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Abstract: To reduce the cargo loss rate caused by abnormal consumption behavior in smart retail
cabinets, two problems need to be solved. The first is that the diversity of consumers leads to a
diversity of actions contained in the same behavior, which makes the accuracy of consumer behav-
ior identification low. Second, the difference between normal interaction behavior and abnormal
interaction behavior is small, and anomalous features are difficult to define. Therefore, we propose
an anomalous behavior detection algorithm with human–object interaction graph convolution and
confidence-guided difference enhancement. Aiming to solve the problem of low accuracy of con-
sumer behavior recognition, including interactive behavior, the human–object interaction graph
convolutional network is used to recognize action and extract video frames of abnormal human
behavior. To define anomalies, we detect anomalies by delineating anomalous areas of the anomaly
video frames. We use a confidence-guided anomaly enhancement module to perform confidence
detection on the encoder-extracted coded features using a confidence full connection layer. The ex-
perimental results showed that the action recognition algorithm had good generalization ability and
accuracy, and the screened video frames have obvious destruction characteristics, and the area under
the receiver operating characteristic (AUROC) curve reached 82.8% in the detection of abnormal
areas. Our research provides a new solution for the detection of abnormal behavior that destroys
commodity packaging, which has considerable application value.

Keywords: intelligent retail; anomaly detection; graph convolutional networks; action recognition;
semantic segmentation

1. Introduction

The integration of deep learning into traditional vending machines has led to the
emergence of smart retail containers that provide a better consumer experience through
open-door shopping and automated checkout processes. This innovation, however, has
also given rise to abnormal consumption patterns. For enterprises, relying on visual
recognition technology to achieve large-scale operation of smart retail cabinets is currently
the most profitable choice. Consumption behavior recognition under smart retail is mainly
achieved through commodity identification. The first step is to identify the customer’s
purchase behavior for the movement trajectory of the product [1,2], and the second is
to use the state and quantity of the product before and after the consumption behavior
to identify the purchase behavior, for example, through the use of RFID [3] and image
recognition [4,5] technology. Visual recognition schemes based on product identification
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can satisfy the requirement of identifying normal consumption action, but are far from
meeting the challenge of abnormal consumption action recognition, including destructive
action. Detecting these anomalous or abnormal consumption patterns has considerable
economic value for enterprises. However, few algorithms for detecting abnormal action in
intelligent retail design are available.

Anomaly detection refers to detecting instances of data that are significantly different
from most ordinary instances. Anomaly detection is emphasized in areas such as data
mining, computer vision, and deep learning. In recent years, the widespread adoption of
deep learning has led to a series of deep anomaly detection methods, which have shown
high practical performance in practical applications such as autonomous driving [6–9]
and pathological detection [10,11]. According to the classification of supervision methods,
anomaly detection methods based on deep learning can be divided into unsupervised,
semi-supervised and weakly supervised methods. Among them, semi-supervised and
weakly supervised methods are more mature. According to the anomaly learning method,
the anomaly detection algorithm involves two learning methods: general normality feature
learning and anomaly measure-related feature learning. General normality feature learn-
ing methods typically involve predictability modeling using autoencoders or generative
adversarial networks (GANs) [12–15]. This provides guidance for anomalous action detec-
tion through anomalous features. The general normality feature learning method shows
excellent performance in detecting anomalous instances; however, there is another side to
this approach. Because the resulting network can easily be misled into generating instance
data from multiple instances, this can negatively affect anomalous determination results.

An autoencoder network is a mainstream algorithm for video-based anomaly detec-
tion. Deng H. et al. [16] proposed a new T-S model composed of a teacher encoder and a
student decoder, and introduced the “reverse distillation” paradigm because of the good
performance of knowledge extraction within the unsupervised anomaly detection problem.
Piergiovanni A. J. et al. [17] proposed a universal visual backbone which easily adapts a ViT
architecture to videos. Due to the fact that smart retail cabinets often capture videos with
only one customer, it is better to use action recognition algorithms instead of autoencoder
networks to detect abnormal actions. In consumer–action recognition problems, human
actions and human–object interactions have an impact on the final consumer action judg-
ment results; therefore, the human–object interaction (HOI) algorithm [18–21] and video
data-based action recognition algorithm can be used for consumer–action recognition. Most
existing HOI detection approaches are instance-centric, and cannot capture complex HOI
behavior with only appearance features; therefore, Wang T. et al. [22] proposed a novel
and fully convolutional version of HOI, and a method wherein HOI detection is posed
as the key to solving detection and grouping problems. However, most current action
recognition algorithms focus more on human action, which leads to a lack of interactive
action information. Meanwhile, the human–object interaction recognition algorithm that
can use the interactive action information cannot process the video data, that is, the time in-
formation of the action cannot be used. Secondly, abnormal actions that include destroying
commodities are the main reason for the commodity loss rate of smart retail cabinets. This
is because this type of behavior involves the customer taking the product and damaging
it, then putting the product back in its original place. Therefore, this kind of behavior can
easily be identified as the customer not purchasing the commodity. This suggests that the
boundary between abnormal and normal interaction behavior is difficult to define.

In this paper, we detect anomalous interactions in both commodity and customer be-
havior, i.e., vandalism that includes tearing up the packaging of the
commodities/unscrewing the cap. Graph convolution with skeletal nodes can filter out a
large amount of background redundant information. Inspired by [23], which defines graph
nodes as the suggested regional features of objects through different frames, we propose a
human–object interaction graph convolution network (HOI-GCN) to connect commodity
nodes and skeleton nodes for interaction feature extraction. Zhian Liu et al. [24] proposed a
novel hybrid framework with a combination of flow reconstruction and flow-guided frame
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prediction for video anomaly detection (HF2-VAD). The trained autoencoder network can
reconstruct the normal behavior with a lower reconstruction error, and the reconstruction
error for anomalous features is much larger. Reconstruction not only detects anomalous
data, but also discovers the area wherein anomalies are located. Considering that the
abnormal characteristics of the commodity are the key to distinguishing normal interac-
tion behavior from abnormal interaction behavior, we use a confidence-guided difference
enhancement module in the autoencoder networks to locate the damage area.

In conclusion, our contributions can be summarized as follows:

(1) To recognize the abnormal action and obtain the corresponding video frames, we
propose an action recognition strategy for interactive action. We construct a human–
object interaction graph convolution network to extract the features of abnormal
action, and to recognize actions using interaction and temporal characteristics.

(2) To distinguish between abnormal interaction action and normal interaction action
according to abnormal characteristics, we propose a confidence-guided anomaly
enhancement module. We reconstruct less confident coded features using ordinary
features with minimal similarity. At the same time, a perceptual loss function and a
three-channel cosine similarity loss function are introduced to calculate the anomaly
score of the image, and the division of the anomaly region is obtained.

2. Related Works
2.1. Anomaly Detection

Anomaly detection can be divided into GAN-based, CNN-based, and auto-encode-
based detection. Morais R. et al. [25] proposed a method to model the normal patterns of
human motion in surveillance videos, and used dynamic skeleton features for anomaly de-
tection. Neelu Madan et al. [26] proposed a self-supervised block that can be applied in var-
ious advanced image and video anomaly detection algorithm frameworks. Feng et al. [27]
proposed a multi-instance framework (MIST) and applied it to weakly supervised video
anomaly detection (WS-VAD) to optimize a multiple-instance pseudo-label generator and
self-guided attention-boosted feature encoder in MIST, using a self-training scheme. In the
field of unsupervised learning, the earliest study using GAN-based predictability modeling
was AnoGAN [28], proposed by Thomas Schlegl, which involved unsupervised learning of
normal anatomical changes in the latent space of a normal sample through deep convolu-
tion GAN (DCGAN). The authors also designed two loss functions in the inference stage to
calculate the difference between the generated and original graphs. The anomalous area
was determined based on the weighted value and set threshold. Xia et al. [29] proposed
two detection methods for fault detection and anomaly detection in semantic segmenta-
tion. They designed a network framework using the semantic segmentation module M
combined with GAN networks to achieve the detection of anomalous items. In industrial
anomaly detection, self-coding networks are the mainstream network. Memory modules
and knowledge distillation models [30,31] are also widely used in self-coding networks
for anomaly detection. Bae J. et al. [32] considered that the location and neighborhood
information are ignored during the modeling of the current autoencoder network, which
affects the distribution of normal features. They proposed a new modeling method, in
which the conditional probability of a given neighborhood feature estimates the normal
distribution and uses a multilayer perceptron network for modeling. To improve the speed
of industrial anomaly detection, Kim D. et al. [33] proposed a method of fast adaptive patch
memory (FAPM), eliminating unnecessary calculations, with good accuracy and speed.

2.2. Action Recognition

The basis of the solution can be divided into two parts: the first is relying on the
extracted human body skeleton information for pose estimation, and the second is directly
extracting the spatiotemporal features of the image for classification. Si Jie et al. [34]
proposed a spatiotemporal graph convolution network (ST-GCN) based on the human
skeleton, which represents the human skeleton node as a graph convolution node by
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modeling the dynamic bone, and uses a spatiotemporal convolution graph to express the
multi-layer skeleton joint sequence. Furthermore, Li proposed an action–structure diagram
convolutional network (AS-GCN), combining action links and structural links [35] with an
ability to learn the characteristics of spatiotemporal actions simultaneously; they proposed
that the recognition head and the future pose prediction head should be added together, and
that the action model should be established through self-supervision. Zhang X. [36] used
asymmetric correlation metrics and a more advanced context-aware graph convolution
network (CA-GCN) to compute contextual information, further expanding the flexibility
of the algorithm. Cheng et al. [37] proposed a new shift GCN (shift-GCN) for modeling a
graph convolutional neural network with the human skeleton as a space-time map, and
effectively reduced the computational complexity.

In the image-based spatiotemporal algorithm, the dual-stream expansion 3D convolu-
tional network (I3D) proposed by Carreira et al. [38] achieves the learning of spatiotemporal
features through expanding the convolutional layer and pooling the kernels from 2D to 3D.
The dual-stream architecture composed of optical flow and RGB also enhances the network
performance. Liu T. [39] proposed STILT, a dual-stream network for spatiotemporal interac-
tive learning. STILT abandons the practice of separating spatial information and temporal
information capture in the early dual-stream network, and pays greater attention to the
strong complementarity and correlation of the spatial and temporal information in a video.
It was able to effectively improve the recognition accuracy by establishing the interconnec-
tion of time flow and spatial stream. Ji Lin et al. [40] proposed a computationally efficient
temporal shift module (TSM) combined with 2D CNN backbone networks, which makes it
possible to achieve low-latency video recognition with edge devices. Limin Wang et al. [41]
used an RGB difference and curved optical flow field as the network input and proposed
a time period network (TSN) to simulate the long-term structure of an entire video for
long-distance time series modeling as a new framework for action recognition.

3. Methods

Figures 1 and 2 shows the flowchart of the algorithm, the action recognition based on
human–object interaction graph convolution, and commodity damage feature detection
under an autoencoder network based on a confidence-guided anomaly enhancement
module. (1) The human–object interaction convolutional network is used to extract human
action and interaction features. The position encoding and visual features are fused and
fed into the interactive graph convolution and temporal interaction modules. (2) The
corresponding encoder and decoder are obtained through network training. Confidence-
guided difference enhancement is used to reconstruct latent features. The image generated
by the encoder is compared with the original image at the pixel level and using depth
semantics, and the damage calibration is obtained.

3.1. Action Recognition
3.1.1. Human–Object Interaction Feature Extraction

By observing videos of destructive action, we find that in the fragments in which
the destructive behavior occurs, the hands are more related to the commodities in terms
of movement and feature, especially during actions with obvious damage characteristics.
Therefore, we encode the motion relationship between different frame objects. We define
individual commodities and hands as our detection objects. Among these, the features of
each object contain the center coordinate of the object along with its height, width and label
as a vector, and we forward these to a multi-layer perception (MLP) network, yielding a
d-dimensional feature and specifying the characteristics. Among these, the features of each
object contain their own 2D coordinates and label information, taking the commodities as
the key point.

Using a backbone CNN (e.g., ResNet-152 [42]), we can extract the image feature F
of each object. The observations in [21] show that position embedding performs better
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concerning actions that directly describe the movements of objects, such as “put something”
and “take something”.
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Figure 1. Overview of algorithm flow of the proposed architecture for action recognition under
human object interaction graph convolution. For t-frame, we extract the features of each object using
ROI + Residual + GAP, and encode the position information using two MLP layers. We also use 1 × 1
convolution to fuse the above two characteristics of each object. The fusion features are connected to
form the characteristics of object nodes in the graph. Through the HOI graph convolution composed
of the adjacency matrix GI , the node matrix X, and the weight matrix W, we can obtain the action
class probabilities PI corresponding to the video frame t. For the temporal interaction module, we
input the trajectory of the video sequence with the t frame as the center frame into the MPL network
to generate the tracklets, and use the function h to combine and aggregate the information of the
tracklets. The video features extracted using I3D are stitched with the motion feature matrix to
classify the motion features. The video features extracted using I3D are stitched with the motion
feature matrix, and sent into the matrix W to obtain the temporal interaction probabilities PT . The
final prediction is generated using PI and PT .

However, this method performs worse concerning actions that are associated more
with changes in the intrinsic properties of an object, such as “tearing”. For the t-frame
video frame, the feature of object i is defined as f t

i , which is calculated as follows:

f t
i = GAP(Resh(RoI(F))) (1)

3.1.2. Human–Object Interaction Graph Convolutional Network

We first define the node characteristics in the graph convolution. After obtaining
the position-encoded features of a frame of the region of interest, we connect the position
features of the node and the image features. The fusion of the two features is achieved with
a 1 × 1 convolution kernel. Through this step, we will obtain the position of the object and
the fusion characteristics xt

i of the image feature. The fusion features can be concatenated
to form a feature of the object nodes in a graph, that is, the node matrix X.
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Figure 2. Overview of algorithm flow of the proposed architecture for confidence-guided anomaly
detection. We use the U-net network as the autoencoder. The autoencoder is divided into two parts;
one is the semantic segmentation network, which outputs the semantic segmentation map, and the
other is the autoencoder with a confidence-guided anomalous enhancement module, which outputs
the reconstruction image. We use two functions for the original map, semantic segmentation map
and reconstruction map. By calculating the cosine distance between the reconstructed map and the
original map and the perceived loss between the segmentation map and the reconstruction map, we
obtain two anomaly maps. The final anomaly map is obtained using weighted fusion.

When creating an interactive adjacency matrix for different objects in video frame t, a
popular method is to use the position information of the objects to define the continuity
between nodes. We define the coordinates of object i node as Ui. The relative coordinates
are fed into the MLP layer, which is put into the corresponding point of the critical matrix
as a proposal probability of size 1 between neighboring nodes. The adjacency matrix G of
size N × N is obtained:

GI
i,j = MLP(Uit −Ujt) (2)

We used graph convolutional networks (GCNs) [43] to generate human–object interac-
tion graphs. Graph convolution is different from standard convolution in that performing
graph convolution is equivalent to performing message passing within the graph nodes.
The output of the GCN is the updated feature of each object node; all the features of all
object modes can be aggregated together for video classification. Formally, we can express
the convolution of a layer of graphs as

P = GXW (3)

where G represents an adjacency graph with N×N dimensions, X is the input feature of the
object nodes in a graph with N × d dimensions, W is the weight matrix of d × d dimension
layers, and the output of a graph convolutional layer Z still has N × d dimension. In our
network, the W is the weight matrix of d × 1 dimension. It is used as the final classifier.
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Additionally, the output is the action class probabilities. We defined output P of the layer
GrapI as

PI = σ(GI XW) (4)

Finally, the output results after the graph convolution calculation were forwarded to
the sigmoid function σ, which calculates the action class probabilities PI of size N.

3.1.3. Temporal Interaction Module

Trajectory characteristics in motion are critical to understanding video. When describ-
ing the motion, we use the temporal interaction module proposed in [21]. It computes the
feature of the tracklet as g(x1

i , . . . , xT
i ), and uses the non-local block [44] as the function h to

combine and aggregate the information of the tracklets. It also uses the architecture of the
3D convolutional neural network proposed in [23] to perform 3D convolution operations
and average pooling on the video sequence; subsequently, the feature PT of N dimension
will be obtained. We stitch together the 3D features PD and tracklet features as follows:

PT = σ(WT
p [PD, h(g(x1

i , . . . , xT
i )

N
i=1)]) (5)

where [] represents the concatenation, and WT
p is used as a final classifier with cross-

entropy loss. Finally, we combine the action class probabilities PI and temporal interaction
probabilities PT by multiplying the probabilities, a method similar to previous work [45,46].
PF represents the final prediction vector of size N.

PF = PT × PI (6)

3.2. Confidence-Guided Anomaly Detection

In the process of identifying anomaly action, the appearance of commodity packaging
damage characteristics is the most reliable judgment for identifying the occurrence of
sabotage; however, detecting and defining the damaged parts remains difficult, because the
damage feature does not appear in normal consumption activities. The detection of damage
features in the image is equivalent to the detection of out-of-detection (OOD) objects. In
classification, OOD objects will be classified as any possible objects in the distribution.
Based on action recognition, we performed semantic segmentation of commodity areas,
and to simplify the complexity of the calculation, we classified the classification results
of the segmentation model into L = n + 2 types, that is, n commodities, customers, and
backgrounds. Specifically, x is a video frame of size w× h, and L = {1, 2, · · · , L} is a set of
integers representing semantic labels. A pixel-level semantic label is obtained by sending
image x to segmentation model M, where we use U-Net [47] for our segmentation model.
At the same time, another type of U-Net [48] was used as autoencoder. It removed the last
batch normalization and ReLU layers in the encoder instead of an L2 normalization layer,
causing the feature to have a common scale.

After the segmentation was complete, we masked the background of the image before
and after synthesis according to the segmented semantic label map, and processed the pixels
in the background as black in order to reduce the interference generated by the background
pixels during the comparison process, and to reduce the amount of computation required
for training and testing.

3.2.1. Confidence-Guided Difference Enhancement Module

We use the encoder to extract features from the input video frame t to then generate
the query map qt. The size of it is H ×W × C, where H, W, and C are height, width, and
the number of channels. qk

t ∈ RC(k = 1, · · ·K) denotes individual queries of size 1× 1× C
in the query map, where K = H ×W. We also use the memory items, which contain M
items recording various normal data. The normal data were generated by the encoder of the
normal frame containing the people and commodities. The normal frame of the customer
was captured at the beginning of the video. We denote the item in the memory using
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vm ∈ RC(m = 1, · · ·M). We calculate the cosine similarity between each query qk
t and all

items vm in the memory to obtain a two-dimensional correlation graph of size M × K. By
performing a global softmax function, the probability wk

t of qk
t matching the vm is obtained.

Figure 3 shows the flowchart of the confidence-guided difference enhancement module.

wk,m
t = so f tmax

 exp((vm)
Tqk

t )

∑M
m′=1 exp

(
(vm′)

Tqk
t

)
 (7)
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Figure 3. Illustration of a confidence-guided difference enhancement module. To read items in the
normal memory, we compute matching probabilities wk,m

t in between the query qk
t and items vm,

and applied a weighted average of the items with the possibilities to obtain the feature. With the
confidence of the query qk

t , a fully connected layer is used to change the weight of items. Finally, we
multiply items by their weight, and add the items together to obtain the reconstructed query.

We add a fully connected layer to qk
t as a confidence branch of the network, measuring

the confidence level of the network evaluation. When the network confidence level is low,
we reverse the original weight wk,m

t in succession to obtain features that are more different
from the original image. By guiding the decoder to direct the anomalous features in the
direction in which they are least similar, the difference can be increased. The transformed
feature map and query features are assembled into the decoder. The formula is as follows.

v̂k
t =


M
∑

m′=1
wk,m′

t vm′ i f FC(qk
t ) < δ

M
∑

m′=1

(
1− wk,m′

t

)
vm′ i f FC(qk

t ) ≥ δ

(8)

To train a fully connected layer of confidence, we only feed normal items into the fully
connected layer. We denote the similarity of normal feature qk

t to memory item vm using
wk

m. We define y as the target probability distribution of the input normal features. The
target probability distribution can give the network “hints”. The confidence c denotes the
probability that a query belongs to the memory items. Through training, normal features
attain higher confidence in fully connected networks. The formula is as follows:

wk′ ,m
t = (1− c)·wk,m

t + c·yk,m
t (9)
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We calculate the task loss using the prediction of negative log likelihood. To prevent
the network from always choosing to receive the entire ground truth for minimizing the
loss function, we add a binary cross-entropy loss function and balance the two losses using
a hyperparameter λ; the loss function is as follows:

Lc = λ

(
M

∑
m=1

yk,m
t log

1

wk′ ,m
t

)
+ (1− λ) log

(
1
c

)
(10)

3.2.2. Comparison of Shallow Features

In the process of calculating the characteristic value of commodity damage, not all
abnormal feature values have an equal impact on the judgment results. If only the single
feature value of each pixel is compared in the process of comparing the image, the calcula-
tion result will produce a large error, which is not conducive to the overall understanding
of the damaged area. This is because the production of abnormal features of commodities
and the destruction of commodity packaging have a strong causal relationship. Therefore,
we synthesized the changes in hand nodes in the n frames before and after the selected
video frame, and performed pixel-level feature vector stitching. We let the horizontal
and ordinate changes of the nodes of the two adjacent frames be expressed as Kp

xm , Kp
ym ,

specifying that the left and down movements are negative values, where p represents the
hand, and m is the m-frame in n frames.

∧
θ = arctan

(
n

∑
m=2

Kp
xm ,

n

∑
m=2

Kp
ym

)
(11)

We stitched the pixels in position according to the size of the frame of the selected
video frame w × h, where f i

M is the feature vector of the RGB channel at the ith pixel
position of the last layer output of the segmentation model M. By stitching the feature
values in the θ̂ direction, we filled the rest of the video frame θ̂ with black according to
w×h, and the feature vector of the stitching f i

θ̂w
, where b, c represents the splicing of pixels.

When the sum value of the motion coordinates is small, we skipped the area aggregation
module and directly compared the pixel-level features of each point.

f i
θ̂w

=
⌊

f i1
θ̂w

, f i2
θ̂w

, . . . , f ih+w
θ̂w

⌋
(12)

Subsequently, for regions with large outliers, we compared the cosine distance de-fined
on the intermediate feature of each element in the region:

S(i)
n = F(x, r) = 1−

〈
f i
M(x)

‖ f i
M(x) ‖2

,
f i
M(r)

‖ f i
M(r) ‖2

〉
(13)

where 〈·, ·〉 is the inner product of two vectors.

3.2.3. Comparison of Deep Features and Fusion

Although shallow features can make good use of pixel-level information, the ex-
pression of higher features is missing, and the global features of the broken area are not
expressed. We expressed the semantic differences between the segmentation map and the
composite map by calculating the perceived loss of each pixel. Furthermore, by using the
semantic differences between abnormal objects in the composite image, we can compare
the deep features of each pixel.

The pixels of the original video frame are defined as f i
M(x), and the pixels of the

composite video frame are defined as f i
M(x), where F(i) represents the elements of layer i
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in the N layer of the VGG network, which are normalized between [0, 1]. The perceived
difference expression is as follows:

D(x, r) =
N

∑
i=1

1
Mi
‖ F(i)

(
f i
M(x)

)
− F(i)

(
f i
M(r)

)
‖

1
(14)

Subsequently, we synthesized the differences of the deep and shallow layers of the
same position, and assigned different weights to the deep features and shallow feature
differences of each node, wherein we define the weight parameter as λS, λD. Finally,
depending on the presence or absence of abnormal areas in the commodity, a fine judgment
of the damage to the commodity can be made. The final synthetic difference is SD, which
can be determined using the following formula:

SD = λS·Sn + λD·D (15)

4. Experimental Results and Analysis
4.1. Experimental Platform and Dataset

The following platforms were used in this experiment: Windows 11; Graphics: NVIDIA
GeForce GTX1650; Server: Nine days of ascension, Baidu PaddlePaddle. We used the Py-
torch deep learning framework, PaddlePaddle 2.3 networking framework, and Python 3.8
to build the network model.

Because the commodity destruction video dataset is still blank in the public dataset of
anomaly detection, the actual situation of the popular public dataset of anomaly detection
and the abnormal behavior of consumption are quite different. To ensure the validity
and accuracy of the experiment, it was conducted using homemade datasets. For each
video, only a single customer consumes, excluding multiple people consuming at the same
time. The consumer is in a bright environment. Additionally, all the customer’s behavior
is in the area that can be monitored by the camera, and there is no malicious occlusion
and other problems in the customer’s consumption behavior. Since the container door is
transparent, the camera is placed above the inside of the container, and the shooting area is
directly facing the retail container door. The inside of the smart retail container is equipped
with light strips. This ensures that customers are also under a good light source when
consuming at night. The video starts recording when the customer opens the door, and
stops recording when the customer closes the door.

We divided consumer behavior into four behavioral categories (buying, not buying,
drinking water, and tearing up packaging) and included three types of commodities
(potato chips, biscuits, and drinks). The commodities used did not include those with
transparent outer packaging. We also tested our algorithm on the MVTec AD dataset shown
in Figure 4. Figure 5 shows the four behavioral data points, and Table 1 lists the details of
our dataset. This is a dataset that mimics industrial production scenarios and is mainly
used for unsupervised anomaly detection. The dataset contains five textures and ten objects
from different domains.

Table 1. Details of video datasets used in our experiments.

Actions Train Resolution Commodity Test

Destory 397 1280 × 720 4 44
Purchase 891 1280 × 720 7 98

No purchase 412 1280 × 720 7 45
Drink 372 1280 × 720 3 41
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Figure 4. Some presentations from the MVTec AD dataset. It provides pixel-level labeling for
anomalous regions, with only normal samples in the training set and normal and defect samples in
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and different structural changes. In our experiments, we mainly use object-type data, which include
metal nut, hazelnut, pill, etc.
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4.2. Comparision with State-of-the-Art Models
4.2.1. Action Recognition

To verify the effectiveness of the human–object interaction graph convolutional net-
work, a comparative experiment was designed to compare two indicators: the area under
the curve (AUC), and the receiver operating characteristic curve (ROC). We plotted the
ROC curve for each action in the selected algorithm and used the AUC as an indicator
to test the generalization ability of the selected model. The parameters in the code were
set to 50 epochs with a batch size of 64. Figure 6 presents the ROC curve. Table 2 lists
the AUC calculation indicators, the accuracy of the model detection, and the time spent
on 57 videos for each network. The video is recorded from a top-down perspective, and
this greatly interferes with the performance of the graph convolutional network based on
human skeletons. We use the timesformer structure proposed by Gedas Bertasius et al. [49]
to understand the video, which is completely based on the self-attention mechanism and
does not use the convolutional structure. The timesformer structure not only enhances
the spatiotemporal modeling ability of the network, but also reduces the complexity and
computational load of the network.

Table 2. Comparison experiment of AUC and Top-1 accuracy of consumer behavior recognition with
various algorithms.

Algorithm Input AUC Top-1 Accuracy

ST-GCN Skeleton 0.76 0.65
ST-GCN(AT) Skeleton 0.81 0.74
MS-G3D [50] Skeleton 0.86 0.81
Timesformer RGB 0.87 0.84

TSN RGB 0.92 0.85
I3D + STIN + OIE + NL [21] RGB 0.84 0.82

Ours RGB 0.90 0.86
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Figure 6. Visual results of ROC curve under our methods, showing ROC curves for the four modes of
action recognition, and a macro-average ROC curve showing the generalization ability of the algorithm.

The videos from the visual system are important for identifying results. When the
camera’s shooting area does not cover the main parts of the human body or occludes too
much, the performance of the network based on skeleton nodes will be seriously degraded.
The quality of the image taken has a significant impact on the network, wherein the input
data is RGB. The more video frames the visual system takes per second of an action, the
more data we will obtain. Thus, our vision system for shooting video uses an image
resolution of 1280 × 720 and an fps of 27. The influence of the visual system within the
network is minimized.

4.2.2. Anomaly Segmentation Method on MVTec AD

We used AUROC and FPR95 as our evaluation indicators in anomaly segmentation
methods. Furthermore, we represent the abnormal as TP at the broken part of the commod-
ity, and as FP if the normal area is marked as abnormal, where i represents the true value, j
represents the predicted value, and pij represents the number of pixels that predict i as j.

In the comparison of public datasets, our algorithm has more descriptions of motion
characteristics, which is useless in industrial datasets. Our algorithm tends to increase
the error according to the labels. That is, we can decode the abnormal characteristics
of the product according to the human body or background characteristics through the
confidence-guided difference enhancement module, so as to widen the difference between
the abnormal characteristics of the product and the product. This does not work in some
industrial data sets. Additionally, some of the perceptual loss functions perform poorly in
some feature textures.

Therefore, we only tested some data with two labels. Although our algorithm still has
shortcomings compared to the current algorithm, it shows better results in some complex
datasets. Table 3 presents the results.

4.2.3. Video Frame Selection

Our action recognition algorithm defines the t-frame as the central frame, and obtains
the probability distribution of the destruction. We use the probability of destruction as the
selection weight for the t-frame. The classical algorithms for video frame selection include
the clustering algorithm, optical flow algorithm, and temporal difference method. Video
frame selection aims to obtain the most representative video frames. In the present study,
we compared the video frame selection algorithm based on human–object interaction with
the above classical algorithm. We used a prediction of correct keyframes (PCK) indicator;
PCK is the proportion of correctly estimated video frames within the keyframes. In the
algorithm, we set n to 29 and randomly took 140 videos as our detection videos, wherein
the total number of video frames and the number of keyframes are average. The total
number of frames is 5350.
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Table 3. Comparison between industrial anomaly detection methods.

AUROC/Method MemSeg [51] FastFlow [52] Ours

Metal Nut
Pixel 99.3 97.9 96.5

Image 100 100 98.3

Hazelnut
Pixel 97.8 98.1 98.8

Image 100 100 99.9

Pill
Pixel 99.5 99.2 97.5

Image 99.3 99.6 99.8

Toothbrush
Pixel 99.2 97.9 96.8

Image 99.7 99.3 99.8

Bottle
Pixel 99.1 98.2 96.3

Image 100 99.6 97.1

Table 4 presents the results. It can be observed from the table that our screening of
video frames of destructive action is more effective. The optical flow method performs
poorly in experiments; the reason for the poor performance is that the brightness of the
opening and closing door changes significantly, due to which the optical flow change when
the action occurs is relatively small. Thus, the video frame containing the destruction is
not easy to detect. The clustering method has evident differences in the selection effect for
different videos, because the optimal threshold selection of different videos is different.
After repeating the experiments a few times, we set the threshold to 0.89. Figure 7 presents
the experimental results. To detect the broken features, the best keyframe extracted should
be the intermediate frame wherein each action occurs. In the experiment, we found that
keyframe extraction based on interaction extracts all the keyframes containing related
actions and similar actions, which makes the number of keyframe extractions extremely
large and scattered, which is not conducive to the detection of broken features. With the
addition of motion analysis, the number of keyframes was significantly reduced, and the
selected keyframes were concentrated near the intermediate frame in which the action
occurs.
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Figure 7. Visual results of video frame selection. The blue curve represents the predicted probability
that a video sequence centered on the current frame is predicted to destroy the commodities. The
curve below is the score of each video frame as the keyframes. We mark video frames in which
anomalous behavior occurs with a red border.
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Table 4. Comparison experiment of PCK on various methods.

Method Key Frames PCK (%)

Temporal difference method 77 42.1
Optical flow method 297 12.2
Clustering method 336 53.3

Ours 287 82.4

4.3. Ablation Studies
Effectiveness of Confidence-Guided Difference Enhancement Module and Fusion

In the proposed network, one of the core components of the methodology, confidence-
guided anomaly enhancement, enhances differences in order to guide the detection of
anomalous features. At the same time, the fusion of deep and shallow features provides
more comprehensive information for the calculation of anomaly scores. To investigate the
effectiveness of confidence-guided anomaly enhancement modules and feature fusions, we
study the ablation of six variants: (1) confidence-guided anomalous enhancement modules
with shallow features; (2) confidence-guided anomaly enhancement module with deep
features; (3) shallow features; (4) deep features; (5) fusion; (6) confidence-guided anomalous
enhancement modules with fusion. During the experiment, because the synthesis of the
background was unnecessary, we used a U-net segmentation network to separate the
consumer’s upper body and the commodity, and the remaining space was filled with black.

We compared our algorithm with two methods. Compared with the uncertainty of
the last layer of the segmented network, we obtained better results for deep and shallow
feature fusion. In the decoding process, when the decoder map of the human body area
is compared with the original map, differences can be observed in some nodes, especially
after the appearance of the damaged area. The perception difference often expands the
size of the abnormal area during the detection process, and thus the accuracy of anomaly
detection is reduced. We can converge the detection range of the perception difference
by fusing shallow features, and the damaged area can be delineated and distinguished
more accurately. Figure 8 displays the experimental figure. Evidently, the result map is
more accurate for the boundary definition of some anomalous areas relative to the deep
difference, especially for anomaly detection in commodity areas.

In the perceptual difference calculation, we assigned different weights to the perceived
loss function of the network in different dimensions of the five layers of the VGG network.
We found that although the perceived loss of the fifth layer is theoretically the best, experi-
mentally, the perceived loss of the fourth layer has greater accuracy for the division of the
image damage area. Therefore, the order of our assignment of weights from the largest to
smallest is as follows: fourth layer, fifth layer, third layer, second layer, and first layer. To
verify the effectiveness of the fusion strategy, we detected the deep and shallow features
individually and compared their effects after fusion. Table 5 presents the algorithm results
for the modules.

Table 5. Ablation studies of the confidence-guided difference enhancement modules and the fusion
of multi-layered differences. C stands for confidence-guided difference enhancement modules, S for
shallow difference, and F for deep difference.

C S F AUROC

X 35.9
X 37.2

X X 40.3
X X 42.7

X X 71.8
X X X 82.8
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Figure 8. Visual results of ablation study, including the maps processed by the autoencoder network,
the anomaly graph computed by the two functions, and the anomaly graph after fusion. After setting
the parameters, the color of the abnormal area is red. (a) Input images. (b) Image after autoencoder.
(c) The label graph obtained using semantic segmentation. (d) The shallow difference calculated using
the cosine distance. (e) The deep difference calculated using perceptual losses (f) The fusion result.

4.4. Analysis of Results

Image regeneration inevitably produces errors, and undamaged commodities may
have damaged features due to errors in rebuilding features. We use different fusions λS and
λD in three ratios (0.3, 0.6; 0.2, 0.7; and 0.1, 0.8) because the difference in network synthesis
is evident for shallow features, and its difference is small for deep features. Therefore,
we randomly assigned the above three proportions to each image. Figure 9 presents the
anomaly detection for normal images. The fusion of visible deep and shallow features
effectively suppresses the difference generated by synthesis in the commodity area.

The changes in and deformation of objects may generate abnormal features when
no destructive action occurs. This has an impact on the abnormal detection. However,
as shown in Figure 9, we caused changes in and the deformation of the object through
flipping and extruding. The wrong delineation of the zone did not occur. Firstly, these
characteristics are present in normal purchases, due to the inevitable changes in and
deformation of objects when grasping. As a result, the confidence of the features encoded
by such objects is very high throughout the FC layer, that is, the memory module contains
similar features. The network reconstructs in the direction most similar to the input feature.
Secondly, the detection of anomalies caused by perceptual differences occurs in the features
after convolution. The comparison of such deep features is based on whether the features
belong to the category of the region in which the segmentation map is located, as has been
shown in Figure 8. When the shallow comparison module compares the original image
with the restricted image at the pixel level, the detected anomalies only detect the area
with a very large difference. For the image reconstructed in the most similar direction,
the shallow comparison module cannot play a large role. Therefore, changes in and the
deformation of objects will not affect the delineation of abnormal regions.
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5. Discussion

In this paper, we propose a method of behavior recognition based on customer be-
havior and commodity information, which is quite different from methods in previous
works focused on SKUs. Because of the small size of the smart retail container, we set the
consumption object as a single customer. This makes our algorithm unsuitable for cases
of group consumption such as unmanned convenience stores. The abnormal behavior
detection algorithm based on damage features consists of two parts. We first identify the
actions in the video in order to achieve action recognition in the video. In addition to
the usual two actions of either buying or putting the undamaged commodity back, we
also defined the behaviors of tearing up packaging to take food and unscrewing the lid of
a bottle. If we detected the customer destroying the commodities, we extracted the key
frames of this event, detected the damaged part of the commodity, and delineated the
abnormal area.

The proposed action recognition strategy combines interaction features and temporal
features for consumer behavior recognition, and has excellent detection accuracy and
generalization ability. Our action recognition strategy not only considers the temporal
characteristics of the action, but also considers the interaction characteristics in a single
video frame. The results show that the action recognition module designed using an
interactive graph is superior to alternative action recognition algorithms, and the selected
video frames show obvious damage characteristics. The ROC curve illustrates the good
generalization ability of our algorithm.

The confidence-guided anomaly enhancement module can greatly increase abnormal
features and reconstruct normal features well. Compared with other anomaly detection
networks based on autoencoder network, our network has added a confidence-guided
difference enhancement module and a comparison module. Ablation experiments have
proved that the additions of our module are effective. Our strategy of combining a shallow
feature comparison network of motion information with the fusion of deep and shallow
features can alleviate false alarms caused by the reconstruction process. Based on our
results, we can conclude that anomalous features can be precisely divided. Finally, based
on the presence or absence of abnormal features of the product, we can accurately identify
abnormal behavior.
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