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Abstract: A coverage hole is a problem that cannot be completely avoided in three-dimensional
hybrid wireless sensor networks. It can lead to hindrances in monitoring tasks and adversely affect
network performance. To address the problem of coverage holes caused by the uneven initial
deployment of the network and node damage during operation, we propose a distributed hole
detection and multi-objective optimization emperor penguin repair algorithm (DHD-MEPO). In the
detection phase, the monitoring region is zoned as units according to the quantity of nodes and the
sensing range, and static nodes use the sum-of-weights method to campaign for group nodes on their
terms, determining the location of holes by calculating the coverage of each cell. In the repair phase,
the set of repair nodes is determined by calculating the mobile node coverage redundancy. Based on
the characteristics of complex environments, the regions of high hole levels are prioritized. Moreover,
the residual energy homogeneity of nodes is considered for the design of multi-objective functions. A
lens-imaging mapping learning strategy is introduced to perturb the location of repair nodes for the
optimization of the emperor penguin algorithm. Experimental results illustrate that the DHD-MEPO,
compared with the C-CICHH, 3D-VPCA, RA, EMSCOLER, and IERP algorithms, can balance the
uniformity of the residual energy of each node while satisfying the network coverage requirements
and network connectivity, which effectively improves the network coverage performance.

Keywords: three-dimensional hybrid wireless sensor networks; coverage hole; multi-objective func-
tions; emperor penguin algorithm; lens-imaging mapping learning strategy

1. Introduction

Wireless Sensor Networks (WSNs) are multi-hop self-organizing networks consisting
of a set of sensor nodes, small devices, etc., whose task is to monitor events in a specific
region and transfer the collected data to a base station (BS) for centralized processing [1,2].
Based on the limitations of real-world scenarios, the deployment of static nodes alone
cannot achieve the desired coverage effect, while the deployment of mobile nodes only has
the problem of high cost. The hybrid wireless sensor networks composed of static nodes and
mobile nodes are more relevant in practical applications such as environmental monitoring,
military surveillance, and disaster recovery [3,4]. Through collaborative work between
nodes, various environmental monitoring and sensing information can be transmitted to
the BS in real-time. If a large quantity of nodes is thrown randomly in reasonable locations,
they can cover the target area more precisely [5,6]. However, in real target scenarios, it is
often required to throw nodes randomly in a high-density, large-scale manner in sensor
networks, but this large-scale random node-throwing approach makes it difficult to deploy
nodes in optimal locations at once, resulting in redundant and unperceived regions due
to either the over-sparse or dense distribution of nodes in the target region. This node
coverage overlap can lead to redundancy in transmitted and received data and channel
interference, thus wasting limited energy resources [7].
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The nodes rely on their own limited battery power supply, which cannot be replenished
in real time, and the secondary replacement of the power supply is not very feasible. As a
result, the life cycle of hybrid WSNs is significantly limited. When sensor nodes terminate
working because of uneven distribution or exhaustion of energy, malfunction, etc., there
are inevitable coverage holes in the network. A coverage blind zone is one which is not
perceived by any sensor node in the monitored region. The emergence of blind zones can
change the network’s topology, which affects normal communication between nodes and
the reliability of data. As sensor nodes may stop working at any time, coverage holes
can appear anywhere in the network [8]. In addition, if the coverage holes formed are
not repaired, the number and size of coverage holes will gradually increase, disrupt the
transmission of data, disconnect from the network, and make certain regions of the network
non-monitored [9].

Coverage issues are a fundamental indicator of the quality of service (QoS) of hybrid
WSNs [10] that reflect how well the sensor network nodes supervise the monitored area.
The detection and repair of coverage holes are becoming increasingly important. With the
complexity of the actual environment, the full range of environmental characteristics also
needs to be studied [11,12]. In underground infrastructure monitoring, it is often used to
monitor storage tanks, power lines, and pipelines. Any faults or leaks can be located and
repaired in time by using data shared among sensor nodes [13]. Precision agriculture is a
field that is constantly evolving and the need for effective crop production and resource
management is improved by monitoring conditions, such as soil mineral composition,
moisture, and water content [14]. In medical environment applications, the efficiency
and safety of medical devices and the life quality of patients can be effectively improved
through patient vital sign monitoring, ward monitoring, medical device monitoring, and
drug tracking [15]. In environmental applications, temperature-sensitive sensor nodes
in forests are deployed to track the occurrence of fires [16]. Therefore, in this paper, we
use the environmental perception importance level indicator as an important factor for
consideration when restoring a hole in the node restoration phase.

In this paper, we have devised a distributed detection and multi-objective optimization
based on the emperor penguin repair method for coverage holes to solve two key problems
in 3D hybrid WSNs, which are hole detection and repair. In addition to receiving and
sending data information in hybrid WSNs, static nodes compete for the role of elected group
nodes based on their own conditions, and are responsible for aggregating information
within their own cells and detecting the source of the hole information that informs the
relevant nodes. While mobile nodes are responsible for moving to the optimum location
to repair the coverage blind zone based on the received hole information, which uses a
multi-objective optimized swarm intelligence algorithm. The contributions are as follows:

1. Based on the geometric unit division of the monitoring area, group nodes are selected
by using a sum-of-weights method according to static node remaining energy and
average distance accumulation values, grouping the management of data information
from static and mobile nodes via distributed algorithms, which simplifies network
management while ensuring network stability and extending the overall network
lifetime.

2. A multi-objective fitness function is designed by considering a customized degree of
hole region ranking and the uniformity of the remaining energy of the repair nodes, as
well as the ratio of the node distance from the hole to the maximum distance travelled.
The algorithm prioritizes learning and concentrates on hole regions with high levels
of metrics, where the network can meet guaranteed coverage requirements while
also performing well in terms of total node energy consumption and node energy
uniformity.

3. Using network connectivity as a constraint, the optimized emperor penguin algorithm
introduces a lens-imaging mapping learning strategy to perturb the location of the
repair nodes. It can enhance the algorithm’s ability to search for the hole region in
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different directions. In this way, the repair nodes can find the optimal repair location
to cover and improve the overall efficiency of the network.

The paper is structured as follows: The related works are detailed in Section 2. The
network model of a 3D hybrid WSNs and definitions of related terms are presented in
Section 3. Section 4 describes the proposed detection and repair algorithm DHD-MEPO in
detail. In Section 5, simulation experiments are conducted with the DHD-MEPO and other
algorithms to compare and evaluate the network’s performance. Section 6 provides the
conclusion and the outlook for further research work in the future.

2. Related Works

In recent years, in the field of sensing coverage, many solutions have been proposed
by scholars for the purpose of accurately detecting the position of coverage holes and using
effective repair methods to repair holes, thus improving the QoS of WSNs.

Among them, the swarm intelligence optimization algorithm is used for coverage hole
detection and repair in a two-dimensional environment. Shyama M et al. [17] presented
a multi-objective fault-tolerant routing identification approach combined with a particle
swarm algorithm and a genetic algorithm. It integrates coverage, communication cost,
proximity, and other factors and uses particle swarm technology to monitor the nodes in the
cluster for faults and a genetic algorithm to determine fault-free status. Ali Hallaf et al. [18]
divided the specific region based on the static node density deployed in the network, used
a round robin working mechanism for the overlap between nodes, and finally added nodes
to repair the holes by using a locust optimization algorithm combined with the objective
function of the size of the holes and the node movement distance. However, connectivity
and the minimum transmission path during the node repair process were not considered.
The authors of [19] constructed auxiliary lines to detect underground monitoring area holes
by mathematical methods and used tree seeding algorithms with randomness, optimality,
and spiral generation techniques to generate new nodes to repair the blind zones; however,
the effectiveness of the algorithm complexity was not demonstrated in comparative experi-
ments. Yan et al. [20] proposed consideration of the mobile state of nodes as the motion
of artificial fish to repair the holes. Based on a comparison with a correlation threshold,
the algorithm introduced jumping and respawning behavior when the population fell into
local extremes. It extended the search range of the population, and effectively improved
network coverage, which did not demonstrate the performance of the nodes in the aspect
of energy consumption as well as connectivity.

Some scholars have proposed a strategy to prioritize the use of boundary nodes to
address the coverage hole problem in a two-dimensional scenario. Li et al. [21] focused on
the phenomenon of coverage blind zones due to the node failure, the algorithm divided
the nodes in the region into the edge and interior nodes, where the nodes are moved by the
perceived gravity of the surrounding environment. By calculating the direction and distance
of movement, as well as energy consumption, priority is given to moving edge nodes,
which effectively reduces unnecessary movement energy consumption. Abhishek Gupta
et al. [22] used unsupervised machine learning to identify interior and boundary nodes,
and a social spider optimization algorithm was used to adjust Gaussian mixture modelling
parameters with maximized expectation to improve the detection rate of coverage holes.
The authors of [23] proposed an enhanced hole-boundary detection algorithm for the
detection of node failures in networks and connectivity reconstruction after node failures,
which effectively avoids network congestion during data transmission and thus improves
energy efficiency, but it is difficult to accurately detect the hole boundary when the hole
range is large.

Some scholars have also effectively combined mathematical thinking with the coverage
hole problem. Lu et al. [24] proposed the development of a prioritization strategy in hybrid
heterogeneous networks based on mathematical geometric approaches to determine the
size of hole regions and use a limited quantity of mobile nodes to repair the holes, which
reduces the redundancy of mobile nodes in the area, with a lack of analysis of the mobile
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nodes’ energy consumption aspects. The authors of [25] addressed the problem of the
high complexity of traditional detection algorithms and proposed a hole detection method
on the basis of a simplified Rips complex, in which nodes are classified by combining
the degree and clustering coefficients of the complex networks and Turan’s theorem. It
determines regular dormant redundant nodes, detects holes from a loop perspective, and
achieves high accuracy and low complexity performance of the algorithm, but cannot be
directly applied to detecting coverage holes in 3D space in terms of holes. Cansu Cav
et al. [26] proposed a new 0–1 mixed integer planning model in smart grid regions, based
on optimization, heuristic, and hybrid solutions to find the shortest path for mobile sensor
nodes with sufficient energy to cover blind zones in the shortest time while traversing the
repair holes. Li et al. [27] balanced the energy consumption of cluster head nodes in the
network by establishing a model for the determination conditions of dead node dispersion,
selecting cluster head nodes based on the node energy consumption speed parameter, node
degree parameter, and distance parameter, as well as affecting the probability of electing
cluster heads by determining whether the nodes are in the energy trough or edge zones.
Finally, node transmission scheduling and data transmission strategies are introduced to
effectively suppress the generation of energy holes. Vipul Narayan et al. [28] proposed
an optimization protocol for the coverage overlap and hole problem. A novel method for
determining redundant nodes is given in the initialization phase of the network and a
sleep–wake method is employed to effectively extend the lifecycle of the network. However,
only the hole repair method was proposed, and the hole detection problem was not studied.

Some other scholars have combined the coverage hole problem with fuzzy logic rea-
soning or routing. Jay Kumar Jain et al. [29] established a Bi-layered WSN-IoT topology.
They used a weighting method to elect cluster heads based on factors such as link band-
width and used an entropy function to perform clustering and merging operations. Fuzzy
logic is used to find out which node can recover the hole, and finally the optimal route
for data communication is selected according to the emperor penguin algorithm, which
effectively solved the problems arising in the field of agriculture. Y. Harold Robinson
et al. [30] constructed communication links between sensor nodes through paths and used
the level of connectivity as the basis for hole detection. They also used a multi-attribute
function constructed by fuzzy rules to compromise on hole events, effectively improving
the efficiency of hole detection. Juneja et al. [31] proposed the use of the Red Deer Simulated
Annealing model based on the network partitioning of regions to detect holes and moving
redundant nodes to repair the holes, which estimates routes based on link stability and
then selects relay nodes for data transmission to maximize the network life cycle. The
literature [32] proposed a coverage-aware multi-path planning method based on a particle
swarm algorithm, which can work in concert with any hole repair algorithm to repair holes
caused by faulty nodes and plan efficient paths for mobile collectors.

In the study of covering target points in 3D regions, Dang et al. [33] performed
a Voronoi division of nodes in 3D regions, used virtual force algorithms to introduce
correlation forces between target points and nodes, and precisely repaired holes according
to the priority coverage mechanism of each cell. Hao et al. [34] employed a computational
geometry approach to detect 3D surface target region, selected redundant nodes around the
hole, determined the repair direction and route, moved the repair nodes to cover the holes
based on the effect of virtual forces, and verified the network performance of coverage and
connectivity in a realistic scenario.

In the study of 3D underwater complex environments, Zhuang et al. [35] came up
with a multi-autonomous vehicle-based coverage hole repair algorithm under multiple
constraints in 3D underwater environments, firstly transforming the multiple constraints
into an unconstrained multi-objective repair problem Pareto-solving optimum, combining
multi-agent tactics and diversity archiving tactics to solve the hole problem, but it is
more costly to target different types of sensor node networks. Zhang et al. [36] proposed
a clustering-based hole repair algorithm for complex underwater environments. The
algorithm used a three-dimensional dense network topology model that treats the coverage
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hole as a vulnerable region. The temporarily controlled nodes identified the dormant
redundant nodes around the vulnerable region and woke up the nodes to repair the
vulnerable hole region according to priority. However, the nodes’ performance in the
aspect of energy consumption and comparative analysis with other advanced algorithms
was not analyzed in the simulation experiments. Amir Chaaf et al. [37] came up with an
approach for hole detection and repair of multi-autonomous underwater vehicles based
on cluster formation of the ocean depth, dynamic dormancy and wake-up scheduling
mechanisms, routing of virtual pictures, and repeater-assisted hierarchical clustering. The
introduction of a bi-criteria mayfly optimization algorithm for hole detection effectively
reduced the quantity of holes and packet loss rate.

Table 1 shows the comparison between the algorithms mentioned above.

Table 1. Literature review of related works.

Ref. Year
Published

Algorithm
Abbreviations Monitored Area Network Structure Methodological

Theory Deficiencies

[17] 2022 FTGSO

Two-dimensional
area

Heterogeneous
network

Swarm intelligence
algorithms

Slow convergence
speed and poor

accuracy in finding
the best

[18] 2022 × Hybrid network

[19] 2022 MTSA Homogeneous
network

[20] 2020 FSHR Hybrid network

[21] 2022 × Homogeneous
network Detection and

repair strategies
using boundary

nodes

Difficult to detect
hole boundaries
when the hole is

large

[22] 2022 SSO-EM GMM Homogeneous
network

[23] 2022 EBHD Homogeneous
network

[24] 2022 VORPH
Hybrid

heterogeneous
Network

Combining the
methods of

mathematical
theory

High time
complexity and

long running times

[25] 2020 × Homogeneous
network

[26] 2023 × Hybrid network

[27] 2022 EHSRA Homogeneous
network

[28] 2022 CHOP Hybrid network

[29] 2020 × Heterogeneous
network

Fuzzy logic and
combination with

routing

Poor accuracy in
detecting and

repairing holes

[30] 2021 FICHD Homogeneous
network

[31] 2022 EMSCOLER Homogeneous
network

[32] 2022 CAMP Homogeneous
network
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Table 1. Cont.

Ref. Year
Published

Algorithm
Abbreviations Monitored Area Network Structure Methodological

Theory Deficiencies

[33] 2019 3D-VPCA Three-dimensional
space

Homogeneous
network Mathematical

geometry methods

Higher energy
consumption of the

network[34] 2020 3D-SCHDR Three-dimensional
surface Hybrid network

[35] 2020 MECHR

Three-dimensional
underwater

Heterogeneous
network Clustering and

multi-objective
optimization

methods

The cost of the
network is more

costly
[36] 2021 × Heterogeneous

network

[37] 2021 ReVOHPR Heterogeneous
network

× indicates that the abbreviation of the algorithm is not given in the literature.

3. Network Models and Related Definitions

Assume that the network monitoring area is a k× k× k 3D target area, discretize the
network into k3 target points, the set of target points is E =

{
e1, e2, . . . , ej, . . . , ek3

}
. N mobile

and static nodes are thrown randomly, and the set of nodes is S = {s1, s2, . . . , si, . . . , sN}.
All nodes are deployed in the same monitoring region, and the sensing area of each node is
a sphere with its own position as the centre of the sphere and a sensing radius of Rs. The
distribution of hybrid nodes in the target region is shown in Figure 1.
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3.1. Perceptual Model

Considering practical application scenarios, the coverage probability of a spherical
probabilistic perception model varies with the distance of the nodes. Traditional spherical
sensing usually uses a Boolean model, which can lead to errors between the actual coverage
and the calculated results. The effect of signal attenuation on the coverage model is
considered to avoid the cliff-like perceptual boundaries of traditional Boolean perception
models and to match the actual propagation of the node-sensing signal more closely. In this
paper, we use a probabilistic perception model that can reflect the properties of the nodes’
perceived distance [38]:

P
(
si, ej

)
=


1

e−αλβ

0

d
(
si, ej

)
≤ Rs − Ra

Rs − Ra < d
(
si, ej

)
< Rs + Ra

d
(
si, ej

)
≥ Rs + Ra

, (1)
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where d
(
si, ej

)
is the distance between node si and target point ej,

d
(
si, ej

)
=
√(

xi − xj
)2

+
(
yi − yj

)2
+
(
zi − zj

)2. Ra describes the uncertainty perception
capability of the node. λ = d

(
si, ej

)
− Rs − Ra, α and β are the attenuation factors that

determine the degree of attenuation. Define α = β = 0.5.

3.2. Energy Model

The energy consumed by nodes in hybrid WSNs includes sending and receiving data,
processing data, and other energy consumption [39]. While static nodes consume energy
mainly from sending and receiving data, mobile nodes consume a large quantity of energy
for movement when repairing coverage holes, in addition to their own energy consumption
for sending and receiving data. A node’s energy consumption by sending l bit of data
while d meters apart is:

E(l, d) =
{

lEelec + lε f sd2

lEelec + lεampd4
d < d0
d > d0

, (2)

d0 =

√
ε f s

εamp
, (3)

Er(l, d) indicates the node’s energy consumption by receiving l bit of data:

Er(l, d) = l × Eelec, (4)

Em indicates the node’s energy consumption by moving d metres:

Em = d× e0, (5)

where Eelec represents the node’s energy consumption by sending and receiving a unit bit
of data, d0 is the transmission distance threshold, ε f s and εamp are the power amplification
circuit loss coefficients under the free-space and multiplex fading models, respectively, and
e0 is the node’s energy consumption when it moves a unit distance.

3.3. Definition of Terms

Definition 1. (Neighbor node): In hybrid WSNs, there exist two nodes si and sj with Euclidean
distance d

(
si, sj

)
< 2Rs, then nodes si and sj are said to be one-hop neighbors of each other.

Definition 2. (Redundant node): A sensor node si is said to be a redundant node of node sj, if its
sensing area is overlappingly covered by the sensing area of its neighbor node sj, or if node si is
jointly covered by the neighbors node si+1,i=1,2,...,N−1 of node sj.

Definition 3. (Maximum distance travelled by a node): In this paper, the deployed redundant
mobile nodes in hybrid WSNs are taken as repair nodes, and a swarm intelligence optimization
algorithm is used to determine the optimal repair location of the redundant mobile nodes, so as to
repair the coverage holes in the area. The maximum distance that the redundant node si can move is
limited by considering the node energy consumption and moving distance factors:

dmaxi =
n

√
Eresi

li
(6)

where dmaxi is the maximum distance moved by the redundantly moving node si; Eresi is the current
residual energy of node si; li indicates the number of times node si has currently moved; the default
is 1; and n is usually taken as 2 ∼ 4.
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Definition 4. (Mobile node utilization): In hybrid WSNs, nodes are randomly thrown in the
monitoring region in a certain ratio. The main job of the mobile node is to take care of the repair of
holes, but when the quantity of blind zones in the region is small, some of the mobile nodes will act
as static nodes. The ratio of the quantity of mobile nodes to repair holes to the overall quantity of
deployed mobile nodes is called mobile node utilization.

4. DHD-MEPO Algorithm

In this section, we come up with a detection and repair approach to address the
coverage problem of hybrid WSNs. The approach is organized into two parts. In the
coverage hole detection part, for the purpose of facilitating the management of hybrid
WSNs, the region is classified as cells on the basis of the quantity of nodes deployed in
the region and the nodes’ own sensing range. The group node within each cell is selected
according to two parameters: the residual energy value of the static node and the average
distance value from the node and the BS, which is responsible for aggregating the data
information of the group and then forwarding it to the BS. Then, according to the quantity
of target points covered by the nodes in each cell, the coverage ratio of the cell is calculated
and the cell ID location covering the hole is determined. In the blind zones’ repair part,
the coverage redundancy of mobile nodes in the area is calculated and based on the node
redundancy level; then, a suitable mobile node is selected as a candidate repair node
responsible for repairing the hole. Finally, a multi-objective fitness function is established,
and the final repair location of the repair node is determined using the optimized emperor
penguin algorithm to complete the coverage repair and optimization. Figure 2 shows the
general flowchart of the DHD-MEPO algorithm.

Electronics 2023, 12, x FOR PEER REVIEW 8 of 27 
 

 

4. DHD-MEPO Algorithm 
In this section, we come up with a detection and repair approach to address the cov-

erage problem of hybrid WSNs. The approach is organized into two parts. In the coverage 
hole detection part, for the purpose of facilitating the management of hybrid WSNs, the 
region is classified as cells on the basis of the quantity of nodes deployed in the region and 
the nodes’ own sensing range. The group node within each cell is selected according to 
two parameters: the residual energy value of the static node and the average distance 
value from the node and the BS, which is responsible for aggregating the data information 
of the group and then forwarding it to the BS. Then, according to the quantity of target 
points covered by the nodes in each cell, the coverage ratio of the cell is calculated and the 
cell ID location covering the hole is determined. In the blind zones’ repair part, the cover-
age redundancy of mobile nodes in the area is calculated and based on the node redun-
dancy level; then, a suitable mobile node is selected as a candidate repair node responsible 
for repairing the hole. Finally, a multi-objective fitness function is established, and the 
final repair location of the repair node is determined using the optimized emperor pen-
guin algorithm to complete the coverage repair and optimization. Figure 2 shows the gen-
eral flowchart of the DHD-MEPO algorithm. 

 
Figure 2. General flowchart of the DHD-MEPO algorithm. 

4.1. Regional Unitization of the Network 
There are 𝑁 mobile sensor nodes and static sensor nodes thrown in the target region, 

and the quantity of nodes is sufficient. The BS center is responsible for receiving all the 
data and centralizing the data transmi ed by the nodes in turn. That results in an exces-
sive load on the BS, and each node that carries the transmi ed data may cause network 
congestion and consume more energy on the way to its destination. Therefore, to facilitate 
the management of the network region and save unnecessary energy consumption, the 
monitoring region is first divided into cells based on the quantity of randomly thrown 
nodes and the sensing area of the nodes, with each cell representing a unique ID number: 

𝑉 = 𝜋𝑅 , (7)

⌈𝑁 ⌉ = , (8)

Figure 2. General flowchart of the DHD-MEPO algorithm.

4.1. Regional Unitization of the Network

There are N mobile sensor nodes and static sensor nodes thrown in the target region,
and the quantity of nodes is sufficient. The BS center is responsible for receiving all
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the data and centralizing the data transmitted by the nodes in turn. That results in an
excessive load on the BS, and each node that carries the transmitted data may cause network
congestion and consume more energy on the way to its destination. Therefore, to facilitate
the management of the network region and save unnecessary energy consumption, the
monitoring region is first divided into cells based on the quantity of randomly thrown
nodes and the sensing area of the nodes, with each cell representing a unique ID number:

V =
4
3

πR3
s , (7)

dNideale =
k3

V
, (8)

Dratio =
dNideale

N
, (9)

M =


1,
23,
33,
. . .

0.9< Dratio ≤ 1
0.8< Dratio ≤ 0.9
0.7< Dratio ≤ 0.8

. . .

, (10)

c =
k

3
√

M
, (11)

where V is the sensing area of a sensor node; Nideal is the optimal quantity of nodes to be
thrown in the region under ideal conditions, rounded upwards. Dratio is the ratio of ideal to
actual quantity of nodes thrown, the smaller the ratio, the more nodes the network actually
deploys and the greater the number of cells to be divided. M is the total quantity of cells
to be divided in the target region, the set is Q = {q1, q2, . . . , ql , . . . , qM}, and c is the edge
length of each cell divided.

Figure 3 shows a diagram of the target region partitioned into cells according to
different node densities.
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Figure 3. Cell division in the target region: (a) Area partitioned into 33 cells; (b) Area partitioned into
43 cells.

When the target region is divided into cells based on the density of nodes deployed, a
group node is selected in each of the divided cells. The group node is responsible for further
data fusion processing of the data received by the group before forwarding it to the BS.
That minimizes energy consumption and simplifies network management by processing
the information transmitted by the relevant nodes in groups. Load balancing is achieved to
lengthen the network lifecycle.
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Suppose that the quantity of cell bodies divided is 64 according to Equation (10), as
shown in Figure 4a, and any one of its layers is taken for observation. Because of the initial
throw of nodes at random, the quantity of nodes within each cell body is uneven. When
too many nodes are distributed within a cell body, for example, in Figure 4b, cell body
D(2,1,2) is distributed with 10 nodes. If only one group node is selected within this cell body,
it will lead to the group node carrying too much data information volume and quickly
exhausting the energy of the group node, so at least two or more group nodes can be set up
within this cell to jointly process the data information of the group. When too few nodes are
distributed within a cell, e.g., cell D(4,1,4) has only one node distributed, it would waste the
resources of the node if the task of sending and receiving information to the BS is carried
out alone. So, merge with neighbor cell bodies that remain connected and select an optimal
node as a group node to aggregate data information.

Electronics 2023, 12, x FOR PEER REVIEW 10 of 27 
 

 

   
(a) (b) (c) 

Figure 4. Selection of group nodes within a cell: (a) Initial position of the node; (b) High density and 
low-density unit areas; (c) Selection of group nodes. 

A boundary threshold is set and if the quantity of nodes within the cell is less than 
the lower limit of minimum threshold, it is merged with the surrounding neighbor cells. 
If the quantity of nodes within the cell exceeds the upper limit of the maximum threshold, 
more than two group nodes within the cell will be selected to be responsible for collecting 
information. 

𝐵𝑜𝑢𝑛𝑑 = 𝑈𝐵 − 𝐿𝐵, (12)

In this paper, the static nodes within each cell will be selected as group nodes, and 
the cumulative value of each static node will be aggregated according to two parameters: 
the residual energy of the static node and the average distance value. The higher the cu-
mulative value, the higher the possibility of the static node being elected as a group node. 
The role of the group node is also rotated at any time, thus maintaining the stability and 
overall network lifetime: 

𝐶𝑉 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒 𝐸 + , (13)

𝐴𝑑𝑣 = 𝜆 𝑑(𝑠 , 𝐵𝑆) + ∑ 𝑑 𝑠 , 𝑠 , 𝑖 ≠ 𝑗, (14)

where 𝐸  is the residual energy of static node 𝑠 ; 𝐴𝑑𝑣  is the weighted sum of the av-
erage distance value between static node 𝑠  and other nodes within its own cell and the 
distance value to the BS; and 𝜆 , 𝜆  are usually taken as 1/2. 𝑡 is the quantity of nodes 
distributed within the cell. 

The three red nodes in Figure 4c are the group nodes of the cell 𝐷( , , ) and the cell 
𝐷( , , ), 𝐷( , , ), respectively. 

4.2. Calculation of cell Coverage 
Based on the divided cell side length 𝑐 , it is determined that there are 𝑐   target 

points within each cell, and the coverage ratio of each cell is calculated to determine 
whether there are coverage holes within each cell, and thus the position of the coverage 
blind zones. A sensor node can cover multiple target points, while the same target point 
is also covered by multiple sensor nodes, as illustrated in Figure 5. Target point 𝑒  is cov-
ered by sensor nodes 𝑠 , 𝑠 , and 𝑠  at the same time, indicating that there are three sen-
sor nodes covering target point 𝑒  at the same time, then the coverage of sensor node 𝑠  
on target point 𝑒  at this time is 1/3, and so on. Then, any one sensor node 𝑠  within the 
cell has a coverage of all target points 𝑒 , 𝑗 = 1,2, … , 𝑐  within the cell, the sum of coverage 
can be calculated as: 

𝑃(𝑠 , 𝑐 ) = ∑ 𝑃 𝑠 , 𝑒 , (15)

Figure 4. Selection of group nodes within a cell: (a) Initial position of the node; (b) High density and
low-density unit areas; (c) Selection of group nodes.

A boundary threshold is set and if the quantity of nodes within the cell is less than
the lower limit of minimum threshold, it is merged with the surrounding neighbor cells. If
the quantity of nodes within the cell exceeds the upper limit of the maximum threshold,
more than two group nodes within the cell will be selected to be responsible for collecting
information.

Bound = UB− LB, (12)

In this paper, the static nodes within each cell will be selected as group nodes, and
the cumulative value of each static node will be aggregated according to two parameters:
the residual energy of the static node and the average distance value. The higher the
cumulative value, the higher the possibility of the static node being elected as a group node.
The role of the group node is also rotated at any time, thus maintaining the stability and
overall network lifetime:

CVsi = Aggregate
(

Eresi +
1

Advsi

)
, (13)

Advsi = λ1d(si, BS) +
λ2

t− 1∑t−1
j=1 d

(
si, sj

)
, i 6= j, (14)

where Eresi is the residual energy of static node si; Advsi is the weighted sum of the average
distance value between static node si and other nodes within its own cell and the distance
value to the BS; and λ1, λ2 are usually taken as 1/2. t is the quantity of nodes distributed
within the cell.

The three red nodes in Figure 4c are the group nodes of the cell D(2,1,2) and the cell
D(3,1,4), D(4,1,4), respectively.
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4.2. Calculation of cell Coverage

Based on the divided cell side length c, it is determined that there are c3 target points
within each cell, and the coverage ratio of each cell is calculated to determine whether there
are coverage holes within each cell, and thus the position of the coverage blind zones. A
sensor node can cover multiple target points, while the same target point is also covered by
multiple sensor nodes, as illustrated in Figure 5. Target point e2 is covered by sensor nodes
s1, s2, and s6 at the same time, indicating that there are three sensor nodes covering target
point e2 at the same time, then the coverage of sensor node s1 on target point e2 at this time
is 1/3, and so on. Then, any one sensor node si within the cell has a coverage of all target
points ej, j = 1, 2, . . . , c3 within the cell, the sum of coverage can be calculated as:

P
(

si, c3
)
= ∑c3

j=1 P
(
si, ej

)
, (15)
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The coverage of all nodes within the cell for all target points within the cell in aggregate,
i.e., cell coverage, is:

PD(x,y,z)
=

∑t
i=1 P

(
si, c3)

c3 , (16)

where t is the quantity of sensor nodes distributed within the cell D(x,y,z).
If the coverage of a cell is greater than 90%, it means that there is no coverage hole

in the cell; otherwise, there is a coverage hole in the cell. As shown in Figure 6, the cell
marked in red indicates that there is a hole in the cell and the redundant nodes in the target
region need to be moved to cover the hole.
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Algorithm 1 is the algorithm covering the hole detection phase:

Algorithm 1. Detection phase algorithm.

1: Initialization: edge length k of the network, number of network cells M, cell ID number D(x,y,z),
cell edge length c, number of nodes N, node perception range V
2: dNideale = k3

V , Dratio = dNideale
N //Calculation of the node ratio based on the quantity of nodes

and the node sensing range
3: The quantity of cells is divided according to Dratio, with each cell ID being D(x,y,z)

4: CVsi = Aggregate
(

Eresi +
1

Advsi

)
//Cumulative values according to static node remaining

energy and average distance values
5: Select the group nodes for each cell D(x,y,z)
6: for (i = 1; i ≤ N; i++) do

7: P
(
si, c3) = ∑c3

j=1 P
(

si, ej

)
//Calculate the sum of each node’s coverage of all target points

within the cell

8: PD(x,y,z)
=

∑t
i=1 P(si ,c3)

c3 //Calculate the coverage of each cell
9: if Cell coverage >90% then
10: No holes within the unit
11: else
12: The unit has a hole in it
13: end if
14: end for

4.3. Calculating Mobile Node Coverage Redundancy

When repairing holes, to ensure cell coverage on the basis of meeting the actual
application requirements, we need to select redundant mobile nodes in the target region to
repair, using the resources of redundant mobile nodes to find hole coverage as effectively
as possible and successfully improving the efficiency of the nodes. Therefore, candidate
repair nodes need to be identified. When selecting candidate repair nodes, we first select
from within the cell with the highest cell coverage. Assuming that certain mobile sensor
nodes are densely distributed within a cell with a cell coverage of 90% or more, according
to the calculated redundancy of the target points within the mobile node coverage cell, we
judge that the redundancy is higher than 90% as a candidate repair node. Taking mobile
node s11 in Figure 7 as an example, the quantity of target points within the coverage cell
of s11 is 10. The statistics of these 10 target points being covered by other neighbor nodes
around s11 are shown in Table 2, where 1 means covered by neighbor nodes and 0 means
not covered.
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Table 2. Coverage of s11 by surrounding neighbor nodes.

s11 Neighbor Nodes

s11 Covering Target Points
e11 e12 e13 e14 e15 e16 e17 e18 e19 e20

s12 0 0 0 0 1 1 1 1 0 1
s13 1 0 0 0 1 0 1 0 0 0
s16 1 1 0 0 0 0 0 0 0 0
s17 0 1 1 1 0 0 0 0 0 0

Covernei 1 1 1 1 1 1 1 1 0 1

The set of candidate repair nodes Rm is determined by calculating the redundancy of
each mobile node within the cell. The redundancy of mobile node si covering the target
point is calculated as follows:

Redsi =
∑h

j=1 Covernei

h
∗ 100 (17)

where h is the total quantity of target points covered by mobile node si; Covernei indicates
whether target point ej is covered by neighboring nodes of node si. If it is covered by
neighbor nodes, Covernei is 1, otherwise it is 0. The greater the cumulative value of Covernei,
the greater the chance of the mobile node becoming a repair node.

4.4. Optimizing the Emperor Penguin Algorithm to Repair Holes

Once the set of candidate repair nodes Rm is determined, we propose to use the
optimized emperor penguin algorithm to determine the best location for repair nodes to
repair the hole. The emperor penguin algorithm (EPO) [40] is a novel swarm intelligence
algorithm presented by Dhiman G and Kumar V in 2018, where emperor penguins behave
as a cluster to warm each other against the wind and cold when severe weather comes. It is
characterized by few parameters and high convergence accuracy.

4.4.1. Initialization

A penguin population consisting of a set of candidate repair nodes Rm is created, and
the location data of the candidate repair nodes are a set of solution spaces. Initially, the
location information of static nodes and other mobile nodes that have currently identified a
good location is input. During the monitoring of the area, the repair nodes need network
connectivity to exchange data information related to the collaborative task of forwarding the
information collected in the hole region to neighbor nodes. So, connectivity is maintained
by being adjacent to at least one other node that has already established a good location.
That is equivalent to the algorithm’s feature of emperor penguins gathering in a block for
shelter and warmth in harsh winter conditions.

Hybrid WSNs use network connectivity as a constraint during the repair of holes to
guarantee that the nodes transmit the data information collected in the hole region to the
BS in a single or multi-hop way during the repair of the hole:

AM
(
si, sj

)
=

{
1,
0,

0 < d
(
si, sj

)
≤ 2Rs

d
(
si, sj

)
> 2Rs

(18)

where AM
(
si, sj

)
is either 0 or 1, with 1 indicating connectivity between nodes si and sj,

and no connectivity otherwise. According to the judgment method of Equation (18), the
adjacency matrix AM corresponding to the nodes in the target region is constructed, so
that the connectivity of the network can be judged by using AM, and then the connectivity
matrix C is:

C = AM + AM2 + AM3 + . . . + AMN−1 (19)
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When all the elements in the matrix are 1, the network is connected. If the elements in
the matrix are not all 1, it indicates that the network is not connected.

4.4.2. Multi-Objective Fitness Function Design

A multi-objective fitness function is designed by combining the important occupancy
of the hole region, the energy balance coefficient of the candidate repair node, and the
distance of the repair node from the blind zones. The three sub-goal factors collectively
characterize the amount of coverage that a repair node can achieve by moving.

1. Significant percentage of hole regions

Based on environmental learning to sense the importance level of the target monitoring
region, the environmental monitoring region is learned iteratively, and the importance level
of each cell area is continuously changed based on the data information value of the target
point and the surrounding environment’s customization factors. By setting the importance
value of each cell area, the repair nodes will prioritize covering the hole regions with a
high importance value, and the repair nodes can cooperate with each other to prioritize
learning and concentrate on the hole regions with a high cell importance value index, which
can save the nodes unnecessary energy consumption and collecting data information of
unimportant blind zones. Therefore, the importance value of the cell hole region is an
important factor to be considered when coverage blind zones occur.

Based on the custom environmental information perception factors, the quantity of
important levels is determined based on the quantity of cells divided into each layer of the
area. For example, as shown in Figure 8a for a part of the target region, the red area is the
hole region, as each layer is divided into four cells. As shown in Figure 8b, the area cells
will be divided into four levels, the importance level G(x,y,z) from one to four increasing,
in the figure with the color from increasing from light to dark importance level in turn.
The quantity of each important area rank and the location of the same rank distribution
are uneven, reflecting the dynamic and random nature of environmental perception areas.
From Figure 8, it can be seen that cell hole D(4,2,1) and cell hole D(2,2,3) have rank 4, so they
are the hole regions that the repair nodes prioritize for coverage.
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2. Energy balance factor of candidate repair nodes

The energy balance coefficient θ for a candidate repair node is calculated as:

θ =
Max

(
Eresp

)
−Min

(
Eresp

)
1
m ∑m

p=1 Eresp

(20)
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where Eresp is the residual energy of candidate repair node sp; m is the quantity of candidate
repair nodes; and θ denotes the energy consumption equalization factor of the repair
nodes. The larger the value of θ, the more nodes unbalanced the energy consumption, and
conversely, the more balanced the energy consumption.

3. Distance of the repair node from the blind zone

The ratio between the distance of the repair node from the blind zone and the maxi-
mum distance the repair node can move is judged, and only the case when the ratio is less
than 1 is considered. The smaller the ratio, the closer the node is to the hole. If the ratio
is not less than 1, the repair node is directly excluded from repairing this hole repair. The
maximum distance, dmaxp , that the repair node can move is calculated by Equation (6).

The multi-objective fitness function can be expressed as:

Fitness = ω1

(
1

k/c
× G(x,y,z)

)
+ ω2(1− θ) + ω3

1−
d
(

sp, Dhole(x,y,z)

)
dmaxp

 (21)

where G(x,y,z) denotes the importance rank ratio occupied by this coverage hole region and

d
(

sp, Dhole(x,y,z)

)
denotes the distance of this repair node from this coverage hole. ω1, ω2,

and ω3 are weighting coefficients, ω1 + ω2 + ω3 = 1. The determination of the weighting
parameters is given in Section 5.1.

The location of each moving emperor penguin is determined by the value of the
objective function in Equation (21) to determine whether or not to repair at that hole
location, with higher fitness values indicating greater coverage gain for the repair node.

4.4.3. Lens Imaging Mapping Learning Strategy to Determine Optimal Location of Repair
Nodes

The formula for updating the original location of emperor penguins is as follows:

Xt+1
ep = Xt

best − ΓLep (22)

where Xt+1
ep is the position of the emperor penguin updated at t + 1 iterations; Xt

best is the
optimal solution position of the emperor penguin individual after t iterations; Γ is the
influence vector factor of the emperor penguin volume to avoid conflicts between emperor
penguin individuals; and Lep is the distance of the emperor penguin from the center.

The original location update formula for emperor penguins has no other variation
operations, making the population less diverse and difficult to search in all directions in a
multi-dimensional space. In particular, the emperor penguin optimal individual position
Xt

best guides the emperor penguin population’s hugging behavior throughout the search
process, i.e., during the global phase and the local phase, and determines the extent to
which the overall EPO search performance is superior. In the original algorithm, the update
of the optimal emperor penguin position relies on the judgment of the fitness value after
each iteration; this may lead to the algorithm becoming trapped in a local optimum and it
being difficult to jump out of it, thus weakening the overall search ability of the algorithm.

Therefore, the capacity of the algorithm to search in different directions is enhanced by
introducing a lens-imaging mapping learning strategy to perturb the positions of emperor
penguin individuals caught in local extremes and improve the ability of the optimal
emperor penguin individuals to lead the population. The principle of lenticular imaging is
shown in Figure 9.
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The mathematical mapping formula is:

(a + b)/2− X∗f
X∗f ′ − (a + b)/2

=
h
h′

= µ (23)

where µ is the scaling factor, collating Equation (23) gives the position of X∗f ′ as:

X∗f ′ =
a + b

2
+

a + b
2µ
−

X∗f
µ

(24)

where X∗f in the emperor penguin algorithm then denotes the original optimal individual
position of the emperor penguin; and X∗f ′ denotes the new optimal position of the emperor
penguin individuals generated by lens mapping; the lens imaging strategy can be used
to generate new individuals and increase the variety of the population by dynamically
adjusting the parameter µ according to Equation (26):

Xbest(new) =
ub + lb

2
+

ub + lb
2µ

− Xbest
µ

(25)

µ =
1
2
+ e

10t−5T
T (26)

where ub and lb are the upper and lower bounds of the target area; and T is the maximum
quantity of iterations. As can be seen from Equation (26), the scaling factor µ changes with
the number of iterations, showing a state of smaller values in the early part of the process
and larger values in the later part of the process, balancing the ability of the algorithm to
require a global search in the early part of the process and a local search in the later part of
the process of the emperor penguin individuals.

Therefore, the optimized position is updated as follows:

Xt+1
ep (new) = Xt

best(new)− ΓLep (27)

Algorithm 2 is the algorithm covering the hole repair phase:
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Algorithm 2. Repair phase algorithm.

Input: initial position of the set of candidate repair nodes Rm
Output: optimal location for repair nodes
1: Initialization: quantity of target points h covered by each mobile node, quantity of mobile
nodes in the network Nm
2: for (i = 1; i ≤ Nm; i++) do

3: Redsi =
∑h

j=1 Covernei

h ∗ 100//Calculate the coverage redundancy of each mobile node
4: if Coverage redundancy < 90% then
5: The mobile node is not elected as a candidate for repair
6: else
7: The mobile node is selected as a candidate for repair
8: end if
9: end for
10: Determine the set of candidate repair nodes Rm
11: for (r = 1; r ≤ m; r++) do
12: Xbest(new) = ub+lb

2 + ub+lb
2µ − Xbest

µ ; µ = 1
2 + e

10t−5T
T ; Xt+1

ep (new) = Xt
best(new)−

ΓLep//Calculate the location of the repair node
13: if the fitness function is higher than the previous then
14: The current position is the best position to repair the node
15: else
16: Return 13, recalculate node position
17: end
18: end for
19: return optimal location for repair nodes

4.5. Time Complexity Analysis

For an algorithm, the time complexity measures how fast the algorithm runs and
thus reflects the efficiency of the algorithm. N is the population size, T is the maxi-
mum quantity of iterations, M is the quantity of area cell bodies, c is the edge length
of the cell bodies, m is the quantity of repair nodes, Nm is the quantity of mobile nodes
and d is the spatial dimension. The time complexity of unitizing the network region is
O(1), the time complexity of calculating the cell coverage is O

(
N × c3 + M

)
, the time

complexity of calculating the mobile node coverage redundancy is O(Nm), and finally,
optimising the emperor penguin algorithm to repair the holes, the time complexity of
the initialization calculation is O(m× d) and the time complexity of the multi-objective
fitness function is O(3×m). The time complexity of introducing the lens-imaging map-
ping learning strategy is O(m), and the time complexity required for the whole algorithm
is O

(
T×

(
1 +

(
N × c3 + M

)
+ Nm + (m× d) + (3×m) + m

))
= O

((
N × c3 + M + Nm+

(d + 4)×m)× T).

5. Simulation Experiments

This paper uses the MATLAB 2019a platform to perform simulation experiments on
the feasibility of the detection and repair algorithms in this paper. DHD-MEPO with 3D-
Voronoi partitioning for WSNs (3D-VPCA) proposed in [33], a novel confident information
coverage hole-healing algorithm (C-CICHH) proposed in [41], the random algorithm
(RA), an enhanced mobile sink-based coverage optimization and link-stability estimation-
based routing protocol (EMSCOLER) proposed in [31], and an improved energy-efficient
routing protocol (IERP) proposed in [42] were compared. The validation is carried out
in the small-scale region 10× 10× 10 m3 and the large-scale region 100× 100× 100 m3,
respectively. A total of 35 static nodes and 15 mobile nodes are randomly thrown for a
target region of 10× 10× 10 m3, and 70 static nodes and 30 mobile nodes for a target region
of 100× 100× 100 m3. The parameters set in the simulation experiments are presented in
Table 3.
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Table 3. List of simulation parameters.

Parameters List Parameter Values

Scope of the monitoring region 10× 10× 10 m3/100× 100× 100 m3

Quantity of iterations 200
Quantity of nodes deployed 50/100

Quantity of static nodes 35/70
Quantity of mobile nodes 15/30
Node perception radius 2 m/15 m
Initial energy per node 4 J/33 J

Circuit loss factor in free space 10 pJ/
(
bit/m2)

Circuit loss factor under multiplex fading 0.0013 pJ/
(
bit/m4)

Energy consumed to move a unit distance 0.004 J/0.033 J

5.1. Determination of Weighting Parameters

By reading the relevant literature, we set three different sets of weighting parameters,
namely ω1 = 0.3 , ω2 = 0.4 , ω3 = 0.3, ω1 = 0.2 , ω2 = 0.5 , ω3 = 0.3 and ω1 = 0.35 ,
ω2 = 0.3 , ω3 = 0.35. By observing the changes in network coverage brought about by
different weighting parameters at different numbers of iterations, the analysis of Figure 10
shows that the network coverage with weighting parameters of ω1 = 0.3 , ω2 = 0.4 ,
ω3 = 0.3 is higher than that of other two groups, so we determine that the parameters of
the multi-objective fitness function are ω1 = 0.3 , ω2 = 0.4 , ω3 = 0.3, which can effectively
improve the network performance.
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Figure 10. Determination of the weighting parameters of the fitness function.

5.2. Coverage Analysis

By setting the quantity of nodes in different regions to 50 and 100, respectively,
Figure 11 displays the relationship between the quantity of holes and the coverage hole de-
tection rate for the four algorithms in the target regions of 10 × 10 × 10 m3 and
100× 100× 100 m3. The analysis of Figure 11a,b shows that the hole detection rate of
the different algorithms varies with the quantity of holes in the region. From Figure 11a, the
hole detection ratio of the DHD-MEPO, C-CICHH, and 3D-VPCA algorithms are all 1 when
the quantity of holes is up to 6. After the quantity of holes exceeds 6, the detection rates of
the algorithms for the holes all decrease, but the DHD-MEPO algorithm decreases slowly
compared to the other algorithms. At the quantity of holes of 12, it still has a detection rate
of above 0.95 for holes. Similarly, in Figure 11b, the algorithm is in a dominant position for
the detection of holes even in a network of 100× 100× 100 m3. The detection rates of the
C-CICHH and 3D-VPCA algorithms are consistently close to each other for holes, while
the RA algorithm performs the worst.
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Figure 11. Plot of coverage hole detection ratio versus number of holes: (a) Relationship map within
the area 10× 10× 10 m3; (b) Relationship map within the area 100× 100× 100 m3.

The quantity of covered holes was set to 8 and 12 in different regions. Figure 12
displays the connection between the total quantity of repair nodes and the coverage rate of
the four algorithms in the target regions of 10× 10× 10 m3 and 100× 100× 100 m3. The
analysis of Figure 12a shows that in the 10× 10× 10 m3 region, as the quantity of repair
nodes increases, the location of the blind zones in the region is gradually covered. Using the
algorithms in this paper to repair, the coverage rate grows faster than using the other three
algorithms and is always in the leading position, and the coverage rate of DHD-MEPO
and C-CICHH reaches 95% when the quantity of repair nodes is 12 above. The coverage
rates of C-CICHH and 3D-VPCA are close to each other in the interval of 5–10 repair nodes,
and the coverage rate of DHD-MEPO is close to 1 in the interval of 30 repair nodes. The
reason for DHD-MEPO’s leading coverage rate at different quantity of repair nodes is that
the lens-imaging mapping learning strategy in the optimized emperor penguin algorithm
is used to perturb the current optimal position of the repair node in the repair phase, which
enhances the search capability of the algorithm in different directions and enables the node
to find the appropriate optimal position to cover the hole faster.
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Figure 12. Plot of quantity of repair nodes versus coverage: (a) Relationship map within the area
10× 10× 10 m3; (b) Relationship map within the area 100× 100× 100 m3.
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The number of repair nodes is set to 12 and 18 in different regions. Figure 13 shows
the relationship between the quantity of iterations and the hole repair ratio for the four
algorithms in the target regions of 10× 10× 10 m3 and 100× 100× 100 m3. As the quantity
of iterations of the algorithm run increases, some of the nodes in the region stop working
due to energy depletion, so the quantity of holes as well as their location is constantly
changing. The analysis of Figure 13 shows that after 200 rounds of work with all four
algorithms, the hole repair rate essentially reaches over 90%. In Figure 13a, at 160 rounds
of algorithm work, it can be observed that the C-CICHH hole repair ratio is higher than
that of DHD-MEPO. The reason for this analysis may be that the multi-objective fitness
function is followed in the process of repairing holes using the algorithms in this paper. In
the fitness function, this paper takes the important percentage of the covered hole area as an
optimization objective, therefore, the repair of the hole. Even though the current size of the
hole region is small, it has a high regional importance rating, so priority is given to repair
the hole region. The other algorithms choose to prioritize repairing a large hole region
within the acceptable movement range of the mobile node so as to achieve the actual need
for repairing the hole. In Figure 13b, at 120 rounds of work, 3D-VPCA has a slightly higher
repair ratio than C-CICHH, mainly because the 3D-VPCA algorithm sets the uncovered
target point as the source of attraction for the repair node during the repair process, using
virtual forces to increase this gravitational influence between the node and the target point
and forcing the accelerated node to move to cover the blind zone.
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Figure 13. Graph of the quantity of iterations in relation to the hole repair ratio: (a) Relationship map
within the area 10× 10× 10 m3; (b) Relationship map within the area 100× 100× 100 m3.

5.3. Energy Consumption Analysis

Each of the four algorithms is subjected to several independent experiments under the
same conditions to obtain the graph in Figure 14 between the quantity of working rounds
and the total energy consumed in a target area of 10× 10× 10 m3 and 100× 100× 100 m3.
The analysis of Figure 14a shows that the nodes’ overall energy consumption using the
RA algorithm is more than that consumed by the other three algorithms, and the nodes’
overall energy consumption reaches 152.3 J after 200 rounds of operation. The nodes’
overall energy consumption using the DHD-MEPO and C-CICHH and 3D-VPCA methods
is approximately equal before the algorithm has been run 40 times. Because the main
source of the sensor nodes’ energy consumption in the current network is receiving and
sending data information, and the repair nodes have not all started to work yet, the
energy consumed by moving the distance to repair the hole is not obvious. The analysis
of Figure 14a,b shows that after 200 rounds of work using the DHD-MEPO algorithm, the
total node consumption is 128.4 J and 1584 J, respectively, which is a significant saving of
energy for the nodes compared to the energy consumed using other algorithms, improving
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the energy efficiency and extending the lifecycle of hybrid WSNs. The reason for this is
that by dividing the network into cells and selecting groups of nodes to manage other
nodes within the cell and aggregate data information during the hole detection process, the
coordination avoids the unnecessary energy consumed by all nodes to send information
to the center of the BS. The analysis of the 120 rounds of algorithm work in Figure 14b
displays that DHD-MEPO is slightly higher than C-CICHH and 3D-VPCA, mainly because
in the process of repairing holes, DHD-MEPO will give priority to the hole regions with a
high importance level, even though there are hole regions near the current repair node that
are a shorter distance to repair. However, the level degree of these hole regions is not high,
so it will move a longer distance to repair the region with a higher importance level within
the longest distance to which this node can move according to the multi-objective fitness
value, so the energy consumed will be high.
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Figure 14. Plot of the quantity of working rounds versus the nodes’ overall energy consumption:
(a) Relationship map within the area 10 × 10 × 10 m3; (b) Relationship map within the area
100× 100× 100 m3.

The relationship between the DHD-MEPO and C-CICHH, 3D-VPCA algorithms in
terms of each mobile node ID and energy consumed in a target region of 10× 10× 10 m3

and 100× 100× 100 m3 is analyzed. From Figure 15a,b, it can be seen that 3D-VPCA per-
forms the worst, C-CICHH slightly outperforms 3D-VPCA, and DHD-MEPO significantly
outperforms 3D-VPCA and C-CICHH when considering the overall energy consumption
and the uniformity of the mobile node energy consumption. Compared with C-CICHH and
3D-VPCA, a single node’s maximum energy consumption and the nodes’ uniformity of the
overall energy consumption are effectively reduced by the inclusion of the energy balance
coefficient of the repair nodes as a measure in the multi-objective function setting process,
so that all repair nodes will maintain a certain level of energy balance to repair the holes.
In contrast, 3D-VPCA and C-CICHH minimize the nodes’ overall energy consumption to
some extent, but do not allow for the optimization of the uniformity of energy consumption
of the mobile nodes, which leads to the performance differences shown in Figure 15.

5.4. Mobile Node Utilization Analysis

Analyze the connection between mobile node utilization and the quantity of mobile
nodes in a target region of 10× 10× 10 m3 and 100× 100× 100 m3 for the DHD-MEPO. By
setting the proportion of mobile nodes to 20%, 40%, and 60% of the total quantity of nodes
in hybrid WSNs in different monitoring regions, the mobile node utilization of the DHD-
MEPO is observed for a different quantity of working rounds. The analysis of Figure 16
shows that at the beginning when the algorithm works for 40 rounds, the utilization rate
of mobile nodes is not high, especially when mobile nodes account for 60% of the total
quantity of nodes. Even after 200 rounds of the algorithm, the proportion of mobile nodes
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effectively repairing holes is less than 50%, so if a large amount of mobile nodes is thrown
in hybrid WSNs, not only are the resources of mobile nodes not effectively used, i.e., most
nodes will act as static nodes responsible for receiving and sending messages, but there
will also be an increase in the network’s cost. After the comparative analysis of the mobile
node ratio in Figure 16, we chose to deploy 15 mobile nodes initially in the experimental
area of 10× 10× 10 m3 and 30 mobile nodes initially in the area of 100× 100× 100 m3,
which can ensure that the mobile nodes are used effectively as fully as possible and can
improve the energy efficiency of the nodes.
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Figure 15. Algorithm’s graph of uniformity of energy consumption of mobile nodes: (a) Relationship
map within the area 10× 10× 10 m3; (b) Relationship map within the area 100× 100× 100 m3.
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Figure 16. Plot of mobile node utilization versus number of mobile nodes: (a) Relationship map
within the area 10× 10× 10 m3; (b) Relationship map within the area 100× 100× 100 m3.

5.5. Connectivity Analysis

After using the detection and repair method of the DHD-MEPO, the connection
between the connectivity of the sensor nodes is analyzed. The orange ball in the figure
is the static node, the green ball is the mobile node, and the blue ball is the node for
repairing the hole. The candidate repair nodes for the target region of 10× 10× 10 m3

and 100× 100× 100 m3 are selected by the DHD-MEPO, and the initial location maps are
shown in Figures 17a and 18a. The repair nodes use the emperor penguin optimized repair
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algorithm, which uses the lens-imaging mapping learning principle to perturb the position
of the repair node to enhance the ability to search for the hole region in different directions.
The position after repairing the hole is shown in Figures 17b and 18b, the optimal position of
the repair node is found according to the multi-objective function as well as the constraints
and Figures 17c and 18c verify the network connectivity after the repair node completes
the task of repairing the hole. According to Equation (18), AM

(
si, sj

)
= 1 represents the

network connection between two nodes and the Kruskal method is used to construct the
minimal spanning tree. The algorithm is proven to satisfy the condition that the nodes in
the network repair the hole to meet the coverage requirement while also ensuring network
connectivity, so that the repair node can instantly send the data information sensed in the
hole area to the neighbor nodes and eventually hand over to the BS center for processing.
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5.6. Packet Delivery Ratio Analysis

We explore the packet delivery ratio of DHD-MEPO versus EMSCOLER and IERP,
experimenting for two network environments of each size. The packet delivery ratio is
defined as the ratio of the quantity of packets received by the BS to the total quantity of
packets sent. The analysis of Figure 19a,b shows that the packet delivery rate using the
DHD-MEPO algorithm is always in the leading position. The reason for this is that in the
initial stage of the algorithm, the network is divided into cells and group nodes are selected
for the group management of the cells, and the group nodes are responsible for collecting
and aggregating the data information within the cells they manage before sending it to the
BS center for further processing. IERP and EMSCOLER do not take into account this aspect
of the packet management network area, but the reason why the packet delivery rate is
higher with EMSCOLER than with IERP is that EMSCOLER uses a grid concept and selects
relay nodes for data transmission in the steady state of the link.
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By comparing it with other algorithms, we demonstrate that DHD-MEPO performs
well in the aspect of coverage and uniformity of energy consumption. (1) In the aspect of
energy performance, the deficiencies of 3D-VPCA, a derivative algorithm of the Virtual
Force Algorithm (VFA), affect the virtual movement of mobile nodes and the energy
consumption of the movement. Meanwhile, the C-CICHH’s total energy consumption is
slightly worse than that of DHD-MEPO, because C-CICHH transforms it into a maximum
weighted exact-match matter by designing a weighted complete dichotomous chart, with
the aim of finding the allocation strategy that minimizes the total energy consumption
while solving the network coverage problem. Furthermore, 3D-VPCA and C-CICHH only
take maximizing coverage and minimizing total energy consumption as the optimization
objectives, ignoring the uniformity of the remaining energy of the nodes. In contrast,
DHD-MEPO optimizes the remaining energy equalization as the major factor in the process
of repairing holes. Therefore, the algorithm in this paper outperforms 3D-VPCA and
C-CICHH in the performance of residual energy equalization. (2) In terms of coverage
enhancement, the essence of 3D-VPCA and DHD-MEPO is to separate redundant mobile
nodes to fill the unmonitored region. However, the final movement effect of the repair
nodes in 3D-VPCA will inevitably be affected by the attraction between the nodes and
the uncovered points being monitored threshold, the repulsive force threshold between
the nodes, as well as the step distance during each round of virtual movement. Although
these parameters are iteratively adjusted to ensure optimal performance, the results are not
significantly improved. This is the reason why the final coverage after the 3D-VPCA repair
is lower than the algorithm in this paper.

6. Conclusions and Future Work

Previous research into coverage holes in wireless sensor networks mainly focus on two-
dimensional planar environments, but we propose a detection and repair approach suitable
for three-dimensional hybrid wireless sensor networks so as to effectively improve the QoS.
The DHD-MEPO is distributed and organized into two parts: detection and repair. In the
detection part, the target region is partitioned based on the quantity of nodes distributed
and their sensing range. The group nodes are campaigned to manage information about
relevant nodes within their own cells, which ensures network stability and lengthens the
network lifecycle. The group nodes also count the sources of hole information based on
the calculated cell coverage. In the repair part, the set of candidate repair nodes is selected
by calculating the redundancy of the mobile nodes to cover the target point. Then, it uses
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a multi-objective emperor penguin optimization algorithm, which determines the best
location for the repair node.

In real scenarios, the sensing range of the sensor node is also affected by environmental
changes and multiple obstacle obstructions, as well as the fact that its sensing range is vari-
able over time in complex scenarios. Therefore, in subsequent work, we will take a broader
perspective in comparison with advanced work to further validate the advancement of the
method in complex underwater or mountainous terrain scenarios.
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