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Abstract: Blood cells play an important role in the metabolism of the human body, and the status
of blood cells can be used for clinical diagnoses, such as the ratio of different blood cells. Therefore,
blood cell classification is a primary task, which requires much time for manual analysis. The recent
advances in computer vision can be beneficial to free doctors from tedious tasks. In this paper, a novel
automated blood cell classification model based on the shifted window vision transformer (SW-ViT)
is proposed. The SW-ViT architecture is firstly pre-trained on the ImageNet dataset and fine-tuned
on the blood cell images for classification. Two transfer strategies are employed to generate better
classification results. One is to fine-tune the entire SW-ViT, and the other is to only fine-tune the
linear output layer of the SW-ViT while all the other parameters are frozen. A public dataset named
BCCD_Dataset (Blood Cell Count and Detection) is utilized in the experiments. The results show
that the SW-ViT outperforms several state-of-the-art methods in terms of classification accuracy. The
proposed SW-ViT can be applied in daily clinical diagnosis.

Keywords: blood cell; computer-aided diagnosis; computer vision; deep learning; vision transformer

1. Introduction

Blood flows in the vessels everywhere in human bodies. As an essential component,
blood can transport nutrients and oxygen to tissues and carry waste out to keep them clean.
Blood also helps to maintain the temperature of the human body. Meanwhile, blood is an
important part of the immune system, which fights against infections. Mainly, blood is
composed of red blood cells, white blood cells, platelets, and plasma. The complete blood
count test is a regular method in clinical diagnoses, which classifies the types of blood
cells and indicates the percentages they account for. The manual classification of blood
cells suffers from low reproducibility, as naked eyes can become fragile when working
overtime. Fortunately, blood cell classification can be implemented automatically and
fast with the recent advanced computer vision techniques, and computer-aided diagnosis
(CAD) has been a hot topic [1]. Once a blood cell classification model is trained, it can
generate the same types of blood cell images without human intervention. Over the last
decade, practitioners have proposed many CAD methods for blood cell classification.

Acevedo, et al. [2] proposed a deep learning-based method for peripheral blood cell
recognition. The pre-trained VGG-16 and InceptionV3 were employed as the backbones
to extract features from the peripheral blood cell images without fine-tuning. Then, those
features were used to train a support vector machine (SVM) for recognition. They also
directly fine-tuned the pre-trained VGG-16 and InceptionV3 on the peripheral blood cell
image dataset for comparison. The fine-tuned VGG-16 achieved the best accuracy of 96% in
their experiments. Gupta, et al. [3] developed a white blood cell classification system based
on traditional machine learning algorithms. Image pre-processing techniques were utilized
including thresholding, resizing, and cropping. Then, shape and texture features were
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extracted from the cell images. An optimized binary bat algorithm was proposed to remove
the redundant features from the entire feature set. Four classical machine learning models
were trained as the classifiers including k nearest neighbors, logistic regression, decision tree,
and random forest. Their system was trained and evaluated on a dataset with 237 samples
and produced satisfactory results. In [4], the researchers put forward a white blood cell
classification method based on blood smear images. The original images were segmented
to generate regions of interest, and shape, color, and texture features were extracted from
the regions of interest. An artificial neural network with three fully-connected layers and an
autoencoder were trained for classification. They also leveraged the AlexNet and trained
it for classification by both transfer learning and training from scratch. A dataset with
six types of images was used in their experiments. Abdulkarim, et al. [5] transferred a
pre-trained AlexNet on the blood smear image dataset, which contained fifteen types of
images. Their model could classify red blood cells accurately to assist in the diagnosis of
sickle cell anemia. Abou El-Seoud, et al. [6] designed a convolutional neural network (CNN)
for white blood cell classification. The CNN model contained four convolution layers and
was trained using the dropout strategy. There are over ten thousand samples of four types
of white blood cells in their dataset in total, but only just over one hundred samples were
used for testing. Banik, et al. [7] firstly segmented the blood smear images to obtain the
white blood cell nucleus based on k-means and the filtering. Then, a deep CNN model was
developed with residual connections to concatenate the feature maps of shallow layers with
those of deep layers, which aimed to reduce information loss. The average accuracy of their
model was 96% on the public dataset. Baydilli, et al. [8] attempted to develop a white blood
cell classification model with domain adaptation. When the CNN model was trained on
the source domain, the AutoAugment method and generative adversarial network (GAN)
were utilized to improve the representation learning ability of the CNN. Therefore, the
CNN fine-tuned on the target domain can generate domain-invariant features and achieve
better results for white blood cell classification. Kutlu, et al. [9] employed the regional CNN
(R-CNN) for the classification of blood cells. They trained four different CNN models as the
backbones of the R-CNN, including AlexNet, VGG-16, GoogLeNet, and ResNet-50. Their
model could produce the types of cells and the bounding boxes of the cells simultaneously.
Loey, et al. [10] leveraged the pre-trained AlexNet to detect leukemia based on blood cell
classification. They used the pre-trained AlexNet as the feature extractor, and the extracted
image features were fed into the traditional machine learning models for classification. In
comparison, the pre-trained AlexNet was fine-tuned on the blood cell images. Experiment
results showed that the fine-tuned AlexNet achieved the best classification performance.
Ridoy and Islam [11] presented a lightweight CNN model for white blood cell classification,
which consisted of five convolution layers. Batch normalization layers were embedded to
handle the covariance shifting problem and accelerate the convergence when training. Their
model was trained for thirty epochs on the BCCD_Dataset (Blood Cell Count and Detection),
and the classification performance was promising. Sahlol, et al. [12] used a pre-trained
VGG-19 as the backbone of their model to extract image features. An enhanced salp swarm
algorithm (ESSA) was proposed to select the most important features for classification.
Finally, a decision tree was trained with the refined image features. Settouti, et al. [13]
put forward a white blood cell segmentation algorithm. Initially, pixel-level classification
was implemented to locate the positions of white blood cells based on the color features.
Then, a region-growing algorithm was employed to generate the segmentation results.
Chen, et al. [14] employed two pre-trained CNN models and fused their feature maps by
addition. Then, a squeeze and excitation module was embedded in their model to enhance
the representation learning. A residual connection was added between the start and the
end of the squeeze and excitation module. Four different blood cell image datasets were
employed to evaluate the proposed model. Çınar and Tuncer [15] developed a hybrid
system to detect white blood cells. The pre-trained AlexNet and GoogLeNet were used
as the feature extractors, and the two feature sets were concatenated to form the ultimate
features. The padding strategy was employed to the dimension difference between the
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two feature sets. An SVM served as the classification model. Dincic, et al. [16] proposed
a blood cell recognition method based on feature engineering classical machine learning
algorithms. The features were extracted from the microscopic images based on color
deconvolution, morphological operations, fractal analyses, and gray-level co-occurrence
matrix. Afterwards, an SVM was trained for classification. Liao, et al. [17] proposed a red
blood cell classification approach based on empirical wavelet transform and SVM. Their
method was trained and tested on an ultrasonic dataset. Semerjian, et al. [18] segmented
the nucleus from the blood smear images and developed a lightweighted CNN model
for classification. Yao, et al. [19] developed a blood cell classification system using two
CNN models. The first CNN was trained with high-quality images, and the weights were
transferred to the second CNN. Then, deformable convolution layers were added to the
second model, and low-quality images were used to train the second CNN. Zhu, et al. [20]
used a ResNet-18 as their backbone to generate high-level features from the blood cell
images. They ensembled three randomized neural networks as the classifiers of their model.
The average accuracy of the proposed BCNet was 96.78% for triple-class classification.
Ichim, et al. [21] employed four CNN models for blood cell image classification, including
VGG-16, Xception, ResNet-50, and NasNet-Large. A fusion method was proposed based
on the validation performance of the four CNN models to obtain the ultimate outcome,
which worked with a weighting mechanism. Zhu, et al. [22] proposed a deep CNN model
for malaria parasite classification in blood smear images. Their model was verified on a
dataset with nearly thirty thousand images. Elhassan, et al. [23] presented an abnormal
white blood cell detection method based on deep models. A convolutional autoencoder
was trained to generate more training images. Then, the image features were extracted
using the latent feature layer of the autoencoder, which were used to train two CNN
models for classification. The first CNN classified the samples as normal white blood
cells or abnormal ones, while the second CNN classified the abnormal samples into eight
different subtypes. Bayat, et al. [24] designed an attention-based CNN with regularization
techniques to classify white blood cells. The model could fuse texture features with global
features from the blood cell images. Cheuque, et al. [25] firstly used a faster R-CNN to
generate a region of interest from the blood cell images. A MobileNet was employed to
recognize the sub-classes of the segmented blood cell images. Sharma, et al. [26] transferred
a DenseNet-121 for blood cell classification, which was fine-tuned for 10 epochs.

The above works either used traditional handcrafted features with machine learning
algorithms or leveraged deep CNN models for classification. However, traditional machine
learning algorithms often fail on large datasets, and CNN models have strong inductive
biases, such as locality and translational equivalence. Locality assumes that neighboring
regions may share similar characteristics, which works with the sliding kernel windows.
Translational equivalence means the convolution results for an object can be the same even
if the position of the object is changed. The strong inductive biases of CNN models enable
them to work well with less training data. Nevertheless, more information is lost with
stronger inductive biases during the data flow of CNN models. Recently, transformers
have been applied in computer vision tasks, which were proposed for natural language
processing. The core idea behind transformers is the attention mechanism [27]. Different
from convolution operations, all the patches in an image can interact with each other
using an attention mechanism, which preserves more information for classification and
segmentation. Therefore, transformers have more potential though more computation cost
is required compared with CNN models.

The contributions of this paper are summarized below:

1. A blood cell classification system is presented based on the microscopic blood cell
images and a vision transformer.

2. The shifted window vision transformer (SW-ViT) is developed to reduce the computa-
tional cost of conventional vision transformers. The SW-ViT was pre-trained on the
ImageNet dataset and fine-tuned using two strategies on a public dataset.
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3. The performance of the SW-ViT with CNN-based models as well as state-of-the-art
methods is compared, and the proposed SW-ViT showed superiority.

The rest of this paper is arranged as follows. The description of the blood cell image
dataset is given in Section 2. The details of the proposed SW-ViT are discussed in Section 3.
Section 4 is about the simulation results and discussion. Finally, the conclusion and future
plan are described in Section 5.

2. Materials

A public blood cell image dataset named BCCD_Dataset (Blood Cell Count and
Detection) was used in the verification experiments of the proposed SW-ViT, which is
available on the Kaggle website (https://www.kaggle.com/datasets/paultimothymooney/
blood-cells (accessed on 30 January 2023)). There are four different types of blood cell
images in BCCD_Dataset, including eosinophil, lymphocyte, monocyte, and neutrophil,
and the numbers of the samples are 3120, 3103, 3098, and 3123, respectively. The size of
the blood cell images is 320 × 240 pixels. Some samples are listed in Figure 1. As the
BCCD_Dataset contains sufficient samples, hold-out validation is used instead of k-fold
cross-validation. In the experiments, 80% of the images are used for training and the other
20% of the images serve as the testing set.
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Figure 1. Samples in the BCCD_Dataset (every column represents one type of blood cell image).

3. Methods

Attention-based models, termed transformers, were originally proposed for natural
language processing, which achieved great success [27]. Compared with images, the
information density of words is much higher because they are human-generated signals.
Additionally, the mask tokens and positional encodings in transformers are not naturally
compatible with convolution operations. Therefore, CNN models were more preferred over
transformers in computer vision until the advent of the vision transformer (ViT) [28]. ViT
achieved a better performance than CNN models on a group of benchmark datasets, which
showed its potential for image classification and segmentation. Though the computational
cost is higher than CNN, it can be foreseen that transformers can provide a unified learning
framework for both computer vision and natural language processing. In this study, a
novel SW-ViT was employed for the classification of blood cell images.

3.1. SW-ViT

The training and inferring of the ViT are time-consuming because of the self-attention
operations. In a ViT, an input image is divided into a set of patches to generate patch em-
beddings, and each embedding interacts with all the other embeddings using self-attention

https://www.kaggle.com/datasets/paultimothymooney/blood-cells
https://www.kaggle.com/datasets/paultimothymooney/blood-cells
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operations. Inspired by CNN models, SW-ViT is proposed to improve the efficiency of the
original ViT by hierarchical feature learning [29].

In an SW-ViT, an input image is divided into a set of non-overlapping patches, and a
patch embedding is generated from each patch, which can be implemented by convolution.
Then, a window is used to group the patches, and the self-attention is only computed
within the patches in the same group instead of globally. The self-attention operation can
be expressed as

SELF_ATTENTION(K, Q, V) = softmax
(

KQT
)

V (1)

In which K, Q, and V stand for key, query, and value generated from the patches using
convolution operations or a fully-connected layer, respectively. Therefore, the patches in
different windows will not be used for self-attention computation even if they are adjacent
in the image, which reduces the computational complexity substantially. However, there
will be information loss as the patches in different windows cannot interact. To handle
this issue, in the next self-attention layer, the windows will shift both horizontally and
vertically so that the patches will be grouped differently. This window and shifted window
mechanism appear in pairs in the SW-ViT for self-attention computation. The basic progress
of the shifted window mechanism is depicted in Figure 2.
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the red boxes represent the windows. The window self-attention and shifted window self-attention
modules appear in pairs in the SW-ViT).

It can be observed that in the window self-attention computation, the image is divided
into four groups of the same size, but there are nine groups of patches in the shifted window.
In addition, the shapes of the nine groups are different. The cyclic shift method and masking
strategy are employed to calculate the shifted window self-attention efficiently.

The dimension of the patches also changes in the SW-ViT to obtain multi-resolution
features. From the input layer to the output layer, the height and width of the patches
become halved three times, but the channel of the patches doubles three times. The main
modules in the proposed SW-ViT are shown in Figure 3. The patch embedding can be
implemented by convolution and layer normalization, and the patch merging can be
implemented by layer normalization and linear projection. The dimension of the patches
changes in the patch merging layers. The ratio of the four blocks is 1:1:3:1, which can be
also seen in [30].
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3.2. Training Strategies

There are 29 million parameters in the proposed SW-ViT model, which requires large
datasets for training, such as the ImageNet-1K dataset. However, the BCCD_Dataset
contains only about 12,000 images of four types. Training the SW-ViT on small datasets
from scratch may cause the overfitting problem. Meanwhile, it is time-demanding to train
deep models even with dedicated graphic cards.

Fortunately, the pre-trained parameters of deep models are often available online for
everyone, as researchers from big companies and organizations are willing to share their
work. Transfer learning is preferred in downstream tasks when using deep learning models,
which often yields satisfactory results. In this study, transfer learning is chosen for training
the proposed SW-ViT, as shown in Figure 4.



Electronics 2023, 12, 2442 7 of 14

Electronics 2023, 12, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. Transfer learning of the SW-ViT. 

The parameters in the SW-ViT are pre-trained on the ImageNet-1K dataset, which 
includes over 12 million images of 1000 different types. The pre-trained SW-ViT can gen-
erate complex semantic representations from the images which are beneficial for classifi-
cation. The types in the ImageNet-1K are common objects, such as animals, fruits, and 
vehicles, which are obviously different from the blood cell images. However, deep models 
are data hungry, and the representation learning capability obtained from pre-training is 
helpful for downstream tasks due to the versatility of big datasets. The images from the 
ImageNet-1K and BCCD_Dataset look different in the spatial domain, but the distribution 
patterns could be similar in some latent representation space of the SW-ViT. Another ad-
vantage of transfer learning is efficiency. Usually, training a deep model from scratch re-
quires hundreds of epochs. Nevertheless, with pre-trained parameters, the model is likely 
to converge within dozens of epochs or even several epochs. 

Two different strategies are used to fine-tune the pre-trained SW-ViT. The first one is 
to fine-tune all the parameters in the SW-ViT on the blood cell images. This is helpful for 
the SW-ViT to learn the distribution patterns of the blood cell images. The second strategy 
is to only update the parameters in the linear output layer and freeze all the other param-
eters. This strategy employs the pre-trained SW-ViT as a representation extractor and 
trains a linear fully-connected layer for classification. Compared with the first strategy, 
the second method is more time-efficient but usually less accurate. In the experiments, the 
classification performance of the two training strategies will be compared, and the results 
from the SW-ViT, which is trained from scratch, will also be compared using the same 
hyper-parameter setting and platform. 

4. Results and Discussion 
The implementation of the proposed SW-ViT is based on Python 3.9 with torch 2.0, 

and all the experimental results are obtained on a personal computer with Intel i9 
13900HX CPU and NVIDIA RTX4080 GPU (MECHREVO, Nanjing, China.). The accuracy, 
precision, recall, and F1-score are employed as the performance metrics for blood cell clas-
sification. As there are four different types in the BCCD_Dataset, when computing the 
precision and recall of a certain type, all the other three types are regarded as negatives. 

4.1. Hyper-Parameter Setting 
The hyper-parameters to train the SW-ViT are listed in Table 1. The batch size is set 

as 64 according to the maximum capacity of the 12 GB memory in the GPU. The max epoch 
value is only 3 in order to avoid overfitting. The optimizer is AdamW, which is the com-
bination of the vanilla Adam and L2 regularization. The values of learning rate and weight 
decay are 1 × 10−4 and 5 × 10−2, respectively, which are both common settings. 

Table 1. Hyper-parameters. 

Hyper-Parameter Value 
Batch size 64 
Max epoch 3 
Optimizer AdamW 

1000 types

pre-trained SW-
ViT

ImageNet-1K

4 types

fine-tuned SW-ViT

BCCD_Dataset

Transfer learning

large small

Figure 4. Transfer learning of the SW-ViT.

The parameters in the SW-ViT are pre-trained on the ImageNet-1K dataset, which in-
cludes over 12 million images of 1000 different types. The pre-trained SW-ViT can generate
complex semantic representations from the images which are beneficial for classification.
The types in the ImageNet-1K are common objects, such as animals, fruits, and vehicles,
which are obviously different from the blood cell images. However, deep models are data
hungry, and the representation learning capability obtained from pre-training is helpful for
downstream tasks due to the versatility of big datasets. The images from the ImageNet-1K
and BCCD_Dataset look different in the spatial domain, but the distribution patterns could
be similar in some latent representation space of the SW-ViT. Another advantage of transfer
learning is efficiency. Usually, training a deep model from scratch requires hundreds of
epochs. Nevertheless, with pre-trained parameters, the model is likely to converge within
dozens of epochs or even several epochs.

Two different strategies are used to fine-tune the pre-trained SW-ViT. The first one
is to fine-tune all the parameters in the SW-ViT on the blood cell images. This is helpful
for the SW-ViT to learn the distribution patterns of the blood cell images. The second
strategy is to only update the parameters in the linear output layer and freeze all the other
parameters. This strategy employs the pre-trained SW-ViT as a representation extractor
and trains a linear fully-connected layer for classification. Compared with the first strategy,
the second method is more time-efficient but usually less accurate. In the experiments, the
classification performance of the two training strategies will be compared, and the results
from the SW-ViT, which is trained from scratch, will also be compared using the same
hyper-parameter setting and platform.

4. Results and Discussion

The implementation of the proposed SW-ViT is based on Python 3.9 with torch 2.0,
and all the experimental results are obtained on a personal computer with Intel i9 13900HX
CPU and NVIDIA RTX4080 GPU (MECHREVO, Nanjing, China.). The accuracy, precision,
recall, and F1-score are employed as the performance metrics for blood cell classification.
As there are four different types in the BCCD_Dataset, when computing the precision and
recall of a certain type, all the other three types are regarded as negatives.

4.1. Hyper-Parameter Setting

The hyper-parameters to train the SW-ViT are listed in Table 1. The batch size is set
as 64 according to the maximum capacity of the 12 GB memory in the GPU. The max
epoch value is only 3 in order to avoid overfitting. The optimizer is AdamW, which is the
combination of the vanilla Adam and L2 regularization. The values of learning rate and
weight decay are 1 × 10−4 and 5 × 10−2, respectively, which are both common settings.
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Table 1. Hyper-parameters.

Hyper-Parameter Value

Batch size 64
Max epoch 3
Optimizer AdamW

Learning rate 1 × 10−4

Weight decay 5 × 10−2

4.2. Classification Performance of the SW-ViT

The confusion matrix of the SW-ViT is shown in Figure 5, and the performance metrics
are listed in Table 2. The classification results for different types are different. The training
strategy of the SW-ViT is to fine-tune the entire model. The proposed SW-ViT could
classify lymphocyte and monocyte cells nearly perfectly, which yields nearly 100% F1-
scores. However, for eosinophil cells, the recall is 95.35%, which is obviously lower, and
the precision is at a high level. On the contrary, the precision of neutrophil cell images
is merely over 95%, and its recall is above the average performance. In all, the proposed
SW-ViT produced an overall accuracy of 98.03% and an F1-score of 98.04% within only
three epochs of training, which cost less than 7 min on the platform. The results reveal that
the proposed SW-ViT is accurate and efficient for blood cell classification.
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Table 2. Performance metrics of the SW-ViT.

Cell Type Precision Recall F1-Score Accuracy

Eosinophil 97.38% 95.35% 96.35%

98.03%
Lymphocyte 100.0% 98.71% 99.35%

Monocyte 99.36% 100.0% 99.68%
Neutrophil 95.48% 98.08% 96.76%

Average 98.06% 98.04% 98.04%

4.3. Comparison of Different Training Strategies

The performances of three training strategies are presented, including training from
scratch, fine-tuning the entire model, and fine-tuning only the linear output layer of the SW-
ViT with the same hyper-parameters. The results are demonstrated in Table 3 and Figure 6.
It is obvious that the three training strategies produce different results. Fine-tuning only
the linear output layer achieves the worst accuracy of 69.44% because the samples from the
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ImageNet dataset and BCCD_Dataset are very different. Therefore, the feature learning of
the pre-trained SW-ViT cannot produce satisfactory results on the blood cell images. On
the other hand, training from scratch achieves better performance with an overall accuracy
of 87.29%. However, compared with fine-tuning the entire model, there is still a huge
difference of over 10% in average performance, so the parameters in the pre-trained SW-ViT
contribute to fast convergence and better accuracy.

Table 3. Results of the proposed SW-ViT with different training strategies.

Training Strategy Cell Type Precision Recall F1-Score Accuracy

Training from
scratch

Eosinophil 78.46% 94.55% 85.76%

87.29%
Lymphocyte 87.09% 97.90% 92.18%

Monocyte 95.77% 84.17% 89.60%
Neutrophil 91.70% 72.60% 81.04%

Average 88.26% 87.31% 87.14%

Fine-tuning the
entire model

Eosinophil 97.38% 95.35% 96.35%

98.03%
Lymphocyte 100.0% 98.71% 99.35%

Monocyte 99.36% 100.0% 99.68%
Neutrophil 95.48% 98.08% 96.76%

Average 98.06% 98.04% 98.04%

Fine-tuning only
the linear

output layer

Eosinophil 58.33% 63.94% 61.01%

69.44%
Lymphocyte 75.77% 83.71% 79.54%

Monocyte 83.92% 64.94% 73.22%
Neutrophil 63.69% 65.22% 64.45%

Average 70.43% 69.45% 69.55%
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4.4. Comparison with Other Classification Models

The proposed SW-ViT is compared with other famous image classification models,
including ResNet-34, MobileNetV3, EfficientNetV2-B0, ShuffleNetV2, and ViT-B/16. The
training strategy involves fine-tuning the entire model, and the models’ performances are
listed in Table 4 and Figure 7. All the models can achieve over 90% accuracy except for
MobileNetV3 which is the most lightweight CNN model among them, and its running
time is also the shortest. CNN models can produce satisfactory results, such as ResNet-34,
EfficientNetV2-B0, and ShuffleNetV2. The performances of ResNet-34 and ViT-B/16 are
close, with accuracies of over 96%, but the running time of ResNet-34 is only one-third of
that of ViT-B/16. The proposed SW-ViT achieves the best performance in terms of all four
metrics, which reveals that the hierarchical feature learning of the SW-ViT can improve the
classification performance of vision transformers. Additionally, the window self-attention
in the SW-ViT reduces the running time substantially compared with ViT-B/16.
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Table 4. Results of different classification models.

Model Cell Type Precision Recall F1-Score Accuracy Running Time

ResNet-34

Eosinophil 98.42% 89.74% 93.88%

96.02% 204 s
Lymphocyte 99.84% 100.00% 99.92%
Monocyte 95.22% 99.84% 97.48%

Neutrophil 91.05% 94.55% 92.77%
Average 96.13% 96.03% 96.01%

MobileNetV3

Eosinophil 83.61% 49.04% 61.82%

72.70% 124 s
Lymphocyte 69.11% 94.19% 79.72%
Monocyte 74.11% 83.68% 78.60%

Neutrophil 69.32% 64.10% 66.61%
Average 74.04% 72.75% 71.69%

EfficientNetV2-
B0

Eosinophil 90.24% 91.83% 91.03%

94.97% 368 s
Lymphocyte 99.84% 99.68% 99.76%
Monocyte 97.63% 100.00% 98.80%

Neutrophil 92.15% 88.46% 90.27%
Average 94.97% 94.99% 94.96%

ShuffleNetV2

Eosinophil 90.87% 90.87% 90.87%

94.33% 310 s
Lymphocyte 99.51% 98.23% 98.87%
Monocyte 97.29% 98.71% 97.99%

Neutrophil 89.73% 89.58% 89.65%
Average 94.35% 94.35% 94.35%

ViT-B/16

Eosinophil 94.15% 95.35% 94.75%

96.86% 632 s
Lymphocyte 98.10% 99.84% 98.96%
Monocyte 100.00% 99.52% 99.76%

Neutrophil 95.23% 92.79% 93.99%
Average 96.87% 96.88% 96.87%

SW-ViT
(proposed)

Eosinophil 97.38% 95.35% 96.35%

98.03% 388 s
Lymphocyte 100.0% 98.71% 99.35%
Monocyte 99.36% 100.0% 99.68%

Neutrophil 95.48% 98.08% 96.76%
Average 98.06% 98.04% 98.04%
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4.5. Grad-CAM Visualization

Grad-CAM (gradient class activation map) belongs to a visualization method to
explain the outputs of deep models. In this study, the Grad-CAM is employed for the
interpretation of the proposed SW-ViT. The results are given in Figure 8. The SW-ViT
puts more emphasis on the red regions than on the blue areas, and in most of the listed
Grad-CAMs, the majority of the heatmaps are in red and yellow, which uncovers that
the proposed SW-ViT can generate better global representations. On the other side, the
Grad-CAMs of some eosinophil and neutrophil images are not consistent with medical
knowledge, which results in relatively lower F1-scores for both types.
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4.6. Mis-Classified Samples

Although the proposed SW-ViT can achieve good classification performance, there are
still mis-classified samples. Some of the mis-classified images are listed in Figure 9. The
eosinophil cells are likely to be classified as neutrophil cells by the model, which can be
also found in the confusion matrix. The classification of two types of cell images shall be
further investigated in future research.
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4.7. Comparison with State-of-the-Art Methods

The comparison of the proposed SW-ViT with other state-of-the-art (SOTA) blood
cell classification approaches is shown in Table 5. The BCCD_Dataset is also used in
Lightweight CNN, Fusion CNN, and BCNet, but only three types of blood cell images
are employed to evaluate the BCNet, which explains the good classification performance
within only two epochs. Fusion CNN performs much better than the Lightweight CNN,
but its max epoch is 100, which is time-consuming. In VGG+ESSA, they use the pre-trained
VGG for feature extraction without fine-tuning, and the max epoch is set for the ESSA
optimization. The recall of VGG+ESSA is the best out of the listed methods. However, the
classifier optimization of 100 epochs is also time-demanding. Meanwhile, the dataset in
their experiments contains hundreds of images of only two types. The proposed SW-ViT
produces worse results than DenseNet-121 and Multi-level CNN, but the difference between
the three is marginal. Meanwhile, the max epoch for DenseNet-121 is 10, and multiple
CNNs are trained in Multi-level CNN, which requires more time than the proposed SW-ViT.
The max epoch of the SW-ViT is also obviously lower than Lightweight CNN, Fusion CNN,
and DenseNet-121, which are evaluated on the BCCD_Dataset. It can be inferred that
the self-attention mechanism helps in global feature representation learning so that the
proposed SW-ViT can achieve SOTA performance.

Table 5. Comparison with SOTA methods.

Method Precision Recall F1-Score Accuracy # Types Max Epoch

Lightweight CNN [11] 91.75% 91.50% 91.35% 91.64% 4 30
Fusion CNN [7] 96% 96% 96% 96% 4 100

BCNet [20] 97.07% 96.77% 96.78% 96.78% 3 2
VGG+ESSA [12] 93.43% 99.55% 96.22% 96.11% 2 100

DenseNet-121 [26] 99.33% 98.85% 99.09% 98.84% 4 10
Multi-level CNN [25] 98.37% 98.37% 98.36% 98.36% 4 -
SW-ViT (proposed) 98.06% 98.04% 98.04% 98.03% 4 3

5. Conclusions

In this study, a novel blood cell image classification model is presented based on
vision transformers. The proposed SW-ViT leverages window self-attention modules
for global and hierarchical representation learning, which reduces the computational
complexity simultaneously. The transfer learning strategies are also employed to accelerate
the convergence. Experimental results from a public dataset suggest that the SW-ViT is
accurate and efficient for blood cell classification, which can also be inferred from the
Grad-CAMs. The proposed SW-ViT can be a useful tool in clinical diagnoses to assist
in verification.

However, there are some drawbacks to the proposed SW-ViT. The classification perfor-
mance of eosinophil and neutrophil cell images is not satisfactory compared with the other
two types. In the future, this problem shall be investigated. Currently, the SW-ViT can only
recognize four types of blood cells. Larger datasets with more types of cells will be used to
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train the SW-ViT for future research. In addition, blood cell segmentation and counting can
be explored in the future.

Author Contributions: S.C.: Conceptualization; software; data curation; writing—original draft;
visualization; S.L.: methodology; software, validation; investigation; resources; writing—review
and editing; S.W.: methodology; software, validation, writing—original draft; Y.N.: investigation;
resources; writing—review and editing; Y.Z.: methodology; formal analysis; investigation; writing—
review and editing; supervision; project administration; funding acquisition. All authors have read
and agreed to the published version of the manuscript.

Funding: This paper is partially supported by MRC, UK (MC_PC_17171); Royal Society, UK (RP202G0230);
BHF, UK (AA/18/3/34220); Hope Foundation for Cancer Research, UK (RM60G0680); GCRF, UK
(P202PF11); Sino-UK Industrial Fund, UK (RP202G0289); LIAS, UK (P202ED10, P202RE969); Data Science
Enhancement Fund, UK (P202RE237); Fight for Sight, UK (24NN201); Sino-UK Education Fund, UK
(OP202006); BBSRC, UK (RM32G0178B8).

Data Availability Statement: The dataset can be downloaded at https://www.kaggle.com/datasets/
paultimothymooney/blood-cells (accessed on 30 January 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Mercan, E.; Mehta, S.; Bartlett, J.; Shapiro, L.G.; Weaver, D.L.; Elmore, J.G. Assessment of Machine Learning of Breast Pathology

Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions. JAMA Netw. Open 2019, 2, e198777.
[CrossRef] [PubMed]

2. Acevedo, A.; Alferez, S.; Merino, A.; Puigvi, L.; Rodellar, J. Recognition of peripheral blood cell images using convolutional
neural networks. Comput. Methods Programs Biomed. 2019, 180, 105020. [CrossRef] [PubMed]

3. Gupta, D.; Arora, J.; Agrawal, U.; Khanna, A.; de Albuquerque, V.H.C. Optimized Binary Bat algorithm for classification of white
blood cells. Measurement 2019, 143, 180–190. [CrossRef]

4. Hegde, R.B.; Prasad, K.; Hebbar, H.; Singh, B.M.K. Comparison of traditional image processing and deep learning approaches for
classification of white blood cells in peripheral blood smear images. Biocybern. Biomed. Eng. 2019, 39, 382–392. [CrossRef]

5. Abdulkarim, H.A.; Razak, M.A.A.; Sudirman, R.; Ramli, N. A deep learning AlexNet model for classification of red blood cells in
sickle cell anemia. IAES Int. J. Artif. Intell. (IJ-AI) 2020, 9, 221–228. [CrossRef]

6. El-Seoud, S.A.; Siala, M.H.; McKee, G. Detection and Classification of White Blood Cells through Deep Learning Techniques. Int.
J. Online Biomed. Eng. (Ijoe) 2020, 16, 94–105. [CrossRef]

7. Banik, P.P.; Saha, R.; Kim, K.-D. An Automatic Nucleus Segmentation and CNN Model based Classification Method of White
Blood Cell. Expert Syst. Appl. 2020, 149, 113211. [CrossRef]

8. Baydilli, Y.Y.; Atila, U.; Elen, A. Learn from one data set to classify all—A multi-target domain adaptation approach for white
blood cell classification. Comput. Methods Programs Biomed. 2020, 196, 105645. [CrossRef]

9. Kutlu, H.; Avci, E.; Ozyurt, F. White blood cells detection and classification based on regional convolutional neural networks.
Med. Hypotheses 2020, 135, 109472. [CrossRef]

10. Loey, M.; Naman, M.; Zayed, H. Deep Transfer Learning in Diagnosing Leukemia in Blood Cells. Computers 2020, 9, 29. [CrossRef]
11. Ridoy, M.A.R.; Islam, M.R. An Automated Approach to White Blood Cell Classification Using a Lightweight Convolutional

Neural Network. In Proceedings of the 2020 2nd International Conference on Advanced Information and Communication
Technology (ICAICT), Dhaka, Bangladesh, 28–29 November 2020.

12. Sahlol, A.T.; Kollmannsberger, P.; Ewees, A.A. Efficient Classification of White Blood Cell Leukemia with Improved Swarm
Optimization of Deep Features. Sci. Rep. 2020, 10, 2536. [CrossRef] [PubMed]

13. Settouti, N.; Bechar, M.E.A.; Daho, M.E.H.; Chikh, M.A. An optimised pixel-based classification approach for automatic white
blood cells segmentation. Int. J. Biomed. Eng. Technol. 2020, 32, 144–160. [CrossRef]

14. Chen, H.; Liu, J.; Hua, C.; Zuo, Z.; Feng, J.; Pang, B.; Xiao, D. TransMixNet: An Attention Based Double-Branch Model for
White Blood Cell Classification and Its Training with the Fuzzified Training Data. In Proceedings of the 2021 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Houston, TX, USA, 9–12 December 2021.

15. Çınar, A.; Tuncer, S.A. Classification of lymphocytes, monocytes, eosinophils, and neutrophils on white blood cells using hybrid
Alexnet-GoogleNet-SVM. SN Appl. Sci. 2021, 3, 503. [CrossRef]
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