
Citation: Li, X.; Yang, H.; Han, J.;

Dong, N. A Novel Low-Complexity

Method for Near-Field Sources Based

on an S-IMISC Array Model.

Electronics 2023, 12, 2435. https://

doi.org/10.3390/electronics12112435

Academic Editors: Yangyang Dong,

Hua Chen and Fangqing Wen

Received: 25 April 2023

Revised: 23 May 2023

Accepted: 24 May 2023

Published: 27 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Novel Low-Complexity Method for Near-Field Sources Based
on an S-IMISC Array Model
Xiaolin Li *, Hongjuan Yang *, Jiqu Han and Ningfei Dong

School of Physics and Electronic Information, Yantai University, Yantai 264005, China;
hanytu@163.com (J.H.); dongningfei@126.com (N.D.)
* Correspondence: lixiaolinshiwo@163.com (X.L.); yanghongjuan123.hi@163.com (H.Y.)

Abstract: Array optimization has recently received significant attention owing to its several advan-
tages, such as larger array aperture and greater degrees of freedom (DOFs). However, current works
focus on far-field sources, while array optimization for near-field sources has not been adequately
investigated. Therefore, this work develops a new symmetry sparse array model for near-field sources
based on the improved maximum inter-element spacing constraint (IMISC). The proposed symmetry
IMISC (S-IMISC) array model has all the advantages of traditional sparse array models. Compared
with traditional sparse array models, the S-IMISC array model affords more uniform DOFs and is less
affected by mutual coupling. Additionally, in order to improve the real-time performance of near-field
sources localization, the characteristic equation-based method (CEM) is used to obtain the azimuth
information of near-field sources which can avoid eigenvalue decomposition (EVD), and a spectrum
peak search and compression scheme is used to obtain the distance information by searching the
partial area instead of the whole Fresnel area, thereby significantly reducing computation complexity.
Extensive simulations verify the advantages of the proposed algorithm and the S-IMISC array model.

Keywords: array optimization; S-IMISC array model; near-field sources localization; CEM;
compress scheme

1. Introduction

Traditional wireless communication considers the user’s distance to the base station
to be significantly different from the antenna size of the base station. Therefore, a typical
array reception model relies on the far-field assumption [1–3], i.e., the user-transmitted
signal incident to the base station antenna can be regarded as a plane wave. However, in
next-generation wireless communication systems, enhancing the spatial resolution of the
base station and improving the spatial service ability is one of the main problems facing
the current ground observation system. Currently, the ultra-large aperture antenna array
model involves an aperture size ranging from several meters to tens of meters, with the
near-field area extending to several kilometers. However, utilizing the traditional far-field
signal model in such antennas will lead to large errors. Therefore, it is necessary to conduct
in-depth theoretical and experimental research for near-field sources.

When the user is in the base station antenna array’s Fresnel region, the received
signal by the base station is a spherical wave. Moreover, the user’s location information
is determined by the azimuth and the distance between the base station and the user.
Therefore, in the near-field location, it is necessary to measure the two dimensions of
the target, that is, to obtain the azimuth measurement and distance measurement of the
target. Nevertheless, in order to solve the problem of complex guidance vector in the near-
field source model, a spherical waveform modeling based on quadratic Taylor expansion
is proposed.

Based on the Simplified Near-Field Source Model, researchers have proposed sev-
eral near-field positioning methods [4–7] based on a uniform linear array (ULA) model,
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such as the polynomial rooting method [8], Two-Stage MUSIC (TSMUSIC) [9], a gridless
one-step method [10], and so on. These methods are traditional subspace methods that
simultaneously realize the location of the mixed sources. Although these methods inherit
the advantages of the subspace methods’ high accuracy, they lose the array aperture, im-
pose a high computational complexity, and are easily affected by the mutual coupling
effect. Additionally, Chen et al. [11] suggest a maximum likelihood estimation algorithm
to estimate near-field signal parameters, and Li et al. [12,13] use the idea of Sparse Signal
Reconstruction to estimate near-field source parameters. Zhi et al. [14] divide the symmet-
ric array into two sub-arrays and use their symmetry relationship to construct spectral
functions for parameter estimation. The above algorithms are derived from a uniform
linear array, where the number of sources is no more than 1/2 of the array elements, forcing
it to lose the array’s degree of freedom. Nevertheless, most algorithms require EVD and
spectral peak search, resulting in high computational complexity, which increases as the
array elements increase.

Several array models have been proposed to improve the array utilization, such as
the nested array model [15], improved nested array model [16–19], and coprime [20–23].
These array models improve the array’s degrees of freedom to a certain extent, but when
the mutual coupling effect between the array elements is severe, the performance of these
array models will sharply decline. Specifically, the maximum inter-element spacing con-
straint (MISC) array model [24] affords a good balance between mutual coupling and
uDOFs. Therefore, Shi et al. [25] proposed an IMSIC array model based on MISC that
outperforms the traditional MISC. It should be noted that the above improved array models
are designed for far-field sources and have been poorly optimized for near-field sources.
Indeed, Wang et al. [26] applied the nested array model for mixed-signal parameter estima-
tion. Zheng et al. [27] and Su et al. [28] proposed a symmetric double nested array model
(SDNA) for mixed-signal parameter estimation. Wang et al. [29] proposed an enhanced
symmetric nested array model (ESNA) for mixed-signal parameters. Wang et al. [30,31]
proposed a novel symmetric flipped nested array (SFNA) and an improved symmetric
flipped nested array (ISFNA) for mixed-signal parameter estimation. The above im-proved
nested array models can achieve higher DOF. However, these improved nested array
models involve a group of uniform linear arrays, and therefore, they are affected by the
mutual coupling effect, sharply degrading the positioning accuracy. Meanwhile, the above
algorithms require two-dimensional search to obtain azimuth and distance information of
near-field sources, which leads to high computational complexity and is not conducive to
real-time performance.

Spurred by the abovementioned deficiencies, this paper introduces the S-IMISC array
model based on IMSIC. The S-MISC array model has all the advantages of the nested
array models. In the case of a certain number of arrays, the positioning of the S-IMISC
array can be uniquely determined by a closed formula. However, compared with nested
array models, the S-IMISC array model has more degrees of freedom and reduces the
influence of the mutual coupling effect. Extensive experimental simulation results reveal
that the proposed algorithm has advantages over the existing sparse algorithms in an
array configuration. The S-IMISC array model is not only suitable for near-field source
localization but also applies mixed-source localization.

Meanwhile, to reduce our algorithm’s computational complexity and improve its real-
time performance, we utilize the CEM algorithm [32] to estimate the azimuth of near-field
sources and thus avoid the EVD process and the spectral peak search. Furthermore, the
compressed MUSIC algorithm [33] is incorporated into the distance parameter estimation.
The distance search area is divided into distance slices to construct a group of noise subspace
clusters and their intersection is calculated. The spectral function is constructed using the
newly constructed intersection, which transforms the original Fresnel region search into
a small region search, further reducing our algorithm’s computational complexity and
processing time.
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The rest of the paper consists of six sections. The novel array model and the near-field
source model are briefly reviewed in Section 2. The proposed algorithm of the azimuth
estimation for near-field sources is introduced in Section 3. The proposed algorithm of
range estimation for near-field sources is introduced in Section 4. The performance analysis
of the S-MISC array model and the proposed algorithm will be presented in Section 5. In
Section 6, we will use some numerical examples to verify the effectiveness of the S-MISC
array model and the proposed algorithm in this paper. The paper will be concluded in
Section 7. Compared with the existing algorithms and sparse array models, the special
array model structure provides the two important advantages, namely: larger aperture
and a smaller effect of mutual coupling. Combining the use of CEM algorithm ideas and
compression scheme allows to reduce computational complexity and improve real-time
performance. The above two major advantages make the proposed algorithm and the
S-IMISC array model very suitable for near-field source localization.

2. Array Model and Signal Model of the Near-Field Source
2.1. S-IMISC Array Model

Next, we introduce the S-IMISC array model, which comprises 12 sparse ULAs and
consists of 2N−1 array elements. The S-IMISC array model has more desirable properties
and advantages than nested and coprime arrays, such as a lower mutual coupling effect
and more DOFs. We define M as the maximum array element spacing and D as distance
between adjacent elements. The S-IMISC array model is an array symmetrical with central
elements, where DS−IMISC−F is the distance between adjacent elements which is located on
the right side of the central array element and DS−IMISC−D is the distance between adjacent
elements which is located on the left side of the central array element. Then, M and D are
used to locate the S-IMISC array model, as follows:

M = 4
⌊

N + 2
6

⌋
N ≥ 10, (1)

D = [DS−IMISC−D DS−IMISC−F], (2)

DS−IMISC−F =

2, . . . , 2︸ ︷︷ ︸
M
4 −1

, 1, 1,
M
2
− 2,

(
M
2
− 1
)

, . . . ,
(

M
2
− 1
)

︸ ︷︷ ︸
M−4

2
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(

M
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(
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,
(
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2
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)

, . . . ,
(

M
2
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The position P of the array element corresponding to Formula (2) is as follows:

P = [PS−IMISC−D PS−IMSIC−F] = [p−N+1, . . . , pN−1] (5)
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PS−IMISC−D =
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. (7)

The array positions of the S-IMISC array configuration are illustrated in Figure 1,
where the location of an array can be represented as a function of N and M. Since M is
determined by N, the S-IMISC array has a closed-form expression for the location of an
array concerning an arbitrary number of arrays.
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Figure 1. S-IMISC array model: (a) forward array and (b) backward array.

2.2. Signal Model of the Near-Field Sources

As depicted in Figure 1, L narrowband near-field sources are irradiated on a symmetric
non-uniform linear array with 2N − 1 non-directional arrays. Assuming that the center of
the array is a phase reference point, the data received by array i can be shown as follows:

xi(t) =
L

∑
k=1

ai(θk, rk)sk(t) + ni(t) − N + 1 ≤ i ≤ N − 1, (8)

where sk(t) is the kth narrowband near-field source and ni(t) is the additive Gaussian noise
received by the ith array.
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The vector form of the data received by the arrays can be expressed as:

x(t) = A(θ, r)s(t) + n(t), (9)

where s(t) = [s1(t), · · · , sL(t)]
T is a L × 1 vector of the near-field sources, n(t) is the

(2N − 1)× 1 Gaussian white noise vector.
Moreover, A(θ, r) represents the near-field source manifold matrix, expressed as:

A(θ, r) = [a(θ1, r1), · · · , a(θL, rL)], (10)

a(θk, rk) =
[
exp(j

(
−pωk + N2φk

))
, . . . , exp

(
j
(

Nωk + N2φk

))
]T , (11)

where ωk, φk are:
ωk = −2πdsin(θk)/λ, (12)

φk =
πd2cos(θk)

2

λrk
, (13)

where θk and rk k = [1, 2, · · · , L] are the azimuth and distance of the kth near-field source.
This paper makes the following assumptions:

(1) Near-field sources are statistically independent of each other;
(2) The sensor noise is additive Gaussian white noise and does not depend on the source;
(3) The smallest array interval is the wavelength of 1/4.

Based on the above assumptions, we will estimate the azimuth and the distance of the
near-field signal.

3. The Azimuth Estimation for Near-Field Sources Based on the S-IMISC Array

First, to estimate the azimuth information of the near-field source, a fourth-order
cumulative vector based on the S-IMISC array model is constructed as follows:

C(i,−i, j,−j) = cum
{

xi, x∗−i, x∗j , x−j

}
=

L
∑

m=1
c4siam(i)a∗m(−i)a∗m(j)am(−j)

=
L
∑

m=1
c4sie

j(2(pi−pj)vm),

(14)

where c4si = cum(sm(t), sm(t), sm(t), sm(t)).
Based on the S-IMISC array model, we construct the N − 1 positive difference as follows:

C1 = {p1 − p0, . . . , pN−1 − p0}
C2 = {p2 − p1, . . . , pN−1 − p1}
C3 = {p3 − p2, . . . , pN−1 − p2}

...
CN−1 = {pN−1 − pN−2}

. (15)

From the integer set DS−IMISC, the difference set of an S-MISC array is provided by a
consecutive set from [−MN + 3M2

4 + M
2 − 1, . . . , MN − 3M2

4 −
M
2 + 1].

DS−IMISC =

{
−MN +

3M2

4
+

M
2
− 1, . . . ,−2,−1, 0, 1, 2, . . . , MN − 3M2

4
− M

2
+ 1
}

, (16)

The proof of (16) has been derived [13].
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Therefore, the uniform DOFs for the S-IMISC array model is

uDOFs = 2MN − 3M2

2
−M + 3. (17)

From Formula (15), we obtain a fourth-order cumulative vector CS−IMISC of 2MN −
3M2

2 −M + 3 dimension as follows:

CS−IMISC =
L

∑
i=1

c4siexp(j2iωi), i ∈
[
−MN +

3M2

4
+

M
2
− 1, MN − 3M2

4
− M

2
+ 1
]

. (18)

Traditional algorithms require EVD and spectral peak search, which increase the
calculation burden. Thus, this paper utilizes the CEM algorithm to avoid EVD and spectral
peak search and thus reduce calculation complexity. The specific steps are as follows:

First, we construct a polynomial of the following order:

f (χ) =
L

∏
k=1

(
χ− e(j2ωk)

)
= χL + cL−1χL−1 + · · ·+ c1χ1 + c0. (19)

Formula (19) reveals the roots on the unit circle corresponding to the azimuth informa-
tion of the information sources. Therefore, it is only necessary to determine the polynomial
coefficients [cL−1, cL−2, · · · , c0], construct Formula (19) and solve it to obtain the azimuth
information of the information sources.

To facilitate derivation, we define P = 2MN − 3M2

2 − M + 3. Then, we bring the
solution ej2ωk into Formula (19) to satisfy the following:

ej2ωk L + cL−1ej2ωk(L−1) + · · ·+ c1ej2ωk + c0 = 0 k = 1, 2, · · · , L. (20)

After that, we multiply both sides of Formula (20) by factors to obtain Formula (21)
as follows:

c4s1ej2ω1 Jej2ω1L + c4s1ej2ω1 JcL−1ej2ω1(L−1) + · · ·+ c4s1ej2ω1 Jc1ej2ω1 + c4siej2ω1 Jc0 = 0
...
c4sLej2ωL Jej2ωL L + c4sLej2ωL JcL−1ej2ωL(L−1) + · · ·+ c4sLej2ωL Jc1ej2ωL + c4sLej2ωL Jc0 = 0

, (21)

where J = −P, · · · 0, · · · , P− L.
The following formula can be obtained by superposition of Formula (21):

L

∑
i=1

c4siej2ωi Jej2ωi L +
L

∑
i=1

c4siej2ωi JcL−1ej2ωi(L−1) + · · ·+
L

∑
i=1

c4siej2ωi Jc1ej2ωi +
L

∑
i=1

c4siej2ωi Jc0 = 0 (22)

When Formula (18) is introduced into Formula (22), Formula (22) can be rewritten
as follows:

C(J + L) + C(J + L− 1)cL−1 + · · ·+ C(J + 1)c1 + C(J)c0 = 0 (23)

Next, we rewrite the 2P− L + 1 equations into a matrix as follows:
C(−P) C(−P + 1) · · ·C(−P + L− 1)
C(−P + 1)C(−P + 2) · · ·C(−P + L)
...
...
. . .

...
C(P− L)C(P− L + 1) · · ·C(P− 1)




c0
c1
...
cL−1

 = −


C(−P + L)
C(−P + L + 1)
...
C(P)

. (24)

Formula (24) reveals that the coefficient of the polynomial [cL−1 , cL−2, · · · , c0] can be
obtained as long as the value of C is determined.
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The polynomial coefficients obtained are input into Formula (19) as follows:

f (χ) =
L

∏
k=1

(
χ− e(j2ωk)

)
= χL + cL−1χL−1 + · · ·+ c1χ1 + c0. (25)

After obtaining Formula (25), we solve it to obtain the roots and then use Formula (26)
to convert the L roots to calculate the azimuth parameters of the near-field source.

θi = sin−1(arg(χk)λ/(4Πd))i = 1, 2, · · · , L. (26)

4. Distance Estimation for Near-Field Sources Based on the S-MISC Array Model

This section obtains the distance of information from near-field sources. Specifically,
we construct the covariance matrix R with using the data received by the forward arrays
presented in Figure 1b, as follows:

R = E
(

x(t)xH(t)
)
= ARsAH + σ2 I. (27)

By applying EVD on the covariance matrix, we obtain the following:

R = UΛUH = USΛSUH
S + UNΛNUH

N , (28)

where the signal subspace US is stretched by the eigenvector that corresponds to the large
eigenvalue, and the noise subspace UN is stretched by the eigenvector corresponding to
the small eigenvalue.

The orthogonality principle between the signal and noise subspace is used to construct
a new formula, where the distance information of the signal is obtained by minimizing the
spectral Formula (29):

ri = min(aH(θi, r)UNUH
Na(θi, r)). (29)

Traditional algorithms generally use spectral peak search to obtain the distance infor-
mation of the near-field sources. However, this strategy imposes a huge computational
complexity, prohibiting real-time processing. Hence, the algorithm proposed in this paper
searches only for a part of the area instead of the whole area, reducing the computa-
tional burden.

This section focuses on the simplified operation of the range spectrum peak search
part. Particularly, the whole range space is divided into β small areas for search. The
division between the cells is illustrated in Figure 2.
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The corresponding value range is uniformly distributed, as shown below:

ε1 = ε2 = ε3 . . . εβ =
k
β
= ε. (30)

Therefore, we obtain the following relationship:

ϕ1 < ϕ2 < ϕ3 = · · · < ϕβ. (31)

The mapping relationship between the distance intervals ϕk and ϕm meets the follow-
ing requirements:

f : ϕk → ϕm, f (rk) =
1
rk

+ (k−m)ε→ 1
rm

. (32)

According to the above analysis, for any distance value rk in the distance range ϕk,
there must be a distance value rm in the distance range ϕm corresponding to rk.

Assumption: θm is the angular information, rm is the range information concerning θm
and ai(θ, r) is the ith element of the guiding vector a(θ, r).

By introducing Formula (32) into the guidance vector of the near-field source signal,
we obtain the following:

ai(θm, rm) = exp(− j2πdpisin(θm)/λ + jπd2 pi
2cos(θm)2/λrm)

= exp(− j2πdpisin(θm)/λ + jπd2 pi
2cos(θm)2/λ( 1

rk
+ (k−m)ε))

= exp(− j2πdpisin(θm)/λ + jπd2 pi
2cos(θm)2/λrk

)
×exp(jπd2 pi

2cos(θm)2/λ
)
(k−m) ε)),

= χk,iai(θm, rk)

(33)

where χk,i is a fixed constant, defined as follows:

χk,i = exp(jπd2 pi
2cos(θm)

2/λ)(k−m)ε)) (34)

Therefore, a(θm, rm) and a(θm, rk) can be written as follows:

a(θm, rm) = [χk,−N+1a−N+1(θm, rk), · · · , χk,0a0(θm, rk), · · · , χk,N−1aN−1(θm, rk)]

= [χk,−N+1, · · · , χk,0, · · · , χk,N−1]� [a−N+1(θm, rk), · · · , a0(θm, rk), · · · , aN−1(θm, rk)],

= χk � a(θm, rk)

(35)

where � symbolizes the Hadamard multiplication and χk is a (2N − 1)× 1 dimensional
vector defined as χk = [χk,−N+1, . . . , χk,0, . . . , χk,N−1]

T.
According to the principle that the guiding vector of the signal subspace is orthogonal

to the noise subspace, it can be concluded that:

〈a(θm, rm), ui〉 = 0, i = 1, 2 · · · (2N + 1− K), (36)

where 〈., .〉 symbolizes the Khatri–Rao (column-wise Kronecker) matrix product and ui is
the ith column vector of the initial noise subspace U.

By combining Formulas (35) and (36), we obtain the following:

〈a(θm, rm), ui〉 = 〈χk � a(θm, rk), ui〉
=
〈
a(θm, rk), χ∗k � ui

〉
=
〈
a(θm, rk), ui,k

〉
= 0

(37)
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where ui,k = χ∗k � ui is the ith column vector of Uk.

Uk =
[
u1,k, u2,k, · · · , u(2N−1−L),k

]
=
[
χ∗k � u1, χ∗k � u2, · · · , χ∗k � u(2N−1−L)

]

=

χ∗k , χ∗k , · · · , χ∗k︸ ︷︷ ︸
(2N−1−L)

� [u1, u2, · · · , u(2N−1−K)

]
.

(38)

To facilitate the following derivation, we define the original noise subspace U as:

U = U1. (39)

Therefore, Uk, k = 1, 2, · · · , β is called the noise subspace cluster. Next, we construct
the intersection Unew of the noise subspace clusters Uk, k = 1, 2, · · · , β, namely:

span(Unew) =
⋂β

k=1
span(Uk). (40)

Formula (39) highlights that span(Unew) contains only partial vectors of each subspace
in the noise subspace cluster. In another way, the dimension of span(Unew) is smaller than
each subspace in the noise subspace cluster, namely:

span(Unew) ⊆ span(Uk). (41)

According to the above derivation, the a(θm, rm) and Um orthogonality is equivalent
to the a(θm, rk) and Uk orthogonality. Meanwhile, Unew is the intersection of the noise
subspace cluster Uk, k = 1, 2, · · · , β, so a(θm, rk), k = 1, 2, . . . , β is orthogonal to Unew.

a(θm, rk)⊥span(Unew), k = 1, 2, . . . , β. (42)

According to the orthogonality of a(θm, rk) and span(Unew), a new spectral function
of distance estimation is constructed:

max
r

Pnew(r) =
1

aH(θm, r)ÛnewÛH
newa(θm, r)

=
1∥∥∥ÛH

newa(θm, r)
∥∥∥ . (43)

Then, we substitute the azimuth information of the m-th near-field source into Formula (42)
and search the whole Fresnel region to obtain the β distance information, including a true
distance rm and false distances rk, k = 1, 2 . . . (β− 1). From another perspective, there is a
real distance corresponding to β− 1 false distances, which is shown in Figure 3.
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There is a certain relationship between these types of distance information, i.e., their
reciprocal obeys uniform distribution, and thus, they can be converted by Formula (31).
Therefore, we do not need to search spectral peaks in the whole Fresnel region but only
in a certain region to obtain the distance information and use the conversion relation-
ship between the distance information to calculate the other distance information using
Formula (31).
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From Formula (30), we see that the distance of the first subspace is the shortest, so
during the simulations, we generally select subspace 1 for the spectral peak search.

In principle, the initial noise subspace matrix Û is only orthogonal to the guidance
vector corresponding to the real position information of the near-field source. Therefore,
all distance information is substituted into ‖ÛHa(θm, r)‖, and only the real distance in-
formation minimizes it. From this principle, the true distance can be found from the β
distance information:

min
r

∥∥∥ÛHa(θm, r)
∥∥∥. (44)

From the above algorithm description, we observe that constructing the intersection
Unew of the noise subspace clusters is the core problem that the algorithm must solve. Cur-
rently, the existing methods solve the multiple subspace intersection using the alternating
projection algorithm and the reduced-dimension singular value decomposition method.
The above two algorithms are described below.

First, a new matrix Pk, k = 1, 2, · · · , β is constructed using noise subspace clusters
Uk, k = 1, 2, · · · , β, where Pk is an orthogonal operator of span(Uk), calculated as follows:

Pk = Uk(U
H
k Uk)

−1UH
k = UkUH

k .. (45)

Then, we use Pk, k = 1, 2, · · · , β to define the following matrix Q:

Q = βI−
β

∑
k=1

Pk. (46)

However, the null space of Q and span(Unew) is equal, namely:

span(Unew) = Null(Q). (47)

Since span(Unew) is equal to the null space of Q, we obtain the null space of Q by
eigenvalue decomposition of Q, and then we obtain the new noise subspace cluster required.

We obtain the zero space corresponding to matrix Q by applying matrix decomposition
on matrix Q. The specific matrix decomposition representation is as follows:

Q = ΠΩΞH , (48)

where Π = [Π1, Π2, . . . ΠN ] corresponds to the left singular matrix of matrix Q and
Ξ = [Ξ1, Ξ2, . . . ΞN ] corresponds to the right singular matrix of matrix Q.

The above algorithm virtualizes the L near-field sources into the βL near-field sources,
so we decompose the diagonal matrix Ω into βL large eigenvalues and N − βL small
eigenvalues. Sorting singular values from largest to smallest provides:

τ1 ≥ τ2 ≥ . . . . . . ≥ τβL > τβL+1 = . . . . . . τN = 0. (49)

Therefore, Formula (42) can be rewritten as a signal and a noise subspace:

Q = ΠsΩsΞs
H + ΠnΩnΞn

H , (50)

in which:
Πs = [π1, π2, . . . πβM],

Πn = [πβM+1, πβM+2, . . . πN ],

Ξs = [Ξ1, Ξ2, . . . ΞβM],

Ξn = [ΞβM+1, ΞβM+2, . . . ΞN ].
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From Formula (42), the following formula can be obtained:

Unew =
(
Ξ1, Ξ2, . . . ΞβM

)
= Ξn. (51)

Hence, to recap, the proposed algorithm involves the following steps:

1. Construct the special fourth-order cumulative vector CS−IMISC based on the S-IMISC
array model;

2. Based on the fourth-order cumulative vector CS−IMISC, use Formula (24) to obtain the
polynomial coefficients [cL−1 , cL−2, · · · , c0];

3. Construct a polynomial f (χ) and obtain the near-field source azimuth information by
solving the root of the polynomial;

4. The covariance matrix R is constructed by the data received by forward arrays, as
illustrated in Figure 1b. Then, eigenvalue decomposition is performed on the matrix
R to obtain the initial noise subspace;

5. Divide the entire Fresnel region into β subintervals and construct the corresponding
noise subspace Uk, k = 1, 2, · · · , β for each subinterval through Formula (38). Then,
construct the intersection of noise subspace clusters Q using Formulas (45) and (46);

6. Obtain the new noise subspace cluster using Unew from Formula (51);
7. Construct a spectral function Pnew(r) and search for the first minimal interval to

obtain the distance value r1. Calculate the corresponding distance of other subspaces
r2, r3, . . . . . . , rβ through the Formula (32);

8. Select the true distance from the distance value r1, r2, r3, . . . . . . , rβ using Formula (44).

5. Performance Analysis
5.1. Analysis of the Uniform DOFs

This section compares the uniform DOFs of the proposed algorithm against the TSMU-
SIC algorithm and SDNA. We assume that there are 2N−1 arrays, the uniform DOFs of
the proposed algorithm are 2N(N − 1)/3− 1, and the uniform DOFs of the TSMUSIC
algorithm are 2N−2. The SDNA algorithm is quite complex and considers two cases. If
N is odd, the uniform DOFs are N2/2 + N − 0.5, and if N is even, the uniform DOFs are
N2/2+ N− 1. From the above analysis, we conclude that the proposed algorithm has more
uniform DOFs than TSMUSIC and SDNA. The uniform DOFs of the proposed algorithm
and comparison algorithms is shown in Figure 4.
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5.2. Computational Complexity

When analyzing the computational complexity, we only consider the main parts, i.e.,
multiplications involved in the cumulant matrix construction, EVD implementation, and
MUSIC spectral search. The TSMUSIC algorithm and SDNA constructs one (2N+1)×(2N+1)-
dimensional and one (4N+1)×(4N+1)-dimensional matrix and implements their EVDs.
Meanwhile, the same algorithm requires a one-dimensional MUSIC spectral search applied
once on the whole Fresnel area.

The proposed algorithm constructs only one (2(N−P+3)P−12)-dimensional and one
(2N−1)×(2N−1)-dimensional matrix and one EVD. Moreover, the suggested algorithm
searches in the first small area, which is smaller than the whole search area.

From the above theoretical analysis and comparison, our algorithm’s computational
complexity is lower than the other two.

5.3. Influence of Mutual Coupling Effect

This section roughly compares the mutual coupling effects of the S-IMSIC array
model and the other two array models using weight functions ω(1), ω(2), ω(3). The latter
functions of the S-IMSIC array model are as follows:

ω(1) = 4, ω(2) =

{
4
⌊

N+2
6

⌋
, N ≥ 16

10, 16 > N ≥ 10
ω(3) =

{
2, N ≥ 16
4, 16 > N ≥ 10

The weight functions ω(1), ω(2), ω(3) of the TS array model are:

ω(1) = 2N − 1, ω(2) = 2N − 2, ω(3) = 2N − 3,

The weight functions ω(1), ω(2), ω(3) of the nested array model are the following:

ω(1) = 2N1 − 1, ω(2) = 2N1 − 2, ω(3) = 2N1 − 3

Comparing the above weight equations highlights that the S-IMSIC has lower
ω(1), ω(2), ω(3) values than the other two array models, and therefore, the mutual cou-
pling between the sensors is significantly reduced.

6. Numerical Examples

To verify our algorithm’s and the S-IMISC’s array model performance, we com-
pare them against TOMUSIC, MOMUSIC, and SDNA through Matlab simulation tests.
The simulation setup involves 19 array elements, with the placement form illustrated in
Figure 1. Three near-field sources are incident, respectively, located at {θ1 = 20

◦
, r1 = 3λ},

{θ2 = 40
◦
, r2 = 12λ}, and {θ3 = 50

◦
, r2 = 14λ}. Meanwhile, we assume that all incident-

sources have equal power and the number of sources is known. Through 500 Monte Carlo
programs, the corresponding experimental data are obtained. The root mean square error
of the experiment result can be presented as:

RMSE =

√√√√ 1
500

500

∑
i=1

K

∑
j=1

(β̂i
j − β j), (52)

In which β̂i
j represents the estimated value of the jth near-field source from the ith

experiment and β j represents the theoretical value of the jth near-field source.
The configuration of personal computer used for simulation is as follows: (1) CPU:

Intel (R) Core (TM) i7-6500U CPU @ 2.50 GHz; (2) Memory: 8 GB; (3) Hard Drive: 256 GB;
(4) Graphics Card: NVIDIA GeForce 940MX, 2 GB, 384 M, 64 bit.
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6.1. Experiment 1: Angular Parameter Estimation Accuracy

This section provides numerical examples to illustrate the superiority of the proposed
S-IMISC arrays over the existing sparse arrays considering the mutual coupling matrices.
These simulations consider the RMSE performance versus the input SNR and the number
of snapshots.

Figure 5 depicts the RMSE of the near-field source angle estimates versus the SNR,
revealing that the RMSE of the three algorithms decreases as the SNR increases. Moreover,
the S-IMSIC array model has a smaller RMSE than the competitor array models. Figure 6
illustrates the RMSE of the near-field source angle estimates versus the number of snapshots,
inferring that the RMSE of the three algorithms decreases as the number of snapshots
increases. Additionally, the S-IMSIC array model has a smaller RMSE than the competitor
models. The S-IMISC array model adopted by the proposed algorithm can thus greatly
reduce the effect of the mutual coupling. Meanwhile, the algorithm proposed in this article
utilizes the root polynomial method with better parameter estimation performance, which
not only reduces computational complexity, but also ensures that accuracy is not affected by
the search step size. This further improves estimation accuracy. Therefore, the performance
of the S-MISC array model adopted by the proposed algorithm is better than that of the
other methods.

Electronics 2023, 12, x FOR PEER REVIEW 13 of 17 
 

 

1. Three near-field sources are incident, respectively, located at {
°

1 120 3r = =，
 ,, {

°

2 240 12r = =，
 ,, and {

°

3 250 14r = =，
 ,. Meanwhile, we assume that all incident-

sources have equal power and the number of sources is known. Through 500 Monte Carlo 

programs, the corresponding experimental data are obtained. The root mean square error 

of the experiment result can be presented as: 

𝑅𝑀𝑆𝐸 = √
1

500
∑∑ (𝛽𝑗

𝑖̂ − 𝛽𝑗)
𝐾

𝑗=1

500

𝑖=1

, (52) 

In which 𝛽𝑗𝑖̂ represents the estimated value of the jth near-field source from the ith 

experiment and 𝛽𝑗 represents the theoretical value of the jth near-field source. 

The configuration of personal computer used for simulation is as follows: (1) CPU: 

Intel (R) Core (TM) i7-6500U CPU @ 2.50 GHz; (2) Memory: 8 GB; (3) Hard Drive: 256 GB; 

(4) Graphics Card: NVIDIA GeForce 940MX, 2 GB, 384 M, 64 bit. 

6.1. Experiment 1: Angular Parameter Estimation Accuracy 

This section provides numerical examples to illustrate the superiority of the pro-

posed S-IMISC arrays over the existing sparse arrays considering the mutual coupling 

matrices. These simulations consider the RMSE performance versus the input SNR and 

the number of snapshots. 

Figure 5 depicts the RMSE of the near-field source angle estimates versus the SNR, 

revealing that the RMSE of the three algorithms decreases as the SNR increases. Moreover, 

the S-IMSIC array model has a smaller RMSE than the competitor array models. Figure 6 

illustrates the RMSE of the near-field source angle estimates versus the number of snap-

shots, inferring that the RMSE of the three algorithms decreases as the number of snap-

shots increases. Additionally, the S-IMSIC array model has a smaller RMSE than the com-

petitor models. The S-IMISC array model adopted by the proposed algorithm can thus 

greatly reduce the effect of the mutual coupling. Meanwhile, the algorithm proposed in 

this article utilizes the root polynomial method with better parameter estimation perfor-

mance, which not only reduces computational complexity, but also ensures that accuracy 

is not affected by the search step size. This further improves estimation accuracy. There-

fore, the performance of the S-MISC array model adopted by the proposed algorithm is 

better than that of the other methods. 

 

Figure 5. RMSE of the azimuth estimates versus SNR (200 snapshots). Figure 5. RMSE of the azimuth estimates versus SNR (200 snapshots).

Electronics 2023, 12, x FOR PEER REVIEW 14 of 17 
 

 

 

Figure 6. RMSE of the azimuth estimates versus the number of snapshots (10 dB SNR). 

6.2. Experiment 2: Distance Parameter Estimation 

In this experiment, the number of subspaces is 5 = , and we consider the distance 

search space to be the entire Fresnel distance range. The corresponding simulation results 

are presented in Figure 7. 

 

Figure 7. Distance information of source 1 obtained by the compression ideal. 

Figure 7 reveals that the reasoning results are the same as in the previous section, i.e., 

there is a spectral peak in the corresponding distance region and only one true distance 

parameter among the spectral peaks. Therefore, in practical applications, we only search 

for the first minimum distance interval to obtain distance information, then we use For-

mula (32) to convert to obtain other distance information in the transformed domain, and 

finally, we use Formula (44) to find the true distance information. 

Since the angular estimation accuracy directly affects the distance parameter estima-

tion accuracy and to separately analyze the performance of the distance parameter esti-

mation scheme proposed in this chapter, we introduce Formula (29) for accurate angle 

information when estimating the distance. 

The root mean square error of the distance estimation under different signal-to-noise 

ratios is statistically analyzed. The number of snapshots is fixed at 100, the number of 

distance slices is 2, and the signal-to-noise ratio ranges from 0 dB to 30 dB with an interval 

of 5 dB. Two hundred Monte Carlo experiments are conducted for each signal-to-noise 

ratio condition to obtain the estimated root mean square distance error for the two algo-

rithms under different signal-to-noise ratios. The statistical results are illustrated in Figure 

8. 

Figure 6. RMSE of the azimuth estimates versus the number of snapshots (10 dB SNR).



Electronics 2023, 12, 2435 14 of 17

6.2. Experiment 2: Distance Parameter Estimation

In this experiment, the number of subspaces is β = 5, and we consider the distance
search space to be the entire Fresnel distance range. The corresponding simulation results
are presented in Figure 7.
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Figure 7 reveals that the reasoning results are the same as in the previous section, i.e.,
there is a spectral peak in the corresponding distance region and only one true distance
parameter among the spectral peaks. Therefore, in practical applications, we only search for
the first minimum distance interval to obtain distance information, then we use Formula (32)
to convert to obtain other distance information in the transformed domain, and finally, we
use Formula (44) to find the true distance information.

Since the angular estimation accuracy directly affects the distance parameter estimation
accuracy and to separately analyze the performance of the distance parameter estimation
scheme proposed in this chapter, we introduce Formula (29) for accurate angle information
when estimating the distance.

The root mean square error of the distance estimation under different signal-to-noise
ratios is statistically analyzed. The number of snapshots is fixed at 100, the number of
distance slices is 2, and the signal-to-noise ratio ranges from 0 dB to 30 dB with an interval
of 5 dB. Two hundred Monte Carlo experiments are conducted for each signal-to-noise ratio
condition to obtain the estimated root mean square distance error for the two algorithms
under different signal-to-noise ratios. The statistical results are illustrated in Figure 8.

Figure 8 highlights that the distance estimation accuracy of the two algorithms im-
proves as SNR increases. However, under the same SNR, the proposed algorithm has a
slightly lower distance estimation accuracy than the TS-MUSIC algorithm. Furthermore,
under the same SNR conditions, our method’s RMSE increases as the number of distance
slices increases because the corresponding number of noise subspace clusters increases,
and the intersection dimension of the constructed noise subspace clusters decreases. In
other words, as the number of noise subspace clusters increases, their intersection reduces,
and thus, the information available for spectral peak searching is reduced. Therefore, our
algorithm’s RMSE increases as distance slices increase.
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6.3. Experiment 3: Computation Time Comparison

Next, we use MATLAB to verify the computational complexity of the proposed algo-
rithm. When estimating distance parameters, the algorithm divides the subspace β into
two and five. Each point is subjected to 500 Monte Carlo experiments, and the calculation
time of the two algorithms is statistically averaged. The results are reported in Table 1.

Table 1. Computation time (s).

Methods Computation Time (s)

TS-MUSIC algorithm 2.84122

SDNA 2.55455

MOMUSIC algorithm 3.25872

The proposed algorithm
β = 2 1.22276

β = 5 1.03323

Table 1 highlights that the processing time of the developed algorithm is much less
than that of the competitor algorithms because our algorithm exploits the seeking roots
method to replace the eigenvalue decomposition and spectral peak search processes that
MOMUSIC, TSMUSIC and SDNA use for the angular estimation. This strategy reduces
our algorithm’s computational complexity. Moreover, for the distance estimation, a small
search area replaces searching the entire Fresnel region, further reducing the computa-
tional complexity. Additionally, Table 1 reveals that the simulation time of the algorithm
decreases as the search area increases. Indeed, the more the distance slices β, the smaller
the area to search and the smaller the simulation time. This simulation experiment demon-
strates that the proposed algorithm significantly reduces the computational complexity
and processing time.

7. Conclusions

This paper proposes a novel array model named S-IMISC for near-field sources loca-
tion. The S-IMISC array model has all the advantages of the nested array models. In the
case of a certain number of arrays, the positioning of the S-IMISC array can be uniquely de-
termined by a closed formula. Meanwhile, the S-IMISC array model has more uDOFs and
fewer mutual compiling effects than current sparse array models with the same number of
arrays. Additionally, in order to improve positioning speed, we develop an ideal of CEM for
the azimuth estimation of near-field sources, and compression is used to reduce the range
research, significantly reducing the computational complexity. Extensive simulations verify
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the several advantages of the S-IMISC array models and the proposed algorithm, namely,
more uDOFs, fewer mutual compiling effects, and lower computational complexity.
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