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Abstract: In the field of computer intelligence, it has always been a challenge to construct an agent
model that can be adapted to various complex tasks. In recent years, based on the planning algorithm
of Monte Carlo tree search (MCTS), a new idea has been proposed to solve the AI problems of two-
player zero-sum games such as chess and Go. However, most of the games in the real environment
rely on imperfect information, so it is impossible to directly use the normal tree search planning
algorithm to construct a decision-making model. Mahjong, which is a popular multiplayer game with
a long history in China, attracts great attention from AI researchers because it contains a large game
state space and a lot of hidden information. In this paper, we utilize an agent learning approach that
leverages deep learning, reinforcement learning, and dropout learning techniques to implement a
Mahjong AI game agent. First, we improve the state transition of the tree search based on the learned
MDP model, the player position variable and transition information are introduced into the tree
search algorithm to construct a multiplayer search tree. Then, the model training based on a deep
reinforcement learning method ensures the stable and sustainable training process of the learned
MDP model. Finally, we utilize the strategy data generated by the tree search and use the dropout
learning method to train the normal decision-making agent. The experimental results demonstrate
the efficiency and stability performance of the agent trained by our proposed method compared with
existing agents in terms of test data accuracy, tournament ranking performance, and online match
performance. The agent plays against human players and acts like real humans.

Keywords: artificial intelligence; game agent; reinforcement learning; machine learning; neural
network; tree search

1. Introduction

Since the advent of computer games, game AI [1] has been one of the most important
branches of research in AI [2]. In recent decades, game AI has made significant progress
in games with perfect information, such as AlphaGo [3] and AlphaZero [4], through deep
convolutional networks [5] and tree search techniques. In contrast, related research on
games with imperfect information [6] has not had such outstanding success. Currently,
some imperfect-information games are solved with CFR [7] or reinforcement learning
methods [8,9]. However, due to the complexity of the environment rules and the high
simulation cost, both models are inefficient and unstable.

In the game field of imperfect information, the research and development are com-
pletely different from that of perfect information, and it can be said that the development is
very slow. The main reason is that, in an imperfect-information environment, participants
or agents usually cannot fully access all the information about the current situation. It is
difficult to utilize search algorithms to improve agent strategies. Furthermore, the amount
of state information that needs to be processed is huge. In most cases, participants or agents
can only observe private information and partly public features, and the key information
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that has a significant impact on the agent’s strategies is usually hidden. As a result, the tra-
ditional search-based learning methods cannot be directly applied to imperfect-information
game scenarios.

The intelligent agent-based modeling approach has become popular in recent studies,
because it can provide a direct and specific way to overcome complex real-world problems.
With the help of machine learning (ML) and reinforcement learning (RL) techniques, an
opportunity to build and improve an agent-based model has arrived. Shahbazi et al. [10]
proposed an intelligent agent-based recommendation system based on NLP techniques
and semantic analysis approaches and achieved state-of-the-art prediction accuracy. Alejan-
dro et al. [11] proposed an extension to the design concepts and details (ODD) protocol to
support agent-based modeling and offered a standardized description of ML approaches.
Furthermore, some other researchers attempted to integrate RL with a neural network.
Arash Heidari et al. [12] combined the lightweight version of the RL technique and a
convolutional neural network to successfully provide a good performance of an offloading
strategy. Other researchers have provided a review of the literature: Zahra Amiri et al. [13]
reviewed and reported a well-organized classification of distributed system, and divided
several recent studies into seven divisions to analyze their advantages and drawbacks.
Currently, most agent-based modeling approaches are based on a certain strategy or pure
supervised learning methods, which is ineffective and provides poor performance.

In this paper, we design an agent model of Mahjong based on reinforcement learning,
deep learning, and dropout learning to overcome some of the mentioned limitations. The
detailed rules of Mahjong can be found in Appendix A. However, implementing and
training an agent model directly from the simulation of imperfect-information games with
complex rules, such as Mahjong, presents a huge challenge. Without a carefully designed
agent model and an effective learning approach, the agent may not be able to effectively
learn the game strategies for good performance. To tackle the problem of the huge hidden
information and large state-action space, in this paper, we design an extended multiplayer
game search tree in a way that allows for more flexible state transitions and dynamic
decision making. After that, by using dropout learning based on a dynamic Bernoulli
random matrix, we transform it into a normal agent with imperfect information to extend
the applicability of the agent. The contributions of this article are as follows:

1. An extended multiplayer game search tree combined with a reinforcement learning
(RL) technique and deep learning is proposed. We incorporate an internalized MDP
network model to internalize the simulation state and reduce the simulation cost.
Then, we also introduce the additional player position and state-action information
into the search tree and network policy estimation to realize the dynamic transition of
the internal state.

2. A normal agent with imperfect information is trained through dropout learning.
With the utilization of the improved strategies achieved by the RL agent and the
dropout learning technique, our approaches can effectively handle the decision-
making problems of Mahjong.

3. To increase the learning efficiency of the proposed agent, residual blocks [5], an
experience replay buffer [14], and an L2 regularization term [15,16] are used. In
addition, extra noise and a multi-thread simulation are applied to the search tree to
improve the performance of the search algorithm.

4. The convergence and performance of our method are demonstrated by successfully
implementing a Mahjong agent with good performance and comparing it to several
existing models through accuracy on test data and tournament confrontation. Finally,
we conduct tests on online game platforms against human players to further validate
the practicality of the proposed agent.

The structure of this paper is as follows: Section 2 reviews the related work, including
both model-free and model-based agent learning approaches. In Section 3, we describe the
game scenario of Mahjong and detail the framework of the RL methodology. In Section 4,
we report the simulation and experiment results, and compare them with previous work to
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demonstrate the performance of our agent. Finally, in Section 5, we conclude this article
and discuss improvement works in the future.

2. Related Work

At present, reinforcement learning methods generally have two principal categories:
model-based, and model-free [17]. It is very popular among researchers to utilize model-
free methods, such as policy gradient [18] and advantage function [19], to directly imple-
ment decision-making agents. The model-free methods are usually simple and direct, and
can quickly train an agent with good performance for most uncomplicated games.

However, when interacting with complex rule environments, the model-free RL
method encounters problems such as a low convergence speed and large gradient fluctua-
tions during the training, e.g., TD learning [20] and Q learning [21]. In addition, additional
labeling of training data is usually required for the agent to speed up model training.
In contrast, the model-based RL method first constructs a specific environment model,
generally based on the Markov decision process (MDP) [22]. Then, it is combined with
the tree search planning and deep learning techniques to handle more complex decision-
making problems, such as the TreeQN [23] model. However, the model-based methods
usually need to solve two key issues additionally. First, the tree search algorithm usu-
ally not only needs to implement a simulation accurately but also needs to maintain and
restore all the simulation states, which is highly reliant on the knowledge of the environ-
ment, e.g., an accurate environmental simulator; secondly, it cannot be directly applied to
imperfect-information environments, because a large amount of hidden information could
weaken the performance of the search algorithm. As a result, an agent could only obtain a
suboptimal strategy.

Aiming at the first problem, Julian Schrittwieser et al. [24] proposed a learned model
that uses the locally learned MDP model to replace the accurate environmental simulator.
The model introduces the concept of internal state and learns and fits the state transition of
tree search simulations by using the deep-learning-based MDP model that is iteratively
updated. The MDP model is viewed as the hidden layers of deep neural networks, and
the internal state is used to approximate the optimal policy function and value function.
However, it is only suitable for single-player or two-player games with simple rules and it
cannot be directly applied to the mostly imperfect-information games.

Imperfect-information agents are generally difficult to implement because observers
or participants usually only observe part of the information. To solve this problem, some
researchers enumerated all possible states and used determinization technology to achieve
improved strategies [25]. Since all possible results also need to be averaged, this method
may also obtain a suboptimal strategy [26]. As a result, it does not find the global optimal
solution but a local solution. Different from the above approaches, some researchers have
proposed a learning agent based on the dropout technique [27], which trains the agent from
scratch and slowly drops part of the global features during RL training, and realizes the
conversion from a perfect information agent to a normal agent with imperfect information.
However, its training method has a slow convergence and low effectiveness. Essentially, it
is based on the model-free approach. Not only does this strategy lack optimality but also
the learning process is prone to fluctuations, making it hard to optimize the agent model.

Mahjong is one of the most complex imperfect-information games. Players or agents
need to take action based on their hand’s tiles and other players’ public tiles. It is very
difficult to directly apply tree search algorithms to Mahjong because the game state and
state transitions are complicated. Tsuruoka et al. [28] considered the opponents’ possible
moves or actions and proposed a Mahjong agent combined with the opponent model.
Van Rijn et al. [29] constructed a Mahjong search tree based on statistical methods and
machine learning approaches to find the action with the maximum possible return. Another
researcher proposed a strategy model based on deep learning [30] and deep convolutional
networks. Researchers from Microsoft Asia proposed Suphx [31], based on distributed
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reinforcement learning combined with other novel improvement methods, which defeated
professional players on the Riichi Mahjong platform.

In recent years, Gao et al. [32] used DenseNet [33] to extract all the features of Mahjong
and obtained a better strategy with the XGBoost [34] algorithm, which achieved great
accuracy on the test dataset. Zheng et al. [35] described recent Mahjong AI works in
detail, summarizing the current research, analyzing the differences of each approach, and
proposing the future work of Mahjong AI.

In conclusion, the studies reviewed above emphasize the potential of RL approaches
in designing agents for imperfect-information games that could solve decision-making
problems and outperform human players.

3. Reinforcement Learning Algorithm
3.1. Tree Search Learning Algorithm for Mahjong
3.1.1. Internalized MDP-Based MCTS Learning Algorithm

Due to the complexity of the game rules of Mahjong, it is difficult to implement the
search simulations with accurate Mahjong simulators. For example, not only should the
game state of the Mahjong be maintained, but also the backup and restore operations of
the simulators should be performed. This is to ensure the accuracy of the game state and
state transition. To reduce the dependency on accurate simulators, we use the internalized
MDP model-based RL method in combination with the multiplayer tree search algorithm to
improve and obtain the agent strategy. In this work, the internalized MDP model was used
instead of the accurate Mahjong simulator, combined with the MCTS algorithm to decrease
the execution cost of simulators and further strengthen the Mahjong game strategy. Note
that the tree search process can access all the feature information of Mahjong to speed up
the agent learning process and ensure the accuracy and efficiency of the tree search.

The internalized MDP model extracts the characteristic information of Mahjong based
on a deep convolutional network [36] and then relies on the information processing and
integration capabilities of a recurrent neural network [37] to further improve the generaliza-
tion and estimation capabilities of the functions to obtain more accurate value estimation
and prior policy estimation of the Mahjong situation. It is also combined with the MCTS
algorithm to strengthen the agent strategy. The internalized MDP model consists of three
sub-networks: the representation network is used to calculate the network state of the
root node of the search tree; the dynamic network is used to calculate the internal state of
the next node during the simulation; the prediction network is used to calculate the prior
policy estimation and the multi-value estimation corresponding to the player state of the
current leaf node. We utilize the residual blocks as the main body of the representation
and dynamic network to extract the features of the Mahjong situation. The information on
the Mahjong situation is represented as the internal state of the network during the search
process. Now, we describe the internalized MDP-based MCTS algorithm for Mahjong. In
addition to the original search algorithm, we also introduce the player position variable
into the search algorithm, which can handle dynamic player priority and makes dynamic
decision-making possible. Note that the search algorithm also conforms to the principle
of the Minimax algorithm. To simplify, the player position variables are represented in
relative order and start from 0. In addition, the player’s basic action is combined with
additional dynamic information to let the search tree adapt to the dynamic Mahjong game
rules. Formally, at each step t, the model performs a strategy search process to determine
the current player’s best action. A search process consists of N multiple simulations and
each simulation involves several steps to calculate and predict k (k = 0, 1, l) hypothetical
actions in the future. After the N simulations are implemented completely, the agent will
obtain the strategy probability vector corresponding to the number of visit counts about all
edges of the root node of the search tree. The tree search process and training process are
shown in Figure 1.
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To better describe the steps of each simulation, we first declare the variables used
in the MCTS algorithm [38]. Each node stores its game state, represented as the internal
network state S, and the information associated with all edges, such as the number of visits
N, the average state-action value Q, the player position variable D, and the prior policy
estimation P. Then, we perform the following five steps sequentially, starting from the root
node for each simulation:

1. Initialization of the root node. If the root node of the Mahjong game tree has not been
initialized before, we use the representation network to calculate its internal state:

S0 = Iθ(Ot) (1)

where Iθ(Ot) denotes the representation network parameterized by θ with the features
vector Ot of Mahjong as the input. Then, skip to step 4. Otherwise, go to step 2.

2. Selection of edges. Selecting the edge along a path with the upper confidence bound
(UCB) algorithm [39] until an uninitialized (empty) leaf node is reached. In detail, the
statistics of the current node corresponding to the current player are used to determine
the next search edge. The UCB algorithm used is shown below:

ak = argmaxa

[
Q(s, a) + C1

√
ΣbN(s, b)

1 + N(s, a)
P(s, a)

]
(2)

In Equation (2), the key point is that the exploitation and exploration of the search
depend on the value Q and the policy estimation P. It can be seen that the parameter√

ΣbN(s,b)
1+N(s,a) is related to the edge visits N(s, a) and the parent node visits ΣbN(s, b).

The smaller the edge visits, the higher the priority of the edge, and the parent node
visits provide an additional exploration for each child edge. The variable C1 controls the
overall exploration of the search. Due to the large action and state space of Mahjong,
C1 = 1.5 in our experiment. The purpose is to encourage more exploration.

3. State transition. After reaching an uninitialized leaf node, we utilize the dynamic
network to compute the internal state sk of this node with its parent internal state
(the latest state) sk−1 and the transition action ak combined with additional Mahjong
transition information as the network input:

sk = Tµ

(
sk−1, ak

)
(3)
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where Tµ denotes the dynamic network parameterized by µ. After that, the resulting
internal state sk will be used to compute related estimation variables of the leaf node in
step 4.

4. Initialization of the leaf node. After obtaining the internal state sk(k = 0, 1, . . .) of the
new leaf node, we need to create and initialize all edges of this node. First, we use the
prediction network to calculate the prior policy pk in combination with rule-related
transition information qk of Mahjong and the value estimation vector vk of all players:

pk × qk, vk = Eσ

(
sk
)

(4)

where Eσ denotes the prediction network parameterized by σ. Then, we initialize all edges
of this node, e.g., N(s, a) = 0, Q(s, a) = 0, then,

P(s, a) = pk × qk (5)

After that, we also need to calculate the current player position variable D of Mahjong
using player position variables and the rule-related transition information:

D
(

sk−1, ak
)
=
(

D
(

sk−2, ak−1
)
+ T

(
ak
))

MOD M (6)

In Equation (6), T
(
ak) denotes the mapping function from the transition information

to the change of the player position variable, which depends on the special Mahjong game
rules. M denotes the number of players, MOD denotes the modulo operation. Note that
we always set the player position variable of the root node to 0, e.g., D

(
S0
)
= 0, and the

player position variable is assumed to be in the relative order, such as 0, 1, 2, 3, 0, 1, . . ., and
so on, which is used to calculate the value estimation for each player.

5. Backpropagation and updating. Finally, we update the statistics of all nodes along
the path. For each k = 1, . . . , leaf, where leaf denotes the depth index of the new leaf
node, we compute the change of the player position variable corresponding to the
stored variable D:

shi f tk =
(

D
(

sk−1, ak
)
− D

(
slea f−1, alea f

)
+ M

)
MOD M (7)

Then, we obtain the state-action value of the current edge according to the value vector
vleaf and the shiftk value:

Valk = V lea f
shi f tk , shi f tk ∈ (0, 1, . . . , M− 1) (8)

Then, we update the value Q and the edge visits N of the current edge:

Q
(

sk−1, ak
)
=

N
(

sk−1, ak
)
∗Q
(

sk−1, ak
)
+ Valk−1

1 + N
(
sk−1, ak

) (9a)

N
(

sk−1, ak
)
= N

(
sk−1, ak

)
+ 1 (9b)

Note that the output range of the value estimation is [−1, 1], for example, the target
values −1, 0, and 1 mean loss, no change, and gain of the round score of the game,
respectively, which also means the final result of a single round.

3.1.2. Game Information Representation

Since Mahjong has high-dimensional features, we use binary planes to denote each
tile and use the column of the plane to denote each type of all tiles. Considering Mahjong
contains numbers from 1 to 9 and three suits of characters, dots, and bamboo, we use
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27 different tiles and 4 different counts to represent a 27 × 4 two-dimensional matrix
realized by a 27 × 1 × 4 three-dimensional plane. This encoding of the tiles’ representation
allows our agent to better understand the Mahjong features. Figure 2 shows an example.
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Figure 2 shows a hand of 366 Man (character), 777 Pin (dot), and 123456 Sou (bam-
boo) tiles.

3.1.3. MDP Model Input

Because Mahjong has complex game rules, we design feature planes with all possible
special rules of Mahjong to improve the learning process of the agent. At each step, the
player acts according to their hand tiles, other players’ public discard tiles, and other
features. In addition, we also consider the last tiles and the last action of the latest player.
As a result, the following features in Table 1 are used as the input of the representation
network. Each feature is encoded by several 27 × 1 × 1 planes for integer features or
27 × 1 × 4 planes for tiles.

Table 1. Input features of representation network.

Features Number of Channels Description

Hand tiles of each player 4 × 4 Private tiles of each player
Total discard tiles of each player 4 × 4 Discard tiles of each player

Recent 4 discard tiles of each player 4 × 4 Recent discard of each player
Melds tiles of each player 4 × 4 Melds tiles of each player

Wall tiles 10 Top ten tiles of wall tiles

Current score of each player 11 × 4 Score is divided into 11 integer
intervals for each player

Then, we need to design the input features of the dynamic network for Mahjong. In
addition to the last internal state, the transition action combined with other information
is also provided as an input of the dynamic network. As shown in Table 2, we utilize the
tile and action type to specify the basic action information. Since Mahjong is a multiplayer
game, the change of the player position variable and the player state are also provided
as input. The goal of providing extra information is to improve the accuracy of the value
estimation vk and the prior policy estimation pk× qk of the prediction network. All features
are encoded by several 27 × 1 planes and then stacked with the last internal network state.

Table 2. Input features of the dynamic network.

Features Number of Channels Description

Tile type 1 Tile type of action
Action type 10 10 types of actions 1

The change of the player
position variable 4 The change of next player’s position

variable after taking action 2

Additional player state 4 The next player state after taking action 3

1 Actions encoded with one-hot form, as shown in Table 3. 2 e.g., player position +1, +2, +3, +4. 3 e.g., Win,
Pong/Kong, Chow, Pass of the player state.
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3.1.4. MDP Model Output

There are two types of output estimations: the prior policy estimation pk × qk and the
value estimation vector vk. First, we use a 27 × 1 × 55 convolutional layer to represent all
possible actions combined with the transition information. The proposed output design
shows faster model convergence and consistent performance compared to a full connec-
tion output layer. The detailed output representation is shown in Table 3. Specifically,
48 channels are used to denote the three types of actions that can dynamically trigger one of
four possible changes in the player position and one of four possible player states, such as
discard, add Kong, and Pass. So, there are 3 × 4 × 4 = 48 different types of dynamic actions.
The remaining seven types of deterministic actions have the normal state transition.

Table 3. Prior policy representation.

Action Type Number of Channels Action Type Number of Planes

Discard 4 × 4 Chow_Right 1
AddKong 4 × 4 Chow_Middle 1

Pass 4 × 4 Pong 1
ClosedKong 1 OpenKong 1
Chow_Left 1 Hu (Win) 1

The value estimation vector vk involves the evaluation value of four Mahjong players,
each value within [−1, 1]. It also uses the relative order, starting from the player position
of the current node. The detailed improvement of the target value for Mahjong is left for
future work.

3.1.5. Network Implementation

It can be seen from Figure 3 that the input of the representation network consists of the
features mentioned in Table 1 as a three-dimensional 27 × 1 × 118 input layer. The input of
the dynamic network consists of the last internal state and transition features mentioned
in Table 2 as a stacked input layer, a three-dimensional plane of 27 × 1 × (128 + 19). The
output layers of the prediction network are the two types of estimations mentioned in
Section 3.1.4. We do not utilize the internal state directly but just store the network output
of the internal state as a representation of a specific Mahjong game situation. The represen-
tation and dynamic networks have a main body of 12 repeated residual blocks, with each
residual block consisting of two batch normalized, 128 channels, a convolutional layer with
a 3 × 1 kernel, and a prediction network that only serves as computing and outputting two
types of estimation. Furthermore, the prediction network outputs P player estimate values,
where P is the number of players. In Mahjong scene, P = 4. The stride of all convolutional
layers is 1 × 1. We train all three networks as a joint network, shown in Figure 4, with K = 6
unfolded time steps for each training iteration.

The total training loss of the network is as follows:

Lt(θ) = ∑K
k=0 ∑N

i=0 lv
i

(
Zt+k, vk

t

)
+ lp

(
πt+k, pk

t

)
+ c||θ||2 (10)

In Equation (10), K = 6 is the unfolded time steps; N = 4 is the number of players; lv

and lp are the loss functions of the value estimation and prior policy, which are the mean
square error (MSE) loss and cross-entropy loss, and c||θ||2 is the L2 regularization term of
the network parameters, which could mitigate the network overfitting problem.
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Figure 3. The structure of three networks of the internalized MDP model: (a) the representation,
(b) dynamic, (c) prediction network. The representation network uses observed features as input,
multiple residual blocks as its main body, and outputs the internal state about the current player.
The dynamic networks use a similar structure, but the input layer takes the internal state from the
previous step as well as transition actions and information as a combined input. The prediction
network is based on different network structures to output corresponding estimated values and assist
the tree search process.
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and multi-value for each step.

3.2. Dropout Learning

After the internalized MDP-based MCTS model is trained completely, then we use
the MCTS model to accelerate the training process of the normal agent with imperfect
information. Because Mahjong contains a lot of hidden information, if a normal agent
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cannot access this hidden information, the performance of the normal agent is more likely
to be worse than the MCTS model. Anyway, it is not effective to directly train the normal
agent from scratch and we cannot ensure that the normal model can learn the best strategy
with a lack of information. To overcome the above problems, we propose dropout learning
combined with some improvement approaches.

3.2.1. Learning Algorithm with Bernoulli Random Matrix

Instead of directly training the normal agent from scratch, we use the game strategy
data learned and generated by the internalized MDP-based MCTS model as the training
dataset of the normal agent. Note that the input of the game strategy data involves all global
feature information, but we only want the normal agent to eventually access the normal
feature information, such as the player’s private tiles, all players’ discard tiles, and other
public information, during the evaluation. The other players’ hand tiles are not available
to the normal agent during the normal situation. To achieve this, we combine dropout
learning with the special discard features matrix. In detail, we train the normal agent
starting from all features with perfect information and then gradually add features with
imperfect information. For this purpose, we introduce the Bernoulli random matrix [40] λ
and multiply the input layer of the normal agent by the matrix λ:

λij =

{
1, Inputij ∈ Φ

∼ B(1, p) otherwise
(11)

where Φ is a set of normal input features containing all features with imperfect information
described in Table 4. Inputij denotes the input feature in the i-th row and j-th column of the
matrix of the input layer. B(1, p) denotes the Bernoulli function parameterized by p, and
λij takes a random value depending on this function for each training iteration. Then, we
gradually reduce the value p from 1 to 0 with 0.1 for every 60 thousand steps during the
training. Finally, p = 0 is fixed during the evaluation. The total training loss is shown in
Equation (12):

L (θ) = Es,π′(s)∼B
[
lp(π′ (s), πθ(a|λ ∗O (s))

)]
+ c||θ||2 (12)

In Equation (12), B denotes the experience replay buffer [41], O (s) involves all input
features described in Table 1 in the state s, πθ denotes the output policy of the normal
agent parameterized by the network θ, π′ (s) denotes the target policy obtained by the
MCTS model in state s, lp denotes the cross-entropy loss function, and c||θ||2 denotes the
L2 regularization term.

Table 4. Imperfect-information features.

No Feature

1 Player’s own hand tiles
2 Discard tiles of each player
3 Melds tiles of each player
4 Current score of each player

3.2.2. Network Implementation of the Normal Agent

The initial input of the normal agent is the representation layer, which consists of the
features listed in Table 1; the priority policy of the network output has been simplified from
the original 27 × 55 game actions to 27 × 10 game actions without additional transition
information. The main body of the normal agent consists of 64 residual blocks and is
used with 256 hidden channels. The network structure is shown in Figure 5. The agent
model consists of an initial feature layer, a main body of residual blocks, and several
convolutional layers with batch normalization [42] to output the probability vector of all
possible player actions.
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Figure 5. The network structure of the normal agent. It uses the product of the observation features
and Bernoulli matrix as its input, then, features are extracted through a 64-layer residual block,
followed by additional convolutional layers to reduce the dimensionality and establish a direct
connection with the policy output.

3.3. Training Process

The complete training process of the Mahjong agent is divided into two parts: (1) the
tree search learning process; (2) the dropout learning process.

First, we train the “perfect agent” with perfect information based on the MCTS-
based tree search reinforcement learning. The detailed agent’s strategy flow is shown in
Appendix B. The brief learning process is shown in Figure A2 and Appendix C, which
consists of three parts: the simulation process, the model training process, and the model
evaluation process. The detailed tree search Algorithm 1 is as follows:

Algorithm 1 The internalized MDP-based MCTS tree search

Input: Ot: input features vector in step t; θ, µ, σ: network parameters
Output: π: policy probability vector
1. Initialize three functional networks Iθ ← θ , Tµ ← µ , Eσ ← σ ; set the maximum number of
simulations per move K = 250;
2. for (int i = 0; i < K; i ++)
3. Node = Root: set the root node as current node; k = 0: reset the index of search depth;
4. while Node ! = leaf Node //current node isn’t leaf node
5. k++
6. ak = UCB(Node) //determine the next edge according to Formula (2)
7. Node = Nodeak //go to the child node and set it as current node
8. end while
9. if (Node == Root) //current node is root node
10. s0 = Iθ(Ot), D

(
s0) = 0 //utilize the representation network to compute the internal state of

root node and initialize the player position variable of root node
11. else

12. sk = Tµ

(
sk−1, ak

)
//utilize the dynamic network to compute the internal state of the child

node after state transition.

13. pkx qk, vk = Eσ

(
sk
)

, store P(s, a), D
(

sk−1, ak
)

, etc. //utilize the prediction network to
compute related estimations and initialize related statistics information according to
Formula (5) and (6).
14. Backpropagation and update related statistics of each node along the path according to
Formula (7)–(9)
15. end for
16. Get the tree search policy π corresponding to the visit count of all edges of the root node.

After the MCTS model is fully trained, we continue to train the normal agent based on
the dropout learning approach described in Section 3.2. The detailed training parameters
are shown in Table 5.
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Table 5. Experiment parameters.

Method Parameters Value

Tree Search Learning

Dirichlet_noise_alpha 0.9
Simulation_count 250

Total_training_steps 1.2 million
L2_penalty_alpha 1.0 × 10−4

Batch_size 256
Initial training speed 0.01

Optimizer SGD + momentum
Simulation CPU threads per agent 25
Simulation GPU threads per agent 5

Data generation agent used 10

Dropout Learning

Batch_size 512
Channels 256

Initial_learning_rate 0.001
L2 penalty item 1.0 × 10−4

Momentum_alpha_beta 0.9, 0.99
Total_training_steps 0.66 million
Dropout_decay_rate 0.1

Dropout_decay_steps 60 thousand

In our actual experiments, the Mahjong simulator code runs in Python to facilitate
cross-platform operation, while the agent model and the tree search code are implemented
by C++ programs to improve decision-making efficiency and implement concurrence on
multiple threads. The interaction between the two is realized through Python’s embed-
ding technology.

4. Experimental Results and Analysis

In this section, we validate the learning process of the internalized MDP-based MCTS
model, the dropout learning with and without the Bernoulli random matrix. In addition,
we test the normal agent on the online game platform of Mahjong with human players
and conduct tournaments with other AI models to demonstrate the performance of the
proposed agent.

4.1. Experiment Settings

The experiment environment of this paper is IntelCore (TM) i7 12700 CPU, 32 GB
memory, Nvidia Tesla V100, and Windows 10 64-bit operating system. The experiment
code is written in C/C++ and Python, and implemented based on Cuda, Cublas, and
other libraries.

The Mahjong test data is obtained from the Mahjong platform of JJ World Game
Company. In addition to removing the faulty game records and the defective data, we also
use the data of the game records where the score of the players is more than 5000 points.
The score represents the player’s performance of playing Mahjong. The more points, the
better the player’s level. After removing the data of players with poor performance, there
are about 400,000 state-action pairs of Mahjong played by human players. According to
the total number of game data pairs, we divide them into a verification set and a test
set in a ratio of 1:2. To reduce the influence of other factors, we conduct 10 independent
experiments and use the average value of them as the final result; each independent
experiment is performed with a different random number generator. For the MCTS-based
model, the corresponding action with the highest number of edge visits is selected as
the output action; for the normal agent model, the action with the highest probability is
selected (if there are multiple available actions with the same probability, then one of them
is randomly selected). The detailed experiment configurations are shown in Appendix D.
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4.2. Model Performance Validation

First, we test the MCTS-based models with different simulations during the RL training.
All models use the same internalized MDP network as described in Figure 3, and the same
training parameters mentioned in Table 5, except for different simulation counts: 10, 50, 100,
and 250 per move during training. Furthermore, all models utilize the same 500 simulations
per move during the evaluation of the Mahjong test data. The training loss of the models
with different simulations is shown in Figure 6a. The accuracy rate on the Mahjong test
date set of models with different simulations is shown in Figure 6b.

Electronics 2023, 11, x FOR PEER REVIEW 13 of 26 
 

 

in a ratio of 1:2. To reduce the influence of other factors, we conduct 10 independent ex-
periments and use the average value of them as the final result; each independent experi-
ment is performed with a different random number generator. For the MCTS-based 
model, the corresponding action with the highest number of edge visits is selected as the 
output action; for the normal agent model, the action with the highest probability is se-
lected (if there are multiple available actions with the same probability, then one of them 
is randomly selected). The detailed experiment configurations are shown in Appendix D. 

4.2. Model Performance Validation 
First, we test the MCTS-based models with different simulations during the RL train-

ing. All models use the same internalized MDP network as described in Figure 3, and the 
same training parameters mentioned in Table 5, except for different simulation counts: 10, 
50, 100, and 250 per move during training. Furthermore, all models utilize the same 500 
simulations per move during the evaluation of the Mahjong test data. The training loss of 
the models with different simulations is shown in Figure 6a. The accuracy rate on the 
Mahjong test date set of models with different simulations is shown in Figure 6b. 

  
(a) (b) 

Figure 6. Models with different simulations. (a) Training loss of different models over training steps. 
(b) The accuracy rates of different models over training steps. 

Figure 6a shows that the training loss starts to decrease for all models and the accu-
racy rate of all models slowly increases from 0.2 million steps. The accuracy rate on the 
test data is improved during the RL training, however, the growth rate continues to de-
cline. At the beginning of training, the loss of the 250-simulation per move model is 
slightly lower than that of the other models. As training progresses, the training loss of 
the 250-simulation model is obviously lower and smoother than that of all the other mod-
els, this is because the 250-simulation model not only learns the prior policy estimation 
well but also predicts more accurately the value estimation. The experiment results show 
that the 250-simulation model finally has the lowest training loss and the 100-simulation 
model is second. Further, it can be seen from Figure 6b that models with 50 or fewer sim-
ulations cannot learn game strategy very well, and their accuracy rates are lower than 30% 
after half of the training steps. The model with 10 or 50 simulations per move could not 
reach a 50% accuracy rate after the complete training. In contrast, when given more than 
50 simulations per move during training, the accuracy rate of the model has a great im-
provement. The more simulations, the higher the magnitude of accuracy increase. The 
highest accuracy rate reached is 72%, with 250 simulations per move. The results show 
the effectiveness and stability of the internalized MDP-based MCTS model on Mahjong 
test data. 

To better describe the effects of feature access on the performance of the MCTS-based 
model, we compare the MCTS-based models with access limitations on different features. 

Figure 6. Models with different simulations. (a) Training loss of different models over training steps.
(b) The accuracy rates of different models over training steps.

Figure 6a shows that the training loss starts to decrease for all models and the accuracy
rate of all models slowly increases from 0.2 million steps. The accuracy rate on the test data
is improved during the RL training, however, the growth rate continues to decline. At the
beginning of training, the loss of the 250-simulation per move model is slightly lower than
that of the other models. As training progresses, the training loss of the 250-simulation
model is obviously lower and smoother than that of all the other models, this is because
the 250-simulation model not only learns the prior policy estimation well but also predicts
more accurately the value estimation. The experiment results show that the 250-simulation
model finally has the lowest training loss and the 100-simulation model is second. Further,
it can be seen from Figure 6b that models with 50 or fewer simulations cannot learn game
strategy very well, and their accuracy rates are lower than 30% after half of the training
steps. The model with 10 or 50 simulations per move could not reach a 50% accuracy
rate after the complete training. In contrast, when given more than 50 simulations per
move during training, the accuracy rate of the model has a great improvement. The more
simulations, the higher the magnitude of accuracy increase. The highest accuracy rate
reached is 72%, with 250 simulations per move. The results show the effectiveness and
stability of the internalized MDP-based MCTS model on Mahjong test data.

To better describe the effects of feature access on the performance of the MCTS-based
model, we compare the MCTS-based models with access limitations on different features.
The original version could access all feature information, and we also designed two variants
based on the original model: one of which removes all unconventional input features, such
as other players’ private hand tiles, and the other replaces all unconventional input features
with random features instead of empty features. Both models utilize 250 simulations per
move during the training. The detailed experiment setup for both models are mentioned in
Section 3.3. The results comparing the accuracy rate between the three different models
over different evaluation simulations per move are shown in Figure 7a.
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We can see from Figure 7a that the accuracy rate of the model with all of the unconven-
tional input features removed could not reach 35%, and cannot be improved by increasing
the evaluation simulations. In contrast, the other model, replacing unconventional features
with random features, has a better accuracy rate, although it is still lower than that of
the all-features-access model. This is because the former could utilize additional random
features instead of empty features to improve the tree search process. Regardless of whether
the random features information is correct or not, the game strategy can be improved to
a certain extent through the value-averaging approach of tree search. Compared with
the other two versions, the accuracy rate of the all-features-access model still increases as
the number of simulations increases. Finally, it reaches 72% and is better than the other
two variants. This comparison confirms our inference that the feature access has a great
influence on the performance of the MCTS-based model. Further, to verify whether the
internalized MDP network improves on the performance of the MCTS-based model, we
train and compare two different versions: one is based on the internalized MDP network
and the other is based on the accurate Mahjong simulator (it can be equivalent to utilize the
representation and prediction network to calculate the prior policy and value estimation of
nodes, and it does not implement the internal state transition of Mahjong) over different
evaluation simulations. The accuracy rate of the two models is shown in Figure 7b. When
less than 500 simulations of evaluation are used, the accuracy rate of the internalized
MDP-based model is higher than that of the accurate simulator-based model, except when
using a single simulation, which is the same as directly using the prior policy as model
output. However, when the number of simulations is more than 500, the magnitude of
accuracy increase in the internalized MDP-based model is suddenly decreased but the
accuracy rate of the simulator-based model can still steadily increase. By analyzing the
MDP model, the possible reason is that, as the number of simulations increases, the depth of
the nodes will also grow and the internalized MDP-based model is more likely to compute
a noisy value estimation, due to the limitation of the recurrent neural network structure
and the precision of the matrix multiplication operations, etc. In short, the experiment
results indicate that the internalized MDP model could still make effective improvements
on the model performance under a certain number of simulations.

The test accuracy of the models is reported in Table 6. The MCTS-based model utilizes
134 thousand validation data and 266 thousand test data. Considering the time and com-
puting cost, the simulator-based and MDP-based MCTS models both use 250 simulations
per move during evaluation. In addition to the above models, we also report the accuracy
rate obtained by other models in previous works [43] for comparison. It can be seen from
Table 6, that we obtain a 69.6% average accuracy rate for the simulator-based MCTS model
and a 72.0% average accuracy rate for the MDP-based MCTS model. However, we do not
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achieve the highest accuracy among all models and more research could focus on improv-
ing the target game reward to obtain higher data accuracy. Note that due to different test
data and different Mahjong game rules, we just list the data and indirectly compare our
models with previous works.

Table 6. Accuracy results.

Model Highest Accuracy Mean Accuracy

Simulator-based MCTS Model 70.5% 69.6%
MDP-based MCTS Model 73.0% 72.0%

Previous Works 88.2% 68.8%

4.3. Offline Experiment

In this section, we conduct offline tournaments between the learning-based normal
agent and the open-source Mahjong engine. We use the public open-source Mahjong
engine as a baseline player for offline evaluation. This Mahjong engine, called Tenhou-Bot
(https://github.com/MahjongRepository/tenhou-python-bot (accessed on 12 July 2022)),
which is programmed with a hand-designed value function, has conducted a large number
of anonymous online confrontation tests on the online Mahjong website Tenhou.net, with a
total of about 1000 online games and the final rating is between three dan and four dan
(the ranking system adopted by Tenhou.net, https://tenhou.net/man/ (accessed on 15
July 2022), which starts from rookie, 9 kyuu down to 1 kyuu, and then 1 dan up to 10 dan),
with a first place rating of 23.65%. To be compatible with the Mahjong rules in our paper,
we remove the extra seven tiles (four winds and red, green, and white tiles) and make
some additional modifications to the winning condition on the above engine. To ensure the
fairness and effectiveness of the evaluation, the agent ranking adopts the standard ranking
formula proposed by Tenhou:

Rank =
5 ∗ n1 + 2 ∗ n–2

n4
− 2 (13)

In Formula (13), n1, n2, and n4 represent the total times of the first, second, and fourth
rankings, respectively. The ranking rating is computed from the results of the tournament
between iterations of the dropout-learning-based agent during training and the baseline
player (engine). Since Mahjong has a lot of random feature information, such as the initial
player hand tiles, it is generally assumed that not less than a hundred games are needed
to obtain a stable rank. So, we set up 10 random independent experiments, each has
100 random games, each game has four rounds, and we use the average ranking rating
as the final result. We randomly select three of the four players as the baseline player in
each game.

First, we compare the effects on the performance of the agent with and without
the discard feature matrix during training, with the same training data obtained by the
internalized MDP-based MCTS model. All parameter settings and training processes of
both models are the same, except one is combined with the Bernoulli random matrix, the
other does not directly use it and only takes conventional features as input by setting
p = 0 throughout training. The number of training steps for both models is set to about
0.6 million steps. The training results are shown in Figure 8. The ranking results are shown
on the y-axis, which is calculated corresponding to Formula (13), millions of training steps
on the x-axis. The dark line denotes the median score across 10 separate experiments and
the shaded region denotes the 25th to 75th percentile. We can see from Figure 8 that at
the beginning, the rating perform of the agent with the Bernoulli random matrix is lower
than that of the agent without it because the former needs more time and steps to extract
the related features from randomly dropping features during the training iterations. As
training continues, the rating of the agent with the Bernoulli random matrix begins to be
higher than that of the agent without it. This is because it is hard for the agent without

https://github.com/MahjongRepository/tenhou-python-bot
https://tenhou.net/man/
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feature dropping to establish the network connection between the conventional features
and the target action learned by the “perfect model” without the help of additional feature
information, such as the hand tiles of other players. From another perspective, it can be
explained that the model has not been pre-trained for enough time to better initialize the
network parameters, making the network easier to overfit and thus converge earlier, and
it finally falls into the local strategy. As a result, it cannot be trained very well and only
reaches an average rating of about 4 dan. In contrast, the agent with the feature dropping
achieves an average rating of about 5 dan and a highest rating of about 6 dan. However, its
rating cannot be further improved even given more training steps. There are two possible
reasons: one is that the training data itself is not perfect, and the learning algorithm of the
MCTS model needs to be further improved first; the other is that the hyperparameters in
the training affects the convergence performance of the agent, and future investigation
could focus on adjusting the learning rate and the decrease rate of the parameter p to
achieve a better rating performance of the normal agent.

Electronics 2023, 11, x FOR PEER REVIEW 16 of 26 
 

 

the y-axis, which is calculated corresponding to Formula (13), millions of training steps 
on the x-axis. The dark line denotes the median score across 10 separate experiments and 
the shaded region denotes the 25th to 75th percentile. We can see from Figure 8 that at the 
beginning, the rating perform of the agent with the Bernoulli random matrix is lower than 
that of the agent without it because the former needs more time and steps to extract the 
related features from randomly dropping features during the training iterations. As train-
ing continues, the rating of the agent with the Bernoulli random matrix begins to be higher 
than that of the agent without it. This is because it is hard for the agent without feature 
dropping to establish the network connection between the conventional features and the 
target action learned by the “perfect model” without the help of additional feature infor-
mation, such as the hand tiles of other players. From another perspective, it can be ex-
plained that the model has not been pre-trained for enough time to better initialize the 
network parameters, making the network easier to overfit and thus converge earlier, and 
it finally falls into the local strategy. As a result, it cannot be trained very well and only 
reaches an average rating of about 4 dan. In contrast, the agent with the feature dropping 
achieves an average rating of about 5 dan and a highest rating of about 6 dan. However, 
its rating cannot be further improved even given more training steps. There are two pos-
sible reasons: one is that the training data itself is not perfect, and the learning algorithm 
of the MCTS model needs to be further improved first; the other is that the hyperparame-
ters in the training affects the convergence performance of the agent, and future investi-
gation could focus on adjusting the learning rate and the decrease rate of the parameter p 
to achieve a better rating performance of the normal agent. 

  
(a) (b) 

Figure 8. Effect of the discard feature matrix on the rating of the agents during training. (a) Agent 
without Bernoulli random matrix. (b) Agent with Bernoulli random matrix. 

Finally, we report the ratings of our agent and baseline player in Table 7, and we also 
list the Mahjong model proposed by other researchers [28] as a reference. We can see that 
our model is 2 dan higher than the baseline player Tenhou-Bot and very close to the Ba-
kuuchi AI engine, with fewer games, and also the professional human player, which indi-
cates a certain effectiveness of our proposed agent. 

Table 7. Ranking comparison with different Mahjong engines or human player. 

AI Model/Engine  Number of Games  Stable Rank 
Proposed agent 3328 5 dan 

Baseline player Tenhou-Bot 1095 3 dan 
Bakuuchi 30,516 6 dan 

Professional human player - 5 dan 

4.4. Online Experiment 

Figure 8. Effect of the discard feature matrix on the rating of the agents during training. (a) Agent
without Bernoulli random matrix. (b) Agent with Bernoulli random matrix.

Finally, we report the ratings of our agent and baseline player in Table 7, and we
also list the Mahjong model proposed by other researchers [28] as a reference. We can see
that our model is 2 dan higher than the baseline player Tenhou-Bot and very close to the
Bakuuchi AI engine, with fewer games, and also the professional human player, which
indicates a certain effectiveness of our proposed agent.

Table 7. Ranking comparison with different Mahjong engines or human player.

AI Model/Engine Number of Games Stable Rank

Proposed agent 3328 5 dan
Baseline player Tenhou-Bot 1095 3 dan

Bakuuchi 30,516 6 dan
Professional human player - 5 dan

4.4. Online Experiment

In this section, we conducted the Mahjong test on an online Mahjong platform. The
purpose is to make a good-performance Mahjong agent that can replace the human player
to take action and win the game. One player is the proposed agent during the online
evaluation, and the other three are human players.

It can be seen from Figure 9 that the agent draws six character tiles and makes a
decision to discard one of the hand tiles. Due to the winning tiles combinations of Mahjong,
and the most similar type of player hand tiles is normal, the agent is ready to discard the
unnecessary single six characters. The program of our agent is shown on the left-hand side
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of Figure 9. As the input features are passed to the program, the agent outputs the fifth
action (starting from 0), which exactly means the discard of six characters. We can see that
our agent takes the discard action effectively and follows the rules of the Mahjong game.
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Figure 9. Test example: discard tiles.

Figure 10 shows a certain situation of Mahjong. In the above situation, the available
action Hu will end the game immediately and obtain the score points from other players,
and the Chow action will make a meld and continue the game. In most situations, the
player should choose Hu if possible. So, our agent decides to take Hu action and outputs
the 258th action (the Hu action type with 7 dots) according to Figure 2 and Table 3, which
corresponds to the Hu of 7 dots. This shows that our agent knows the winning conditions
of Mahjong and takes the Hu action if possible.

Electronics 2023, 11, x FOR PEER REVIEW 17 of 26 
 

 

In this section, we conducted the Mahjong test on an online Mahjong platform. The 
purpose is to make a good-performance Mahjong agent that can replace the human player 
to take action and win the game. One player is the proposed agent during the online eval-
uation, and the other three are human players. 

It can be seen from Figure 9 that the agent draws six character tiles and makes a de-
cision to discard one of the hand tiles. Due to the winning tiles combinations of Mahjong, 
and the most similar type of player hand tiles is normal, the agent is ready to discard the 
unnecessary single six characters. The program of our agent is shown on the left-hand 
side of Figure 9. As the input features are passed to the program, the agent outputs the 
fifth action (starting from 0), which exactly means the discard of six characters. We can see 
that our agent takes the discard action effectively and follows the rules of the Mahjong 
game. 

 
Figure 9. Test example: discard tiles. 

Figure 10 shows a certain situation of Mahjong. In the above situation, the available 
action Hu will end the game immediately and obtain the score points from other players, 
and the Chow action will make a meld and continue the game. In most situations, the 
player should choose Hu if possible. So, our agent decides to take Hu action and outputs 
the 258th action (the Hu action type with 7 dots) according to Figure 2 and Table 3, which 
corresponds to the Hu of 7 dots. This shows that our agent knows the winning conditions 
of Mahjong and takes the Hu action if possible. 

 
Figure 10. Test example: declare winning hand. 

As shown in Figure 11, after the left player discards 8 dots, it is time for the agent to 
choose whether to take Chow or Pong or Pass. Because it has three different types of tiles 
and Pong 8 dots, which do not influence the other two types of tiles, our agent decides to 
make a Pong meld and speeds up the progress to a winning hand. In addition, we can see 
that the program of the agent receives the information of the game situation and is ready 
to take the 205th action after seconds of computing, which is the Chow of the 8 dots ac-
cording to Table 3. It shows that the agent will make a meld in the proper situation and 
act like a human player. 

Figure 10. Test example: declare winning hand.

As shown in Figure 11, after the left player discards 8 dots, it is time for the agent to
choose whether to take Chow or Pong or Pass. Because it has three different types of tiles
and Pong 8 dots, which do not influence the other two types of tiles, our agent decides to
make a Pong meld and speeds up the progress to a winning hand. In addition, we can see
that the program of the agent receives the information of the game situation and is ready to
take the 205th action after seconds of computing, which is the Chow of the 8 dots according
to Table 3. It shows that the agent will make a meld in the proper situation and act like a
human player.

In the situation of Figure 12, the last player discards 7 dots, and our agent has two 7
dots. If we choose Pong, it will not disassemble the hand tiles. However, the agent outputs
the 69th action and decides to choose Pass instead of Pong (204th action), which will miss
an opportunity to make a meld quickly. In view of lacking information, the possible reason
is that there are too few discarded tiles and our agent hesitates to take Pong, which shows
that the agent may not have a good understanding of when to take Pong.
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To learn about the more detailed winning strategies, the amounts of different winning
scores obtained by our agent are shown in Table 8, where one, two, four, and eight mean
the corresponding scores multiplier. The occurrence of the one multiplier is very frequent,
because the agent does not consider the score factor as one of the learning objectives, so
the strategy is more inclined to the strategy that can win quickly, and usually the strategy
with very few points. The more rounds of the game, the greater the impact. Therefore,
in the future work, the factor of score should also be taken as one of the goals of the
model learning.

Table 8. The distribution results of the winning scores.

Score Multiplier One Two Four Eight More

Total 378 38 8 3 1
Occurrence Rate 88.3% 8.9% 1.9% 0.7% 0.2%

In addition, we also participated in the Mahjong group of the 2022 Competitive
World Cup national computer game tournament [44] and eventually won third place after
combining the proposed agent with other improvement methods. A total of 16 teams were
divided into four groups for a total of three rounds. The first-place and second-place teams
in each group advanced to the next round of the final round, which was scored based on
total points. Our Mahjong agent successfully finished second in the group and moved
on to the final round, where it eventually finished third, indicating some performance
and efficiency.

5. Discussions and Conclusions

In this paper, we present a new AI learning method and successfully train a Mahjong
AI agent to demonstrate the convergence and effectiveness of our method. Different
from the existing learning methods, this work first takes advantage of the internalized
MDP model and multiplayer MCTS algorithm to obtain the improved game strategy from
model-based reinforcement learning. With the almost “perfect” game strategy and the
Bernoulli random matrix, the proposed dropout-learning-based normal agent enables faster
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convergence, better performance, and increased effectiveness in the imperfect-information
Mahjong game. The experiments demonstrate the good performance of the proposed
MCTS-based model by comparing between different simulation models during RL training.
To further verify the effect of feature access and the internalized MDP model on the
performance of the model-based learning approach, the models are analyzed with different
influencing factors over evaluation simulations. Moreover, the proposed agent is evaluated
against the other baseline engine. The results show that the agent trained by our methods
achieves a good ranking performance and can play like a human in the Mahjong game.

However, the proposed methods and agent also have some limitations. First, it is very
computationally intensive due to the huge search tree and the large state-action space of
Mahjong. Second, it is currently only validated for Mahjong and it is not certain whether
the proposed methods can be applied in any other game scenarios. Future work will focus
on expanding the proposed methods to more complex and general game scenarios and
scaling it for training agents under multiple scenarios with optimization of the reward
signal. This will be more challenging, as the dimensions of the state and action space will
increase exponentially.

Furthermore, the proposed agent utilizes the round result of the game as a learning
signal, ignoring the detailed winning score information. The utilized learning signal is too
simple, and it is difficult to distinguish the different performances of the different winning
scores. Utilizing the additional reward predictor, such as the global reward prediction
model, has the potential to reduce the variance of the learning signal for each round and
optimize the learning signal by combining the winning score information and the final
game result, and further improve our agent.

When faced with more complex game scenarios, how to better represent the current
state, transition actions, and the impact of the state transition process in the network is
particularly important. In addition, how to better integrate it with convolutional networks
or combining the characteristics of other learning networks is also the key to further
improving the performance of the model. The feature representation of other games will
obviously affect the final model performance. In the dropout learning, in the face of
different games, the more hidden information there is, the more difficult it is to train the
agent model and the more training time is required.

The proposed method mainly combines several general agent training approaches
and the learned network still requires some necessary prior knowledge related to the
specific environment. For other multiplayer games, if more prior knowledge and transition
information related to the performance of the agent are provided during the state transition,
a corresponding better performance can be obtained in theory, and the agent learning
method has a certain generalization. Overall, the proposed method gradually constructs
the agent model by decomposing the decision-making problems related to specific scenarios,
which has certain adaptability and can also be applied in related fields such as robot control
and human–computer interaction, providing a new AI agent-based modeling idea.
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Appendix A. Mahjong Game Rules

Mahjong is an attractive multiplayer game in China. It has the same basic rules as
most types of Mahjong, such as Bloody Mahjong. However, it still has some special game
rules. The detailed rules are shown below.

1. Terminology

Definition 1—Ready Hand

This refers to the game state when the player can win only with another tile. According
to the game rules, the player can choose whether to declare or not, after declaring ready
hand, the player’s game will obtain points rewards and enter the auto mode, that is, except
for the behavior of calling Win and Kong, they can no longer perform any other actions,
such as changing hand tiles, that is, they must discard whatever tiles they draw, Chow,
Pong, etc.

Definition 2—Chow

Chow tiles mean that the player has two tiles adjacent or one apart. When the previous
player discards the adjacent or middle tiles, they can chow that card and make a meld.

Definition 3—Pong

Pong tiles mean that there is a pair of identical tiles, when any other player discards
the same tile, the player can Pong this tile.

Definition 4—Open Kong

A type of Kong which means that the player has three identical tiles. When any other
player discards the fourth tile of this type, the player can Open Kong this tile, which is also
called the straight Kong.

Definition 5—Closed Kong

A type of Kong. When a player has four identical tiles in their hand, they can Close
Kong with these four tiles. The difference from the straight Kong is that the fourth tile of
the Kong is obtained by the player themselves from the wall.

Definition 6—Add Kong

After the player makes a meld, they then draw the fourth tile that is the same as the
meld tile, and they Kong this tile, that is, an Add Kong.

Definition 7—Hu (Win)

When the 14 cards in the player’s hand can form a tile type with specific combination
conditions, it is called Hu (Win). This combination condition is the biggest difference
between Mahjong in different regions and different ways of playing.

2. Game rules

In the beginning, each player starts with 13 tiles, but the dealer plays the first tile, so
they hold 14 tiles. Then, players discard tiles counterclockwise. To win the game, players
need to constantly combine, split, and recombine, depending on the tiles drawn. The goal is
to quickly form the 14 tiles in their hands into a specific combination. Based on the Formula
(A1a,b), players also try to reach the maximum score indicated in Table A1.

Table A1. Winning hand calculation.

Type Multiplier Number of Suits Tiles Combination

X-normal (Ping Hu) 6 3 (4− a)× AAA+ a× ABC + DD
Y-bump series
Z-pure series

8
12

3
1

a× AAA + DD
(4− a)× AAA + a× ABC + DD

Q-seven pairs (Qi Dui) 12 3 7× DD
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(4− a)×AAA + a×ABC + DD, 0 ≤ a ≤ 4 (A1a)

b×DD, b = 7 (A1b)

Appendix B. Strategy Flow of Agent Model

As shown in Figure A1, we start by building the model’s strategy flow. It has two
main situations which it requires the agent model to handle. In particular, in the main step,
we integrate all actions instead of making multiple strategy models. We use the action
mask provided by the Mahjong simulator only in the root node to remove invalid actions
and improve the efficiency of action selection. Further, in the other-discard step, since
the interrupting actions, e.g., Pong, Chow, have action priority, the priority will be made
according to the priority order of Ron (win) > Kong or Pong > Chow. The action priority is
also provided by the Mahjong simulator and the agent model gradually learns the action
priority through training.
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Appendix C. Implementation of Tree Search Algorithm

The RL model learning process is shown in Figure A2 and consists of two parts:
interaction with the simulator, model training, and evaluation. The details are as follows:

• Simulation: Playing data are generated through the internalized MDP-based MCTS
model that interacts with the Mahjong simulator. Specifically, 250 simulations in each
step during training and the first 15 actions are randomly sampled from the policy in
order to extend the coverage of trajectory data. For the remaining steps, the action
with the highest probability is selected. Furthermore, we also add Dirichlet noise
Dir(α) [45] to the prior policy of the root node to encourage the exploration of new
strategies, which is related to the expected number of actions or moves. So, we have:

P(s, a) = 0.7 ∗ P(s, a) + 0.3 ∗Noise(s, a) (A2a)
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Noise(s, a) ∼ gamma_dist(10/legal_moves_count, 1) (A2b)

In the above equation, α = 10/legal_moves_count ≈ 0.9 in our experiment in order to
randomly sample about 10 moves over all legal moves. In addition, we also randomly
sample actions of the other-discard step in order to further improve the Mahjong game
trajectory data.

• Training: Networks were trained with stochastic gradient descent and momentum
item [46], and the annealing method is also used to gradually reduce the learning
speed, from an initial speed 0.01 to 0.001 and 0.0001 after the 10th and 20th iterations
of the model version, respectively. The batch size is 256, momentum item parameters:
alpha = 0.9, beta = 0.99. All of the training data follows the experience replay buffer
design, which always stores the training data of the latest several model versions and
regularly removes outdated training data.

• Update: For each model version update, the current version is matched against the
last best version with a thousand games. Then, we compare the winning rate of the
two models to obtain the best version among them.
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Figure A2. Tree search process of reinforcement learning. This mainly consists of a simulation process
and a network training process.

For each model version, we performed steps 1, 2, and 3 in sequence to obtain the
current best network, and then updated the MDP network of MCTS with the best network.
After that, we repeated steps 1, 2, and 3, and so on.

Furthermore, in order to speed up model training, virtual loss [47] technology was
also used in step 1 to improve the performance of multi-thread asynchronous simulations
within the search tree. Similarly, multi-CPU tree search and multi-GPU network prediction
concurrency technology were used to asynchronously execute multiple simulations to
increase the efficiency of the data generation. In step 2, the models were trained with
the DistBelief [48] technology to asynchronously update the gradient to speed up the
network convergence.
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Appendix D. Experiment Configurations

Test Data Collection: The Mahjong test data is obtained from the Mahjong platform
of JJ World Game Company. We divide the collected test data into a verification set and
a test set in a ratio of 1:2. The original data are game logs generated by human players.
These logs consist of all information of each player and the wall tiles. We first need to parse
the log strings to standard ascii arrays, then translate them to the corresponding tiles and
actions information. For example, 0(0)8348346:02030409121316222324252828 is the original
log which contains a player’s basic information, the first number, 8348346, is the current
player’s points and the second number string is the initial hand tiles of this player. The
obtained ascii arrays, such as 3D01, means the 3rd player discarded the one character: D
represents discard, P represents Pong, and H represents win, and so on. After parsing these
log data, we also need to remove data with errors or incomplete records. An example log
of a Mahjong game is shown in Figure A3.
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Tournament Configuration: To evaluate performance, we used the open-source
Mahjong AI engine (https://github.com/MahjongRepository/tenhou-python-bot (ac-
cessed on 12 July 2022)) as a baseline engine. Tenhou-Bot was a good performance (3~4 dan)
hand-designed AI based on python and third-party Mahjong API. The author carefully
designed a value estimation system based on score estimation, and made strategic priority
adjustments for all possible situations. We made some adaptive modifications on the basis
of it, such as being compatible with the agent model (C++) through Python embedding
technology and capable of interacting, making detailed adjustments to the program code to
adapt to the simulated Mahjong environment of this article, and repairing bugs in some
special scenarios. The baseline engine only required a single CPU to run, and each step in
the decision-making process could be controlled within a completely acceptable running
time (<0.5 s/step). Then, we measured the real performance of the proposed agent model
through game tournaments against the above Mahjong engine. We set up 10 independent
tournaments for evaluation to reduce the effect of the randomness of initial hand tiles,
each tournament consisted of 100 Mahjong games, each Mahjong game consisted of four
rounds. In each game, we randomly selected one of four players as the agent model and
the other three of the four players as the above Mahjong engine. The Tenhou stable rank
rule, which was mentioned in Section 4.3, was used to fairly evaluate the performance of
the proposed agent model. The agent model took about 0.5 s per step (move) under our
hardware conditions. The opponent took about 0.3 s average per move and did not use any
search or network evaluation.

Online Settings: Based on the online Mahjong game platform, the development of
the agent is realized according to the API interface document in the Python 3.9 environ-
ment. As an object-oriented interpreted programming language, Python is highly scalable
and has a rich and powerful class library. In addition, it also has the advantage of be-
ing cross-platform.

Tiles representation: Suit: consists of Pin (P), Sou (S), Man (M), other tiles if included
(Z). Rank: 1, 2, 3, 4, 5, 6, 7, 8, 9. Among them, suit and rank can be combined with each
other, for example, 4S means four Sous, and 3M means three Mans.

Send message: The server interacts with the client and sends messages. The server
will always monitor the actions of all players in the game, collect and update the status in-
formation during the game, encapsulate the information in json data format, and then send
it to all clients in a timely manner. The API interface definition is shown in Table A2 below.

https://github.com/MahjongRepository/tenhou-python-bot
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Table A2. API interface definition.

Key Type Description

Pong string Pong meld, e.g., “222M”
Chi string Chow meld, e.g., “234S”

Kong string Kong meld, e.g., “3333S”
Seat string Current player seat, e.g., “1”

History array
Action or move history sequence, e.g.,

“[“1,Chi,234S”,“1,Dis-
card,5M”]”

Hand string Player hand tiles, e.g., “33M2468P6678S123Z”
Response: client feedback action command. After receiving the json data information sent by the server, the client
first uses the seat field to determine whether they are the current decision-making player. If they are, the client
uses the relevant data of the server for calculation and inference, and then uses the API interface to return the
data in the specified format; otherwise, the client will ignore this information. The definitions of data sent by the
client are shown in Table A3 below.

Table A3. Client response definition.

Key Type Description

Code int http status code, e.g., 100
Err_msg string error message, e.g., “illegal”

Action_content string tiles of action, e.g., “123M”
Action_type string type, e.g., “Pong”
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