
Citation: Shang, J.; Wang, J.; Liu, S.;

Wang, C.; Zheng, B. Small Target

Detection Algorithm for UAV Aerial

Photography Based on Improved

YOLOv5s. Electronics 2023, 12, 2434.

https://doi.org/10.3390/

electronics12112434

Academic Editor: Yeong Jun Koh

Received: 5 May 2023

Revised: 20 May 2023

Accepted: 25 May 2023

Published: 27 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Small Target Detection Algorithm for UAV Aerial Photography
Based on Improved YOLOv5s
Jingcheng Shang 1, Jinsong Wang 1 , Shenbo Liu 2, Chen Wang 1 and Bin Zheng 1,*

1 School of Computer and Communications Engineering, Changsha University of Science and Technology,
Changsha 410114, China

2 School of Physics and Electronic Science, Changsha University of Science and Technology,
Changsha 410114, China

* Correspondence: zhengbin@csust.edu.cn

Abstract: At present, UAV aerial photography has a good prospect in agricultural production,
disaster response, and other aspects. The application of UAVs can greatly improve work efficiency
and decision-making accuracy. However, owing to inherent features such as a wide field of view
and large differences in the target scale in UAV aerial photography images, this can lead to existing
target detection algorithms missing small targets or causing incorrect detections. To solve these
problems, this paper proposes a small target detection algorithm for UAV aerial photography based on
improved YOLOv5s. Firstly, a small target detection layer is applied in the algorithm to improve the
detection performance of small targets in aerial images. Secondly, the enhanced weighted bidirectional
characteristic pyramid Mul-BiFPN is adopted to replace the PANet network to improve the speed
and accuracy of target detection. Then, CIoU was replaced by Focal EIoU to accelerate network
convergence and improve regression accuracy. Finally, a non-parametric attention mechanism called
the M-SimAM module is added to enhance the feature extraction capability. The proposed algorithm
was evaluated on the VisDrone-2019 dataset. Compared with the YOLOV5s, the algorithm improved
by 7.30%, 4.60%, 5.60%, and 6.10%, respectively, in mAP@50, mAP@0.5:0.95, the accuracy rate (P),
and the recall rate (R). The experiments show that the proposed algorithm has greatly improved
performance on small targets compared to YOLOv5s.

Keywords: small target detection; Mul-BiFPN; M-SimAM; Focal EIoU

1. Introduction

As UAV technology improves by leaps and bounds, UAV aerial photography has
become widely used in various fields, including natural disaster detection, traffic safety
monitoring, search and rescue, and agricultural and forestry management. This technology
has significantly reduced labor costs and improved monitoring efficiency, leading to better
management and service. However, compared to the application scenarios of traditional
target detection algorithms, images captured by UAVs present several challenges, including
a wide range of target scales, diverse angle changes, and complex backgrounds [1]. These
factors significantly impact the accuracy rate and recall rate of target detection results.

At present, object detection algorithms can be divided into two categories: two-stage
detection algorithms and one-stage detection algorithms. The two-stage detection algo-
rithm, including convolutional neural networks [2,3], CNN [4] and R-CNN [5], generates
candidate boxes that contain potential targets and then uses a region classifier to predict
them. The one-stage detection algorithm, such as SSD [6] and the YOLO [7–13] series,
directly classifies and predicts the target at each position on the feature map, resulting in
a faster detection speed and increased practicality. Academically, the definition of small
goals can be divided into two categories: relative scale-based, and absolute scale-based.
The former defines the small target by its proportion to the whole image. Chen et al. [14]
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defined small targets as follows: when the ratio of the boundary box area to the image area
falls between 0.08% and 0.58%, it can be considered a small target. The latter defines small
targets from the perspective of the absolute pixel size of targets, defining small targets as
those with a resolution of fewer than 32 pixels on each side.

Based on the above definition, most targets in UAV aerial photography images can
be defined as small targets. However, small target detection is a hugely challenging task.
Lim et al. [15] proposed FA-SSD, which aims to improve the detection of small targets
by fusing feature information from F-SSD and A-SSD network structures. However, the
two-stage detection algorithm used in FA-SSD results in a slow detection speed. Liu
et al. [16] improved the algorithm accuracy and generalization ability by introducing a
shallow feature extraction network in the P1 layer and fusing shallow features in the FPN
and PAN layer. Yang et al. [17] aimed to improve the detection of small targets by adding
the scSE attention mechanism module and a small target detection layer to enhance feature
information. However, there were still issues with missing and the false detections of
small targets. A novel object detection network called DCLANet was proposed by Zhang
et al. [18], which utilizes intensive clipping and local attention techniques to enhance the
feature representation of small targets. They further incorporated the bottleneck attention
mechanism (BAM) into the network, leading to a substantial improvement in the detection
accuracy. Jin et al. [19] proposed a scale sensing network that accurately determines the
scale of predefined anchor points. This network could effectively narrow the scale search
range, reduce the risk of overfitting, and improve the detection speed and accuracy of
aerial images. Liu et al. [20] constructed the SPPCSPG module and introduced the shuffle
attention (SA) mechanism into YOLOv5s to achieve a new lightweight network, which
greatly improved the detection efficacy. The algorithm models mentioned above have
significantly improved the performance of small target detection. However, there is still a
lot of space for improvement in terms of detection efficacy.

In this paper, the YOLOv5s target detection algorithm is improved and tested on the
public dataset VisDrone-2019 [21], which indicates that the proposed algorithm improves
the detection efficacy. Compared with YOLOv5s, the model has been improved as follows:

• We add a small target detection layer to the YOLOv5s by introducing a 160 × 160 scale
feature map for detecting small and medium targets in aerial images. This modification
significantly improves the detection efficacy of small targets in the dataset.

• We add the enhanced, weighted bidirectional feature pyramid Mul-BiFPN to replace
the PANet [22] network in YOLOv5s, aiming to balance the information transfer
between feature maps of different scales in the network. This improves the ability to
detect targets of different scales and sizes.

• To balance samples with good and poor regression quality, accelerate network conver-
gence, and enhance the regression accuracy, we introduced the Focal EIoU [23] loss
function. Compared with CIoU [24], the EIoU loss function is faster to calculate and
better suited to deal with small target boxes and overlapping occluded target boxes,
making it more conducive to small target detection. Additionally, the utilization of the
Focal loss devotes a more concentrated emphasis on high-quality anchor boxes during
the regression process.

• Finally, the M-SimAM module based on the non-parametric attention mechanism
SimAM [25] is proposed and added to the backbone network. The module is designed
to emphasize the more critical information of the current task, reduce, or filter out
attention to other irrelevant information, and thereby enhance the detection efficacy.

The rest of the article is structured as follows: In Section 2, we describe the related
work. In Section 3, the improved method is introduced elaborately. In Section 4, the relevant
experiments are conducted, and the corresponding results are presented to demonstrate
the superior performance of the new model. In Section 5, the paper is summarized.
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2. Related Work

YOLO (You Only Look Once) is a typical one-stage detection algorithm, meaning that
the network only needs to look at the picture once to output the results. Joseph Redmon
et al. proposed YOLOv1 [7] in 2015, which uses a convolutional neural network (CNN)
to take the entire image as the input and output the boundary box and category of the
target in a forward transmission. Compared with the two-stage detection algorithm, this
algorithm has significant advantages in detection speed, but the detection accuracy and
generalization ability are relatively poor. In 2017, YOLOv2 [8] was proposed. Compared
with YOLOv1, YOLOv2 used anchor boxes to predict target location and size, adopted
a convolution layer instead of a full connection layer, etc. These improvements greatly
improved YOLOv2 in accuracy and speed. Then, YOLOv3 [9], YOLOv4 [10], YOLOv5 [11],
YOLOv7 [13], YOLOv8, and other models were proposed successively.

YOLOv5 is a one-stage target detection algorithm. This model has high computational
efficiency and a simple structure. YOLOv5 uses a deep convolutional neural network
(CNN) to detect objects. Its implementation method mainly involves dividing the entire
image into a series of grids and predicting the presence of objects in each grid, as well as
their location, size, category, and other information. The structure of the YOLOv5 model
includes the following parts:

Backbone: The backbone of YOLOv5 consists of CBS, C3, and SPPF. It converts the
original input images into multi-layer feature maps and extracts features for subsequent
target detection. As a basic module commonly used in convolutional neural networks,
the CBS module functions in the feature extraction of input images and is composed of
Conv [26], BatchNorm [27], and SiLU [28]. Conv is the most basic layer in convolutional
neural networks, mainly used to extract local spatial information in input features. The
BatchNorm layers are appended after the convolutional layers, which help to normalize
the distribution of eigenvalues in the network. The SiLU activation function is a nonlinear
function that introduces a nonlinear transformation capability to the neural network. The
C3 module can significantly enhance the computational efficiency of the network and
enhance the speed and efficiency of target detection while maintaining high accuracy. The
SPP module is a spatial pyramid pool layer that can process input images with different
resolutions and realize adaptive size output, which can increase the receptive field and
extract the overall feature of the detection target. The latest version of YOLOv5 uses SPPF
instead of SPP, reducing the amount of computation by half with the same effect.

Neck: YOLOv5 adopts a combination of Feature Pyramid Networks (FPN) [29] and
Path Aggregation Network PANet [22] in the neck. Compared with FPN, PANet uses a
combination of bottom-up network and top-down network structures to fuse feature maps
of different scales. The feature maps of different scales complement each other to enhance
the detection efficacy.

Head: The head of YOLOv5 uses three detection heads to detect target objects and
predict the category and location of the target. It can detect the feature maps of 80 × 80,
40 × 40, and 20 × 20 at different scales, respectively.

According to the different depth and width of the network, YOLOv5 has five versions:
YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x. This paper focuses on improv-
ing YOLOv5s to effectively enhance the detection of small and medium targets in aerial
images. The structure of YOLOv5s is shown in Figure 1.

The attention mechanism is a popular technology used in deep learning models. Its
function is to focus on the most important information for the current task and filter out
irrelevant information. This can improve the model’s performance. Currently, many
attention modules have been introduced into the field of target detection, among which
SENet [30], CBAM [31], and CA [32] are relatively classical. The SE-Net network introduces
squeeze and excitation blocks to learn the relationship between feature map channels, which
improves the model’s performance. The CBAM network introduces channel attention
mechanisms and spatial attention mechanisms to weight feature maps and extract more
effective information. The coordinate attention CA introduces spatial position information
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and constantly adjusts the channel and weight of each position in the feature map to obtain
more important feature information.
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Figure 1. Block diagram of YOLOv5s.

3. Methods
3.1. Add a Small Target Detection Layer

Although YOLOv5 demonstrates exceptional performance across various application
scenarios, it suffers from inadequate detection outcomes when dealing with small targets
in aerial images. The underlying reason lies in the convolution-based feature extraction
mechanism employed by YOLOv5. With the increasing depth of the network, it continu-
ously reduces the size of objects due to the pooling layer and convolution kernel operations.
Consequently, this phenomenon can cause missed or false detections.

In comparison to the YOLOv5s model, we added a new Detect-P2 small target detec-
tion layer to enhance the detection performance in aerial images. Due to the loss of shallow,
small target information caused by multiple convolution and pooling operations on the
deep feature map, the new layer fuses shallow and deep features to process small targets.
Specifically, the shallow feature contains low-level semantic features, and the deep feature
contains high-level semantic features. Additionally, the new detection layer detects the
shallow feature layer, which can effectively detect the feature information of small targets
and improve the detection efficacy of small targets in aerial images. Our model includes
four detection heads that detect feature maps of different scales, denoted as 160 × 160,
80 × 80, 40 × 40, and 20 × 20, respectively.

The network structure after adding the new Detect-P2 detection layer is shown in
Figure 2.
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Figure 2. YOLOv5s with small target detection layer added.

3.2. Mul-BiFPN Network Structure

The YOLOv5s model utilizes the PANet as a neck for feature fusion, which is a
pyramid-like structure that fuses feature map information from the bottom to the top.
Although this network can somewhat address the problem of large mesoscale differences
in detection images, it suffers from unidirectional information flow and poor scalability.
To address these limitations, we introduce the Weighted Bidirectional Feature Pyramid
Network (BiFPN) [33] in this paper. BiFPN incorporates a bidirectional connection mech-
anism to enhance the feature transfer capability and enable better handling of targets of
different scales. Additionally, it uses a weighted feature fusion mechanism to balance
information transfer between feature maps of different scales, which enhances the detection
performance of both small and large targets.

The BiFPN network exhibits excellent performance in various complex scenarios.
However, it sometimes misses extracting characteristic information from small targets. This
is due to its main focus on extracting features from deeper layers, while being relatively
weaker in extracting shallow-level feature information. To solve this problem, this paper
proposes an enhanced weighted bidirectional feature pyramid network called Mul-BiFPN,
which is based on the BiFPN network.

Due to the presence of more shallow feature information in the C3 layer, the Mul-BiFPN
network performs additional weighted feature fusion operations in this layer to strengthen
the fusion of small target features. As a result, the feature layer detected by the P3 detection
head contains richer, shallow, small target feature information, which can enhance the
detection efficacy of small targets during the prediction process. The Mul-BiFPN network
carries out multiple information exchanges and fusions between feature maps at different
levels. Through multi-layer feature fusion, the network enhances features between different
layers, thereby improving the receptive field and semantic expression ability of the target
detection model. This leads to a significant improvement in the robustness and accuracy of
target detection.
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The improvement in the neck network is shown in Figure 3.
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3.3. Focal EIoU Loss

YOLOv5s uses the CIoU loss function, which employs a scientific and precise method
to calculate the distance between target boxes. This enables accurate calculation of the
actual distance between target boxes and improves training accuracy. However, the CIoU
loss function places more weight on large targets, making it more sensitive to large targets
and slightly insufficient for detecting small targets. To address this problem, this paper
introduces a more efficient loss function called Focal EIoU [23], which replaces the CIoU loss
function to improve small target detection performance. The EIOU loss function considers
the aspect ratio of the target box’s length and width when calculating the distance, enabling
better handling of target boxes of different sizes and a more balanced weighting of different
target sizes in the loss function. Additionally, EIOU uses a more efficient calculation method
for the distance between target boxes, making the network model more efficient in training
for small targets. Focal loss gives more weight to rare categories of targets, making it
more sensitive to small target detection. Furthermore, by introducing a balance factor, it
can alleviate category imbalance problems to some extent. Based on EIOU, Focal EIoU
combines Focal loss to focus on better anchor boxes, thereby significantly improving the
accuracy of detecting small targets. The Focal EIoU formula is shown below.

LEIOU = LIOU + Ldis + Lasp = 1 − IOU +
ρ2(b, bgt)

c2 +
ρ2(w, wgt)

C2
w

+
ρ2(h, hgt)

C2
h

(1)

LFocal−EIOU = IOUγLEIOU (2)

In Formula (1), LIOU stands for IOU loss, Ldis stands for distance loss; Lasp stands for
side length loss; ρ2(b, bgt) stands for Euclidean Distance between b (center coordinates of
the prediction box) and bgt(center coordinates of the real box); ρ2(w, wgt) stands for the
square of the difference between w (width of the prediction box) and wgt (width of the real
box); ρ2(h, hgt) stands for the square of the difference between h (height of the prediction
box) and hgt (height of the real box); Cw and Ch, respectively, represent the width and
height of the minimum enclosing rectangle of the predicted box and the target box; and c
represents the diagonal length of the minimum enclosing rectangle. In Formula (2), γ is a
hyperparameter used to control the curve.
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3.4. M-SimAM Attention Mechanism

Aiming at the problem that most existing attention mechanisms can only focus on
features in one dimension of channel or space, lacking flexibility in the simultaneous
processing of space and channel. This paper introduces the non-parametric attention
mechanism module called SimAM [25], and proposes the M-SimAM module based on
it. This module can help the network to extract the feature and enhance the detection
performance of small targets without increasing other parameters.

SimAM is a 3D attention module whose core idea is to focus attention on the most
relevant parts using a similarity-based weighting method. SimAM calculates the attention
weight by designing an energy function. Most of its operations are energy function-based
solutions that can flexibly and effectively enhance the extraction of features in neural
networks. The structure of the SimAM module is shown in Figure 4.
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In neuroscience, neurons that carry more information exhibit different firing patterns
than other peripheral neurons and inhibit adjacent neurons. The simplest way to identify
important neurons is to measure the linear separability between them. The energy function
is defined as follows:

et(wt, bt, y, xi) = (yt − t̂)2
+

1
M − 1

M−1

∑
i=1

(y0 − x̂i)
2 (3)

t̂ = wtt + bt (4)

x̂i = wtxi + bt (5)

In the above formula, t is the target neuron in the single channel of the input feature,
xi is other neurons, t̂ and x̂i are the linear change in t and xi, respectively, wt and bt are
linear changes in weight and deviation, respectively, y is the variable, and M is the number
of neurons on the channel. By minimizing Formula (3), it can be seen as training the linear
separability between the target neuron t and other neurons in the identical channel. Finally,
the formula is streamlined by utilizing binary labels and incorporating regular terms, as
shown below:

et(wt, bt, y, xi) =
1

M − 1

M−1

∑
i=1

(−1 − (wtxi + bt))
2 + (1 − (wtt + bt))

2 + λw2
t (6)
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In Formula (6), λ is the coefficient. The solution of the energy formula is as follows:

wt = − 2(t − µt)

(t − µt)
2 + 2σ2

t + 2λ

bt = −1
2
(t + µt)wt

µt =
1

M − 1

M−1
∑

i=1
xi

σ2
t =

1
M − 1

M−1
∑

i=1
(xi − µt)

2

(7)

In Formula (7), σ2
t and µt are the variance and mean of all neurons except t. Therefore,

the minimum energy can be calculated by the following formula:

e∗t =
4(σ̂2 + λ)

(t − µ̂)2 + 2σ̂2 + 2λ
(8)

From Formula (8), it is evident that lower energy corresponds to a greater disparity
between the neuron and its neighboring neuron, indicating the significance of the target
neuron. Therefore, 1/e∗t represents the weight of neurons, and the formula for incorporating
the SimAM module into the feature map can be calculated using the following formula:

∼
X = sigmoid(

1
E
)� X (9)

In Formula (9), E represents the aggregation of e∗t across channel and spatial dimen-

sions. X represents the raw feature values input into the SimAM module.
∼
X represents the

feature output values after being enhanced by the SimAM module. The sigmoid activation
function is used to constrain excessively large values.

In this paper, we introduce the mish activation function to replace the sigmoid activa-
tion function in the SimAM. The new module is named M-SimAM. Due to its smoothness
and better gradient performance, the mish activation function can enhance the model’s abil-
ity to detect small targets and avoid problems such as disappearing gradients or exploding
gradients, thus improving the model’s accuracy and stability. Moreover, the mish activa-
tion function can enhance the model’s generalization ability, making it perform better in
more challenging scenarios. The formula for the feature map incorporating the M-SimAM
attention mechanism is shown below:

∼
X = mish(

1
E
)� X (10)

In Formula (10), the mish activation function is introduced to replace the sigmoid activa-
tion function. X represents the raw feature values that are input into the M-SimAM module.
∼
X represents the feature output values after being enhanced by the M-SimAM module.

Based on the aforementioned improvements, the network structure of the algorithm
proposed in this paper is illustrated in Figure 5.
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4. Experiments
4.1. Dataset

The experiment in this paper utilized the VisDrone-2019 dataset, which was publicly
released by the AISKYEYE team at Tianjin University. The dataset was collected by various
types of drones in diverse weather, scenarios, and lighting conditions, encompassing
288 video clips, 261,908 frames, and 10,209 still images. The images are annotated with ten
categories of labels, including awning-tricycle, bicycle, bus, motor, people, pedestrian, car,
truck, tricycle, and van. The category distribution of examples in this dataset is shown in
Figure 6.

The VisDrone-2019 dataset contains 6471, 548, and 1610 images for training, validation,
and testing, respectively. Figure 7 depicts the distribution of all category label sizes in the
training dataset. The horizontal axis of the figure stands for the width of the object label
frame, while the vertical axis stands for the height of the object label frame. Most of the data
points are situated in the lower-left corner of the figure, indicating that the VisDrone-2019
dataset has a greater proportion of small target objects. This observation aligns with the
problem explored in this paper.
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4.2. Experimental Platform

The experiment employed an Ubuntu 18.04 system and utilized Python 3.9.16, Pytorch
2.0.0, and CUDA 11.8. The experimental model training platform consisted of RTX 3090
GPUs, and training, validation, and testing were conducted using identical hyperparam-
eters. Specifically, the training epoch was set to 300, the batch size was set to 16, and the
image resolution was 640× 640. The pre-training model employed was YOLOv5s.pt, which
was provided by the official source.

4.3. Evaluation Criteria

The experimental results were assessed using the cross-validation method. Following
training and validation with the respective datasets, a final performance evaluation of the
model was performed using the test dataset. In the experiment, the network’s performance
was evaluated based on three performance metrics: the accuracy rate (P), recall rate (R),
and mean average precision (mAP).

The accuracy rate (P) stands for the percentage of targets that are correctly predicted
in all detected targets. The accuracy rate can be calculated by the following formula: TP
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stands for the correct prediction of the model and FP stands for the wrong prediction of
the model.

P =
TP

TP + FP
(11)

The recall rate (R) stands for the proportion of targets that are correctly predicted in
all targets. The recall rate can be calculated by the following formula: FN stands for the
targets that need to be predicted but are incorrectly detected by the model.

R =
TP

TP + FN
(12)

The average accuracy (AP) stands for the area enclosed by the axis of the curve formed
by the precision rate and recall rate, and the average accuracy (mAP) is the mean of the
average accuracy of all samples, which can be calculated by the following formula:

AP =
∫ 1

0
P(r)dr (13)

mAP =
∑c

i=1 APi

c
(14)

4.4. Experimental Results

In the experiment, the performance of the new model was evaluated on the VisDrone-
2019 dataset. Comparing the experimental results of the new model and the YOLOv5s
model, it can be concluded that the proposed algorithm achieves better performance in
detecting small targets than YOLOv5s.

Tables 1 and 2 present a comparative performance evaluation of YOLOv5s and the
proposed algorithm on the VisDrone-2019 validation and test dataset. The results show
that the proposed algorithm outperforms the YOLOv5s model. In the validation dataset,
the proposed algorithm achieves a 5.60% increase in P and a 5.90% increase in R, as well
as a 6.60% increase in mAP@0.5 and a 4.60% increase in mAP@0.5:0.95, compared to the
original model. In the test dataset, the proposed algorithm achieves a 5.60% increase in P
and a 6.10% increase in R, as well as a 7.30% increase in mAP@0.5 and a 4.60% increase in
mAP@0.5:0.95. The considerable improvement in performance of the new model on the
VisDrone-2019 dataset suggests its effectiveness in small target detection.

Table 1. Comparison of the detection effect between YOLOv5s and our model on the valida-
tion dataset.

Models P(%) R(%) mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5s 45.90 31.60 31.80 17.60
Ours 51.50 37.50 38.40 22.20

Table 2. Comparison of the detection effect between YOLOv5s and our model on the test dataset.

Models P(%) R(%) mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5s 41.30 31.90 29.10 15.50
Ours 46.90 38.00 36.40 20.10

Figure 8 illustrates the comparison of detection effects between the YOLOv5s model
and the proposed model on the VisDrone-2019 test dataset. We can directly observe from
the figure that, compared to Figure 8a, more small targets have been successfully detected
in Figure 8b. The experimental results explain how the algorithm in this paper enhances the
detection ability of small target objects, significantly solving the problem of small targets
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being easily missed and incorrectly detected in the existing object detection literature. At
the same time, the detection confidence of almost all objects is improved, and the accuracy
of detection is significantly enhanced.
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4.5. Ablation Experiment

To further verify the effectiveness of the proposed algorithm, an ablation experiment
was conducted on the VisDrone-2019 dataset. Using YOLOv5s as the baseline model, multi-
ple improved methods mentioned in this paper were added one-by-one or in combination
to verify the improvement in the target detection performance of each method.

Table 3 shows the results of the ablation experiment conducted on the VisDrone-2019
validation dataset. The experiment involved adding various improvements to the basic
YOLOv5s model, including a P2 layer small target detection head (shown in table +P2),
BiFPN (shown in table +BF), Mul-BiFPN network structures (shown in table +MBF), Focal
EIoU (shown in table +FE), M-SimAM attention module (shown in table +MSimA), and
combinations of these improvements. The results in Table 3 show that each improvement
significantly enhances P, R, mAP@0.5, and mAP@0.5:0.95 on the VisDrone-2019 validation
dataset compared to the YOLOv5s model. For instance, the final model proposed in this
paper achieved a 5.60% increase in P and a 5.90% increase in R, along with a 6.60% increase
in mAP@0.5 and a 4.60% increase in mAP@0.5:0.95, compared to the original model on this
validation dataset.
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Table 3. Ablation experiments of VisDrone-2019 validation dataset.

Models P(%) R(%) mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5s 45.90 31.60 31.80 17.60
+P2 49.80 35.30 36.60 21.10
+BF 45.50 32.80 32.70 17.90

+MBF 48.00 34.60 35.30 19.70
+FE 46.90 32.80 32.90 18.10

+MSimA 45.10 32.40 32.00 17.50
+P2+MBF 49.30 35.80 36.50 21.20

+P2+MBF+FE 51.50 37.50 38.70 22.50
+P2+MBF+FE+MSimA 51.50 37.50 38.40 22.20

Table 4 shows the ablative experiment results of the VisDrone-2019 test dataset, which
is utilized to reflect the detection effect of the new model in unknown and complex sce-
narios. Through our analysis, we discovered that adding the Detect-P2 detection layer
can significantly enhance the detection performance of smaller targets, resulting in an
increase of 3.40% in P, 4.00% in R, and 5.00% in mAP@50. Furthermore, the Mul-BiFPN
and BiFPN proposed in this paper were individually added to YOLOv5s for comparative
testing, and it was concluded that Mul-BiFPN has better detection performance than BiFPN.
With the addition of Focal EIoU and M-SimAM Attention, the detection efficacy of small
targets in aerial images was significantly enhanced. Compared to YOLOv5s, the proposed
algorithm achieved a 5.60% increase in P and a 6.10% increase in R on the VisDrone-2019
test dataset, as well as a 7.30% increase in mAP@50 and a 4.60% increase in mAP@0.5:0.95,
which validates the effectiveness of the proposed algorithm improvements.

Table 4. Ablation experiment of VisDrone-2019 test dataset.

Models P(%) R(%) mAP@0.5
(%)

mAP@0.5:0.95
(%)

YOLOv5s 41.30 31.90 29.10 15.50
+P2 44.70 35.90 34.10 18.70
+BF 41.40 32.40 29.80 15.90

+MBF 43.30 35.10 31.90 17.20
+FE 42.20 33.10 30.70 16.40

+MSimA 40.60 32.10 29.50 15.70
+P2+MBF 46.10 37.20 35.50 19.60

+P2+MBF+FE 46.30 38.00 36.00 19.80
+P2+MBF+FE+MSimA 46.90 38.00 36.40 20.10

Table 5 presents the accuracy of various target detections in the VisDrone-2019 test
dataset. According to our data analysis, the accuracy of various target detections in un-
known scenarios has been significantly improved in the proposed algorithm. The detection
accuracy of bicycles, truck, and motor showed the greatest improvement, increasing by
12.90%, 8.10%, and 6.20%, respectively. Although the accuracy of some types of target
detections may decrease to some extent with the addition of each module, the overall
detection accuracy is still improved.

The ablation experiment under the same scenario of different models is shown among
(a)~(i) in Figure 9. As can be seen clearly from the picture comparison, when a module is
added or improved to the original model (a), the image detection effect will be improved
compared with the (a) model. When there are target groups with a large density and
coverage in the images, the (a) model has a high probability of missing and false detection,
but the (i) model can deal with this situation well, greatly improving the recall rate and
accuracy rate and improving the detection confidence of each target.
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Table 5. Precision of various objects in VisDrone-2019 test dataset.

YOLOv5s
(%)

+P2
(%)

+P2+MBF
(%)

+P2+MBF+FE
(%)

+P2+MBF+FE+MSimA
(%)

pedestrian 43.90 44.40 46.50 52.30 48.60
people 41.70 42.60 44.90 44.00 44.00
bicycle 26.30 35.50 35.60 34.80 39.20

car 59.50 62.40 63.50 66.90 65.40
van 37.30 41.40 42.90 41.20 43.20

truck 39.00 44.70 46.90 45.90 47.10
tricycle 25.00 25.00 24.90 26.70 28.10

awning-tricycle 34.30 38.80 42.90 37.30 37.20
bus 64.70 69.40 68.30 68.70 69.00

motor 41.00 43.30 45.10 45.80 47.20
all 41.30 44.70 46.30 46.30 46.90
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To verify the proposed algorithm’s significant improvement in detecting small targets,
a comparative evaluation experiment was conducted between the proposed algorithm and
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other models, including YOLOv3, YOLOv5s, YOLOv5l, YOLOv7 [13], and YOLOv8s. The
comparison of different models is presented in Table 6.

Table 6. Comparison of different models in VisDrone-2019 test dataset.

Models P(%) R(%) mAP@0.5
(%) Pedestrian Car Bus Model

Size (MB)
Inference

(ms)

YOLOv3 44.80 34.80 32.70 0.48 0.63 0.66 123.50 13.5
YOLOv5s 41.30 31.90 29.10 0.44 0.60 0.65 14.40 9.40
YOLOv5l 47.60 37.30 35.90 0.37 0.57 0.63 92.90 12.10
YOLOv7 39.90 36.60 31.50 0.34 0.72 0.33 12.30 4.80
YOLOv8s 45.00 36.30 34.00 0.49 0.68 0.62 22.50 7.10

Ours 46.90 38.00 36.40 0.49 0.65 0.69 15.30 11.90

As shown in Table 6, our model outperforms other models in terms of performance
evaluation on the VisDrone-2019 test dataset. Compared to the YOLOv5s model, the new
model achieves an improvement of 5.60% in detection accuracy, surpassing YOLOv5l and
YOLOv8s as well. Furthermore, compared to other mainstream algorithms, the proposed al-
gorithm exhibits better performance in detection accuracy (P), recall rate (R), and mAP@0.5.
Notably, it achieves higher detection accuracy for pedestrians and buses than other models.
In summary, the proposed algorithm shows superiority in detecting small targets, which
validates the feasibility of the algorithm.

5. Conclusions

In this paper, we propose a new model based on YOLOv5s that significantly enhances
the small target detection efficacy in UAV aerial photography images with large scale differ-
ences and high overlap rates. We achieve this by adding a new Detect-P2 detection layer to
the original YOLOv5s model to enhance the detection of shallow, small target information.
Furthermore, we replace the PANet network with the Mul-BiFPN network to enhance
the fusion of information from different feature layers. To improve regression accuracy,
we introduce the Focal EIoU loss function, which also accelerates network convergence.
Lastly, we add the proposed M-SimAM module to the last layer of the backbone to enhance
effective information extraction and improve detection accuracy.

The results of the experiment demonstrate that our model outperforms YOLOv5s in
detecting objects in the VisDrone-2019 dataset. It significantly reduces false detection and
missing detection of small targets and greatly improves the detection accuracy of various
objects. Furthermore, the new model shows superior detection performance compared to
other models.
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