Random Forest 0.812 0.823 0.723 0.770

5. Discussion

In this paper, we analyze how Android applications abuse cryptography APIs using a neu-
ral network model-based methodology. We developed a dataset of static program-slice-analyzed
Smali code slices about cryptography. Through comparative tests, we tested the performance of
our model, and the results showed that our model outperforms SVM-based models and rule-
based matching detection tools in detecting cryptographic API abuse in Android applications.

Future work will involve extending binary classification to multi-classification in order
to more precisely identify the abuse of cryptographic APIs. Additionally, by making the
granularity of the slices finer, we aim to increase the accuracy of the detected samples.There
are problems with the computational effort involved in using our model for detection,
and in subsequent work, we will continue to adapt the model with with the aim of reducing
its computational effort.
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