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Abstract: The distributed Goppa-coded generalized spatial modulation (DGC-GSM) scheme with the
source, relay, and destination in cooperative communications is proposed, where the source and relay
adopt different Goppa codes. Goppa codes have many advantages such as the flexible codeword
length, excellent code construction, and easy encoding and decoding complexity. At the relay, we
select portions of the source information bits for further encoding. For each selection, the destination
constructs a channel code. To obtain the best code in the destination, we propose the optimal infor-
mation bit selection algorithm at the relay to choose the source information. However, Goppa codes
with a large block length will impose high complexity on the optimal algorithm. Thus, the locally
optimized selection algorithm is further proposed. At the destination, the joint decoding algorithm
is adopted to recover the source information. Our simulated results indicate that the two selection
algorithms proposed achieve better performance than the random selection method. This is because
the optimized algorithms can generate the code with a larger minimum distance at the destination.
Moreover, the proposed DGC-GSM scheme outperforms the non-cooperative system. Moreover,
the DGC-GSM scheme can obtain the approximate performance with the distributed Goppa-coded
spatial modulation (DGC-SM) scheme but has a significantly reduced transmit antenna number.

Keywords: Goppa codes; coded cooperation; generalized spatial modulation (GSM)

1. Introduction

Multiple-input–multiple-output (MIMO) is a key technique that effectively enhances
system reliability [1]. A recently developed MIMO technology, i.e., spatial modulation
(SM) [2], only uses a single active transmit antenna for signal transmission in each time
instant, which completely avoids inter-channel interference (ICI). The active antenna index
also carries information, so the spectral efficiency is boosted. Nevertheless, SM has the
limitation that the transmit antenna number is the power of two. To overcome the short-
coming in SM, the literature [3] presented the fractional bit encoded SM scheme with an
arbitrary transmit antenna number allowed. However, error propagation resulted in the
system. An alternative method of circumventing the constraint on the antenna number is
generalized SM (GSM) [4]. In GSM, using multiple active antennas to transmit the same
constellation symbol causes the system to retain the advantage of SM (i.e., avoiding the ICI)
and have higher spectral efficiency than SM. Moreover, the transmit antenna number in
GSM is significantly reduced over SM under an identical spectral efficiency. Moreover, in
GSM, transmitting the replicas of the symbol enhances the channel reliability.

Another technology that can effectively improve the system reliability is coded coop-
eration (CC) (i.e., distributed channel codes) [5] with the integration of channel coding and
cooperative technologies such as amplify-and-forward (AF) [6] and decode-and-forward
(DF) [7]. The typical CC usually has three terminals called the source, relay, and destination,
where the source and relay cooperate with each other so that a channel code is yielded
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in the destination. Many binary distributed channel coding schemes utilizing channel
codes such as Reed–Muller codes, turbo codes, low-density parity-check codes, and polar
codes have been widely studied in many studies such as [8–11]. It can be observed that the
distributed channel coding scheme is able to obtain the coded cooperative diversity gains
and achieve better performance than the direct non-cooperative counterpart. However,
there are few reports in the literature of distributed coding systema adopting non-binary
codes, especially non-binary maximum-distance separable (MDS) codes.

As special non-binary MDS codes, Reed–Solomon (RS) codes [12] have a strong
ability to correct random and burst errors, which attracts attention. For example, previous
research [13–15] designed a distributed RS coding system and investigated the system’s
error performance. However, the system’s design flexibility was reduced due to the fact
that RS codes over the field GF(qm) have a limited codeword length of n = qm − 1 with q
being the prime and m being the positive integer. Interestingly, another class of non-binary
MDS codes, i.e., generalized RS (GRS) codes [16–18], as the extension of RS codes, has
more flexible and variable codeword lengths. Since the subcodes of the original channel
codes have a minimum distance of no less than that of the original channel codes, this
inspires us to apply the subfield subcodes of GRS codes in CC. Goppa codes [19], as the
famous subfield subcodes of GRS codes, can obtain a significantly larger minimum distance
than GRS codes. Additionally, Goppa codes possess many benefits such as the flexible
codeword length, excellent code construction, and easy encoding and decoding complexity.
Thus, many scholars have performed wide research on Goppa codes in many studies such
as [19–23]. However, these studies primarily focus on the introduction of basic principles
and characteristics. Thus, they do not fully use the advantages of MIMO and cooperative
technologies and cannot meet the demands of highly reliable and effective communications.

In order to address the gap to achieve high reliability and effectiveness of commu-
nication, we study the integration of distributed Goppa coding (DGC) and GSM and
propose the distributed Goppa-coded GSM (DGC-GSM) scheme. The high reliability and
effectiveness of the DGC-GSM scheme can be achieved through the following methods:
(1) The relay carries out the optimized selection of the source information bits to ensure
the destination generates a code with a larger minimum distance and the destination uses
a joint decoding algorithm for effective recovery of source information, which improves
the reliability of the DGC system. (2) At the source and relay, the introduction of GSM
improves the effectiveness of the DGC-GSM scheme while enhancing reliability. The key
contributions are listed below:

• The DGC-GSM scheme utilizing information selection in the relay is proposed, where
the source and relay use different Goppa codes. The encoded codeword at the source is
sent to the relay and destination. The relay first decodes the source signal to obtain the
estimated source message bits and then chooses partial bits from the decoded message
bits to encode them. By combining the codewords transmitted from the source and
relay, a channel code is constructed in the destination under the assumption of the
error-free decoding in the relay. In the relay, any decoding strategy will result in
erroneous decoding and therefore cannot ensure error-free transmission.

• Through the relay’s proper selection of partial bits from the decoded source message
bits, a channel code with a larger minimum distance can be constructed at the destina-
tion. To construct the best code in the destination, the optimal information bit selection
algorithm in the relay is proposed to effectively choose the source information bits.

• Since the optimal algorithm considers all selection methods and source information
sequences, it has relatively high computational complexity for the case of Goppa codes
with large block lengths. To reduce the complexity, the locally optimized information
bit selection algorithm considering partial selection and source information sequences
is proposed.

• To effectively recover the source information, we adopt the joint decoding algorithm
in the destination to decode the signals from the source-to-destination and relay-to-
destination wireless channels.
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The reminder of this manuscript is as follows: Section 2 introduces the related work.
The DGC-GSM scheme with the information selection in the relay is proposed in Section 3.
Section 4 introduces two optimized information bit selection algorithms. Section 5 describes
the joint decoding algorithm. Section 6 outlines the performance analysis for the proposed
system. The simulated results are discussed in Section 7. Finally, we conclude this paper.

Notations: Bold italic capital and lowercase letters represent the matrix and vector,
respectively. (·)−1 and [·]T represent the inverse and transpose operations, respectively. We
use bxc and dxe to denote the largest value no greater than x and the smallest value no less

than x, respectively. C represents the complex domain.
(

NT
Nu

)
is the binomial coefficient.

Additionally, CN(x, y) is the complex distribution with x mean and y variance. |a|b|
denotes the series connection of a and b. (·)∗ denotes the complex conjugate and <{·}
represents the real part of a complex value.

2. Related Work

In [13], the authors studied the error performance of an RS-coded cooperative system
and presented a novel approach to deal with the selection of a cooperative level between
two users. Another study in the literature [14] designed a coded cooperative scheme on
the basis of RS codes and confirmed the performance superiority of the designed system
over the existing punctured convolutional-coded cooperative scheme. Nevertheless, they
did not fully utilize the advantages of cooperative diversity and MIMO technology. Thus,
Zhao et al. [24] presented a novel distributed RS coding scheme with the MIMO technique,
i.e., SM. Unfortunately, the limited codeword length n = qm − 1 of RS codes affects the
system’s design flexibility of the RS-coded cooperative schemes.

Interestingly, as the extension of RS codes, GRS codes can circumvent the limitation
of the codeword length. A detailed introduction to the basic knowledge of GRS codes
was provided in [16–18]. Due to the fact that the subfield subcodes of the original codes
can further enhance the minimum distance of the original codes, more and more scholars
are focusing on the study of the subfield subcodes of GRS codes. Since Goppa codes
as the subfield subcodes of GRS codes have a flexible codeword length and excellent
construction, they have been widely investigated. For example, in [19], the dimensions and
structure of the square of dual Goppa codes was studied, and a corresponding rigorous
upper bound was also provided. In [20], the authors discussed cyclic extended Goppa
codes with double-error-correcting capability. The authors in [21] used the concept of
dihedral automorphism groups and constructed expurgated and extended Goppa codes.
The literature [23] discussed the completely decomposed cumulative Goppa codes and
the enhanced bound of the minimum distance. These studies on Goppa codes did not
incorporate MIMO-based cooperative technology and therefore cannot meet the high
demands for effective and reliable communication services. Motivated by this, we apply
Goppa codes to the cooperative system based on MIMO and propose the DGC-GSM system.

Different from the existing strategies, the proposed system has made much progress:
(1) Goppa codes are first integrated into the MIMO-based cooperative communication
system to effectively improve the reliability and effectiveness. (2) At the relay, we suitably
select the partial message from the estimated source information and re-encode the selected
information, which causes the code generated in the destination to possess a larger mini-
mum distance. (3) At the destination, we perform excellent joint decoding on the received
source-to-destination and relay-to-destination signals, which contributes to the correct
decoding. Table 1 clearly compares the proposed work with the state-of-the-art literature.
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Table 1. Comparison between the proposed work and the state-of-the-art literature.

Ref. Channel
Codes

Cooperative/
Non-Cooperative MIMO

Optimized
Encoding

at the Relay

Joint
Decoding

at the Destination

[13] RS codes Non-cooperative No No No
[14] RS codes Non-cooperative No No No
[16] GRS codes Non-cooperative No No No
[17] GRS codes Non-cooperative No No No
[18] GRS codes Non-cooperative No No No
[19] Goppa codes Non-cooperative No No No
[20] Goppa codes Non-cooperative No No No
[21] Goppa codes Non-cooperative No No No
[23] Goppa codes Non-cooperative No No No
[24] RS codes Cooperative SM No Yes

This work Goppa codes Cooperative GSM Yes Yes

3. GSM-Based Goppa-Coded Cooperative System Design

This section discusses the DGC-GSM scheme that combines the DGC and GSM, where
the relay adopts the idea of information selection.

3.1. Fundamentals of Goppa Codes

We assume that G(z) is a degree-r Goppa polynomial and its coefficients belong to
the field GF(qm), and Λ = {α1, α2, · · · , αn} ⊆ GF(qm) with G(αi) 6= 0 for αi ∈ Λ, where m
and q are the positive integer and prime number, respectively. For the two arbitrary vectors
e = [e1, e2, · · · , en] and α = [α1, α2, · · · , αn] with es ∈ GF(q) and αs ∈ GF(qm), the rational
function is expressed as follows [20]:

Re(z) = ∑n
s=1

es

z− αs
(1)

The set of all the vectors e satisfying the condition Re(z) ≡ 0 mod G(z) constructs
the Goppa code Γ(Λ, G(z)) with the codeword length n. Γ(Λ, G(z)) has the parity-check
matrix given by [21]:

H =


G(α1)

−1 G(α2)
−1 · · · G(αn)

−1

α1G(α1)
−1 α2G(α2)

−1 · · · αnG(αn)
−1

...
...

. . .
...

αr−1
1 G(α1)

−1 αr−1
2 G(α2)

−1 · · · αr−1
n G(αn)

−1

 (2)

Then, we obtain the matrix H̃ over GF(q) by converting each element in Equation (2)
into an m-dimensional column vector in GF(q). Through the linear transformation of H̃, the
systematic parity-check matrix H is obtained. Then, we acquire the systematic generator
matrix G based on H.

Example 1. Let the field GF
(
23) = {

0, 1, α, · · · , α6} with α being the root of x3 + x + 1 over
GF(2). Let G(z) = z2 + z + α6 and Λ =

{
0, α2, 1, α, α3, α4, α5, α6}. By using Equation (2),

the parity-check matrix H is written as:

H =

[
α α2 α α4 α4 1 1 α2

0 α4 α α5 1 α4 α5 α

]
(3)
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By converting each element in Equation (3) into a three-dimensional column vector,
we obtain the following matrix H̃:

H̃ =



0 0 0 0 0 1 1 0
1 0 1 1 1 0 0 0
0 1 0 1 1 0 0 1
0 0 0 1 1 0 1 0
0 1 1 1 0 1 1 1
0 1 0 1 0 1 1 0

 (4)

Then, we obtain the systematic form H of H̃, where H is shown as follows:

H =



1 0 0 0 0 0 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1
0 0 0 1 0 0 1 1
0 0 0 0 1 0 0 1
0 0 0 0 0 1 1 0

 (5)

Based on Equation (5), the generator matrix G is directly expressed as:

G =

[
1 1 0 1 0 1 1 0
1 1 1 1 1 0 0 1

]
(6)

3.2. System Model in Cooperative Scenarios

The system diagram of the proposed DGC-GSM is depicted in Figure 1. NT, NT,
and NR antennas are deployed in the source S, relay R, and destination D, respectively.
Realizing an overall system transmission needs two time slots.
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Figure 1. System model of the DGC-GSM scheme. 
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2
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form: 

1
[ 3 i 3 i ]

20
= − − − −cm a1 1

T
, (1) ,0, ,0,0  (12) 

We assume that HS-R, HS-D, nS-R(1), and nS-D(1) have the mathematical expressions 

written as follows: 

− − − − −

− − − −

= − − − −

− − − −

HS-R

0.77 + 0.49i 0.05 0.81i 0.43 + 0.13i 0.99 + 0.59i 1.00 0.42i

0.02 + 0.59i 1.05 + 0.07i 0.52 0.06i 1.01 0.63i 0.20 + 0.34i

0.39 0.17i 0.52 + 0.51i 0.14 1.36i 0.34 + 0.07i 0.13 + 0.52i

0.77 + 0.15i 0.75 + 1.82i 0.62 0.31i 0.12 0

 
 
 
 
 
 
 − − − − − − − 

.38i 1.12 + 1.21i

1.09 0.82i 1.60 0.47i 0.54 1.27i 0.13 + 0.21i 0.56 0.13i

 (13) 

− − − − 
=  − − − 

HS-D

0.38 0.95i 1.59 + 0.51i 0.22 + 0.50i 0.30 0.08i 2.53 + 0.99i

1.29 + 2.14i 0.60 0.04i 0.92 0.14i 0.24 + 1.05i 1.95 + 1.00i
 (14) 

 
T

= − − − − − − −nS-R(1) 0.97 0.19i, 0.74 + 0.49i, 0.33 1.45i, 0.19 0.25i,0.77 0.58i  (15) 

 
T

= − −nS-D(1) 0.13+ 2.05i, 0.85+ 0.58i  (16) 

Then, we obtain: 

Figure 1. System model of the DGC-GSM scheme.
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In time slot-1, the information bit sequence m of length k1 is encoded into the system-
atic codeword bit sequence c = [b, m] of length n1 using the Goppa encoder, where
b is the parity-check part. Through the GSM mapper, the yielded codeword bit se-
quence c is mapped to the GSM transmission vector. Specifically, the data grouping
first accepts c and partitions it into multiple short sequences c(τ1) with the same length

l =

⌊
log2

(
NT
Nu

)⌋
+ log2(M) = l1 + l2, where τ1 = 1, 2, · · · , (n1 + n1)/l is the time in-

stant with n1 being the added zero bits in the end of c to make l be an integer, Nu
is the activated transmit antenna number and M is the modulation order. The bit di-
vider splits c(τ1) into two parts, where the first l1 bits c1(τ1) and the remaining l2 bits
c2(τ1) separately constitute the first and second parts. Through the antenna mapper
and M-ary modulator, c1(τ1) is mapped to an active transmit antenna combination (TAC)
a1(τ1) =

(
a(1)1 (τ1), a(1)2 (τ1), · · · , a(1)Nu

(τ1)
)

from the 2l1 TACs used and c2(τ1) is mapped to a
modulated symbol m1(τ1) from the total M modulated symbols, where
a(1)j (τ1) ∈ {1, 2, · · · , NT} is the j-th active transmit antenna index. Through the GSM
modulator, the modulated symbol m1(τ1) is transmitted via the TAC a1(τ1), and we obtain
the GSM transmission vector cm1,a1(τ1) ∈ CNT×1:

cm1,a1(τ1) = [· · · , 0, m1(τ1), 0, · · · , 0, m1(τ1), 0, · · · , 0, m1(τ1), 0, · · · ]T (7)

The vector cm1,a1(τ1) is separately sent to the R and D through slow Rayleigh fading
channels HS-R ∈ CNT×NT and HS-D ∈ CNR×NT to yield the signal vectors zS-R(τ1) ∈ CNT×1

and zS-D(τ1) ∈ CNR×1:

zS-R(τ1) = HS-Rcm1,a1(τ1) + nS-R(τ1) = ha1(τ1)
S-R m1(τ1) + nS-R(τ1) (8)

zS-D(τ1) = HS-Dcm1,a1(τ1) + nS-D(τ1) = ha1(τ1)
S-D m1(τ1) + nS-D(τ1) (9)

where each element of HS-R is independent and obeys the distribution CN(0, 1).

ha1(τ1)
S-R = ∑Nu

j=1 h
a(1)j (τ1)

S-R ∈ CNT×1 with h
a(1)j (τ1)

S-R being the a(1)j (τ1)-th column of HS-R.

nS-R(τ1) ∈ CNT×1 is the noise vector with each element having the independent and iden-
tical distribution CN

(
0,σ2). HS-D, ha1(τ1)

S-D , and nS-D(τ1) have similar definitions to HS-R,

ha1(τ1)
S-R , and nS-R(τ1), respectively.

In time slot-2, the GSM demodulator first performs demodulation for zS-R(τ1) by
utilizing maximum-likelihood detection (MLD) to obtain the estimate of a1(τ1) and m1(τ1),
i.e., â1(τ1) and m̂1(τ1). Through the bit combiner (the execution process of the bit combiner
is in contrast to the execution process of the bit divider), we obtain the estimated sequence
ĉ(τ1) of c(τ1). After the data ungrouping, the estimate ĉ of c is generated. Next, the Goppa
decoder is used for decoding ĉ to obtain the estimated m̂ of m by using the Euclidean
decoding algorithm [22]. The k2 (k2 < k1) information bits m(i) are selected from m̂ and the
Goppa encoder encodes m(i) into the systematic codeword bit sequence c(i) =

[
b(i), m(i)

]
of length n2, where i = 1, 2, · · · , L =

(
k1
k2

)
is the selection order and b(i) is the parity-check

part. Because the proper information selection at R plays a key role in improving the whole
system performance, it is extremely necessary to design the optimized information bit
selection algorithm. The details will be introduced in Section 4. After the sequence c(i) is
inserted into the GSM mapper, we obtain the transmission vector c(i)m2,a2(τ2) ∈ CNT×1:

c(i)m2,a2(τ2) = [· · · , 0, m(i)
2 (τ2), 0, · · · , 0, m(i)

2 (τ2), 0, · · · , 0, m(i)
2 (τ2), 0, · · · ]

T
(10)
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where τ2 is defined as τ1. The modulated symbol m(i)
2 (τ2) is transmitted via the TAC

a(i)2 (τ2) =
(

a(2,i)
1 (τ2), a(2,i)

2 (τ2), · · · , a(2,i)
Nu

(τ2)
)

with a(2,i)
j (τ2) ∈ {1, 2, · · · , NT}. Through

the slow Rayleigh fading channel H(i)
R-D ∈ CNR×NT , the vector c(i)m2,a2(τ2) is sent to the D,

which obtains the signal vector z(i)R-D(τ2) ∈ CNR×1:

z(i)R-D(τ2) = H(i)
R-Dc(i)m2,a2(τ2) + n(i)

R-D(τ2) = h
a(i)2 (τ2)
R-D m(i)

2 (τ2) + n(i)
R-D(τ2) (11)

where H(i)
R-D, h

a(i)2 (τ2)
R-D , and n(i)

R-D(τ2) are defined as HS-R, ha1(τ1)
S-R , and nS-R(τ1), respectively.

Eventually, the joint decoder performs joint decoding for the signal vectors zS-D(τ1) and
z(i)R-D(τ2) during two respective time slots to obtain the estimated source information bits.
The detailed process of recovering the source message bits is discussed in Section 5.

Example 2. Let c = [0, 0, 1, 0, 1, 1, 1, 1] be the length n1 = 8 Goppa codeword at the
S. Furthermore, NT = 5, NR = 2, Nu = 2 and 32-QAM (M = 32) are assumed. Thus,

l =

⌊
log2

(
NT
Nu

)⌋
+ log2(M) = 8 and τ1 = (n1 + n1)/l = 1 with n1 = 0. Then, we have

c(1) = [0, 0, 1, 0, 1, 1, 1, 1], c1(1) = [0, 0, 1] and c2(1) = [0, 1, 1, 1, 1], where the sequence
c1(1) is mapped to the active TAC a1(1) = (1, 3) and the sequence c2(1) is mapped to the
modulated symbol m1(1) = −3− i. The GSM transmission vector cm1,a1(1) has the following
expression form:

cm1,a1(1) =
1√
20

[−3− i, 0,−3− i, 0, 0]T (12)

We assume that HS-R, HS-D, nS-R(1), and nS-D(1) have the mathematical expressions
written as follows:

HS-R =


−0.77 + 0.49i 0.05− 0.81i −0.43 + 0.13i −0.99 + 0.59i 1.00− 0.42i
0.02 + 0.59i −1.05 + 0.07i 0.52− 0.06i −1.01− 0.63i 0.20 + 0.34i
0.39− 0.17i −0.52 + 0.51i −0.14− 1.36i 0.34 + 0.07i 0.13 + 0.52i
0.77 + 0.15i −0.75 + 1.82i 0.62− 0.31i −0.12− 0.38i 1.12 + 1.21i
1.09− 0.82i 1.60− 0.47i −0.54− 1.27i −0.13 + 0.21i −0.56− 0.13i

 (13)

HS-D =

[
0.38− 0.95i −1.59 + 0.51i 0.22 + 0.50i −0.30− 0.08i 2.53 + 0.99i
1.29 + 2.14i 0.60− 0.04i −0.92− 0.14i 0.24 + 1.05i 1.95 + 1.00i

]
(14)

nS-R(1) = [0.97− 0.19i,−0.74 + 0.49i,−0.33− 1.45i,−0.19− 0.25i, 0.77− 0.58i]T (15)

nS-D(1) = [−0.13 + 2.05i,−0.85 + 0.58i]T (16)

Then, we obtain:

zS-R(1) = HS-Rcm1,a1(1) + nS-R(1) = ha1(1)
S-R m1(1) + nS-R(1)

= [1.92− 0.34i,−0.99 + 0.01i,−0.84− 0.47i,−1.17− 0.45i,−0.06 + 0.69i]T
(17)

zS-D(1) = HS-Dcm1,a1(1) + nS-D(1) = ha1(1)
S-D m1(1) + nS-D(1)

= [−0.64 + 2.22i,−0.65− 0.84i]T
(18)
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Furthermore, we assume that the Goppa codeword with a length of n2 = 8 is
c(1) = [1, 1, 1, 1, 1, 0, 0, 1] at the R. The GSM transmission vector c(1)m2,a2(1) can be di-
rectly written as:

c(1)m2,a2(1) =
1√
20

[0, 0, 0, 1 + i, 1 + i]T (19)

where a(1)2 (1) = (4, 5) and m(1)
2 (1) = 1 + i. We assume that H(1)

R-D and n(1)
R-D(1) have the

following expressions:

H(1)
R-D =

[
−0.02− 0.79i 0.72 + 1.17i −0.50− 0.88i −0.15− 0.12i −0.20− 0.94i
−0.56 + 1.78i −0.09 + 0.21i 0.95− 0.61i −0.41 + 0.55i −0.59− 1.64i

]
(20)

n(1)
R-D(1) = [−1.02 + 0.27i, 0.23 + 0.31i]T (21)

Then, we obtain:

z(1)R-D(1) = H(1)
R-Dc(1)m2,a2(1) + n(1)

R-D(1) = h
a(1)2 (1)
R-D m(1)

2 (1) + n(1)
R-D(1)

= [−0.86− 0.04i, 0.25− 0.15i]T
(22)

4. Design Algorithms of Optimized Selection at the Relay

At S and R, the Goppa codes CS(n1, k1, d1) and CR(n2, k2, d2) are separately used
with di being the minimum distance. The R selects k2 bits m(i) from the estimated source
message sequence m̂ of length k1 for further encoding by the use of the Goppa code

CR(n2, k2, d2), and there are a total of L =

(
k1
k2

)
selections, where i ∈ I = {1, 2, · · · , L}.

Each selection order i corresponds to a k2-dimensional vector p(i), and the set of all L
selection patterns is expressed as:

ϕ =
{

p(i)
∣∣∣i ∈ I

}
=
{
[p(i)1 , p(i)2 , · · · , p(i)k2

], 1 ≤ p(i)1 < p(i)2 < · · · < p(i)k2
≤ k1, i ∈ I

}
. (23)

where p(i)k refers to the position of the selected element in m̂. Under the correct decoding
(i.e., m̂ = m) at the R, the i-th selection pattern makes the D generate a channel code
expressed as:

C(i)
D (n1 + n2, k1) =

{∣∣∣c∣∣∣c(i)∣∣∣: c ∈ CS(n1, k1, d1), c(i) ∈ CR(n2, k2, d2)
}

(24)

where CS(n1, k1, d1) and CR(n2, k2, d2) are separately the Goppa codes at the S and R with
di being the minimum distance. It is worth mentioning that the condition d2 > d1 is
assumed in this paper. To obtain the code C(i)

D (n1 + n2, k1) with a better codeword weight
distribution, we propose two effective information selection algorithms to determine the
corresponding optimized selection pattern and then perform proper information selection
by the determined optimized pattern.

4.1. Optimal-Based Selection Design Algorithm
4.1.1. Design Steps

The proposed optimal information bit selection algorithm in this section aims to find a
selection pattern that produces the best codeword weight distribution at the D among all L
selection patterns. During the procedure of the search, all 2k1 information sequences at the
S are taken into account. Algorithm 1 explicitly shows the search process of the optimal
pattern popt.
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Algorithm 1: Optimal Selection Algorithm

Input: k1, k2, n1, n2, L=
(

k1
k2

)
, p(i)

Output: The optimal selection pattern popt

Step 1: Determine all 2k1 source information sequences.
Step 2: Determine the sets I and ϕ at the R.
Step 3: For each i ∈ I and p(i) ∈ ϕ, we get all the codeword sets resulted by 2k1 source

information sequences, and find out the minimum codeword weight wt(|c|c(i)|) = w(i)
min. Then,

we determine w(max)
min = max

{
w(i)

min

∣∣∣i ∈ I
}

.

Step 4: Obtain I0 =
{

i ∈ I
∣∣∣w(i)

min = w(max)
min

}
and ϕ0 =

{
p(i) ∈ ϕ

∣∣∣i ∈ I0

}
.

Step 5: For |ϕ0| = 1, we end the algorithm and the only element p(i) in ϕ0 is determined as
the optimal selection pattern popt, i.e., popt = p(i).

Step 6: For |ϕ0| 6= 1,

(a) Initialization: t = 0, w = w(max)
min .

(b) For each i ∈ It and p(i) ∈ ϕt, we determine the number N(i)
w of the codeword weight

wt(|c|c(i)|)=w to get N(min)
w = min

{
N(i)

w

∣∣∣i ∈ It

}
.

(c) Determine It+1 =
{

i ∈ It

∣∣∣N(i)
w = N(min)

w

}
and ϕt+1 =

{
p(i) ∈ ϕt

∣∣∣i ∈ It+1

}
.

(d) If w < n1 + n2 and |ϕt+1| 6= 1, we return to step (b). Otherwise, we will finish the overall
algorithm and the optimal selection pattern popt is determined as the only element or
arbitrary element in ϕt+1.

4.1.2. Complexity Analysis

Here, we analyze the encoding complexity of the optimal algorithm under addition
and multiplication operations. In the S, n1(k1 − 1) addition operations and n1k1 multiplica-
tion operations are required to encode one message sequence of length k1. Thus, completing
the encoding of all 2k1 information sequences in the S requires the overall computational
complexity denoted as:

JS
opt = n12k1(2k1 − 1) (25)

Similarly, the corresponding complexity of encoding our obtained 2k1 information
bit sequences in the R is n22k1(2k2 − 1) when considering one selection pattern. We al-
low the number of considered selection patterns to be Pw in determining the number of
wt(|c|c(i)|) = w (w = w(max)

min , w(max)
min + 1, · · · , n1 + n2) in the D. Provided that popt is ob-

tained when determining the number of wt(|c|c(i)|) = wopt (w(max)
min ≤ wopt ≤ n1 + n2), the

overall complexity at the R is:

JR
opt = n22k1 (2k2 − 1)(P

w(max)
min

+ P
w(max)

min +1
+ · · ·+ Pwopt ) = n22k1 (2k2 − 1)(L + P

w(max)
min +1

+ · · ·+ Pwopt ) (26)

Therefore, the total computational complexity of the optimal algorithm is:

Jopt = JS
opt + JR

opt = n12k1(2k1 − 1) + n22k1(2k2 − 1)(L + P
w(max)

min +1
+ · · ·+ Pwopt) (27)

4.2. Locally Optimized-Based Selection Design Algorithm
4.2.1. Design Steps

For Goppa codes with large block lengths, the optimal algorithm has relatively high
complexity when considering all 2k1 source information sequences and all L selection
patterns. To reduce the complexity of the best algorithm, the locally optimized information
bit selection algorithm is presented to determine the optimized one from partial selection
patterns of L selection patterns, during which partial source information sequences of 2k1

source information sequences are considered. The search process of the locally optimized
pattern ploc is shown in Algorithm 2.
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Algorithm 2: Locally Optimized Selection Algorithm

Input: k1, k2, n1, n2
Output: The locally optimized selection pattern ploc

Step 1: At the S, we determine K (K < 2k1 ) source information bit sequences m. Because
the source information sequences m yielding codeword weight wt(c) = q (d1 ≤ q ≤ n1) can be
selected from those sequences m of weight 1 ≤ wt(m) ≤ q, this implies the corresponding
message sequences m possess, at most, q bits 1, i.e., the realistic number of bits 1 is
1 ≤ Z ≤ min(q, k1). The generation process of K source message sequences is as follows:

(a) Divide the k1 bit positions of the information sequence m into two parts as shown in
Figure 2. In Figure 2a, the first T1 = d(k1 + 1)/2e bit positions of k1 bit positions form the
1st part and the other k1 − T1 bit positions form the 2nd part. In Figure 2b, the bit position
division is symmetrical with that in Figure 2a.

(b) For each wt(c) = q, we determine the positions of Z bits 1 of m. To be specific: 1© In
Figure 2a, we randomly choose M1 (d(Z + 1)/2e ≤ M1 ≤ min(Z, T1)) positions in the 1st
part to put bits 1, and fixedly choose M2= Z−M1 positions to put bits 1 in the 2nd part,

which yields X1 =

(
T1
M1

)
cases. 2© In Figure 2b, we randomly choose M1 positions in the

2nd part to put bits 1, and fixedly choose M2 positions in the 1st part to put bits 1, which
also yields X1 cases.

(c) By considering all 2X1 cases for each wt(c) = q, we obtain the corresponding information
sequences. After combining the obtained information sequences generating
wt(c) = d1 + 1,· · · ,n1, the K source information bit sequences are obtained.

Step 2: Determine Q (Q<L) selection patterns based on the following method:

(a) By using the division method of k1 bit positions of m in Figure 2, we choose k2 bit positions
from the k1 bit positions. To be specific: 1© In Figure 2a, W1
(d(k2 + 1)/2e ≤W1 ≤ min(k2, T1)) bit positions are randomly chosen from the 1st part, and
W2= k2 −W1 bit positions are fixedly chosen from the 2nd part, which generates

X2 =

(
T1
W1

)
cases. 2© In Figure 2b, W1 bit positions are randomly chosen from the 2nd part,

and W2 bit positions are fixedly chosen from the 1st part, which also generates X2 cases.
(b) In step (a), the selected k2 bit positions for each case represent one selection patter. By

considering the 2X2 cases, Q selection patterns p(1), p(2), · · · , p(Q) are then obtained.

Step 3: Determine the selection order set I = {1, 2, · · · , Q} and the selection pattern set

ϕ =
{

p(1), p(2), · · · , p(Q)
}

.
Step 4: Other steps are similar to steps 3–6 of Algorithm 1. Finally, we obtain ploc.
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4.2.2. Complexity Analysis

Now, we analyze the complexity of the locally optimized algorithm regarding addition
and multiplication operations. Since K information sequences are considered in the S, the
total encoding complexity of the S is:

JS
loc = n1K(2k1 − 1) (28)
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In the R, the complexity of encoding K selected information bits for one selection
pattern is n2K(2k2 − 1). When determining the number of wt(|c|c(i)|) = w (w = w(max)

min ,

w(max)
min + 1, · · · , n1 + n2) in the D, Pw selection patterns are considered, where w(max)

min is

similar to w(max)
min in Algorithm 1. Suppose that we can obtain the optimized pattern ploc

when finding out the number of wt(|c|c(i)|) = wloc (w(max)
min ≤ wloc ≤ n1 + n2), Then, the

total complexity at the R is computed as:

JR
loc = n2K(2k2 − 1)(P

w(max)
min

+ P
w(max)

min +1
+ · · ·+ Pwloc ) = n2K(2k2 − 1)(Q + P

w(max)
min +1

+ · · ·+ Pwloc ) (29)

Thus, the locally optimized algorithm has the overall computational complexity de-
noted as follows:

Jloc = JS
loc + JR

loc = n1K(2k1 − 1) + n2K(2k2 − 1)(Q + P
w(max)

min +1
+ · · ·+ Pwloc) (30)

4.3. Design Examples and Computation of Complexity of the Two Algorithms
4.3.1. Design Examples

To facilitate the understanding for the proposed two algorithms, we give the following
examples.

Example 3. At the S and R, we consider the Goppa codes CS(16, 8, 5) and CR(16, 4, 7) , respectively.
Table 2 lists the related parameters Λ and G(z) over GF

(
23) = {0, 1, β, · · · , β14} with β being the

root of x4 + x + 1 over GF(2). By using the optimal algorithm, the process of determining popt is
as follows:

Step 1: Determine all 28 = 256 source information sequences.
Step 2: Determine the set I = {1, 2, · · · , L = 70} and the set ϕ = {p (1), p(2), · · · , p(70)

}
with 70 selection patterns, where ϕ is denoted as follows:

ϕ =
{

p(1), p(2), · · · , p(70)
}

= {[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 6], [1, 2, 3, 7], [1, 2, 3, 8], [1, 2, 4, 5], [1, 2, 4, 6]
[1, 2, 4, 7], [1, 2, 4, 8], [1, 2, 5, 6], [1, 2, 5, 7], [1, 2, 5, 8], [1, 2, 6, 7], [1, 2, 6, 8], [1, 2, 7, 8],
[1, 3, 4, 5], [1, 3, 4, 6], [1, 3, 4, 7], [1, 3, 4, 8], [1, 3, 5, 6], [1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 6, 7],
[1, 3, 6, 8], [1, 3, 7, 8], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 5, 8], [1, 4, 6, 7], [1, 4, 6, 8], [1, 4, 7, 8],
[1, 5, 6, 7], [1, 5, 6, 8], [1, 5, 7, 8], [1, 6, 7, 8], [2, 3, 4, 5], [2, 3, 4, 6], [2, 3, 4, 7], [2, 3, 4, 8],
[2, 3, 5, 6], [2, 3, 5, 7], [2, 3, 5, 8], [2, 3, 6, 7], [2, 3, 6, 8], [2, 3, 7, 8], [2, 4, 5, 6], [2, 4, 5, 7],
[2, 4, 5, 8], [2, 4, 6, 7], [2, 4, 6, 8], [2, 4, 7, 8], [2, 5, 6, 7], [2, 5, 6, 8], [2, 5, 7, 8], [2, 6, 7, 8],
[3, 4, 5, 6], [3, 4, 5, 7], [3, 4, 5, 8], [3, 4, 6, 7], [3, 4, 6, 8], [3, 4, 7, 8], [3, 5, 6, 7], [3, 5, 6, 8],
[3, 5, 7, 8], [3, 6, 7, 8], [4, 5, 6, 7], [4, 5, 6, 8], [4, 5, 7, 8], [4, 6, 7, 8], [5, 6, 7, 8]}

(31)

Step 3: For each i ∈ I and p(i) ∈ ϕ, we obtain all codeword sets C(i)
D (32, 8) ={

|c|c(i)| : c ∈ CS(16, 8, 5), c(i) ∈ CR(16, 4, 7)
}

resulting in 256 source information sequences,

and determine w(max)
min = 7.

Step 4: Obtain I0 = {20} and ϕ0 =
{

p(20)
}
= {[1, 3, 5, 6]}.

Step 5: Because of |ϕ0| = 1, we end the algorithm and finally obtain popt = p(20) =

[1, 3, 5, 6].

Table 2. Parameters Λ and G(z) corresponding to the Goppa codes at the S and R.

Goppa Codes Λ G(z)

CS(16, 8, 5) {
1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12, β13, β, β14, 0

} z2 + z + β6

CR(16, 4, 7) z3 + z + 1
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Example 4. We adopt the coding parameters in Example 3. The process of determining ploc by
using the locally optimized algorithm is as follows:

Step 1: Determine K source information bit sequences at the S:

(a) Divide the k1 = 8 bit positions of the information sequence m into two parts based on
Figure 2.

(b) For each wt(c) = q (5 ≤ q ≤ 16), we determine the positions of Z (1 ≤ Z ≤ min( q, 8))
bits 1 of m: 1© In Figure 2a, we randomly choose M1 (d(Z + 1)/2e ≤ M1 ≤ min(Z, 5))
positions in the 1st part to put bits 1, and fixedly choose M2 = Z−M1 positions to

put bits 1 in the 2nd part, which yields X1 =

(
5

M1

)
cases. 2© In Figure 2b, X1 cases

are also yielded by randomly choosing M1 positions in the 2nd part to put bits 1, and
fixedly choosing M2 positions in the 1st part to put bits 1.

(c) By considering all 2X1 cases for each wt(c) = q, we obtain K = 189 < 256 source
information bit sequences.

Step 2: Determine Q selection patterns:

(a) Choose k2 = 4 bit positions from the k1 = 8 bit positions: 1© In Figure 2a, W1
(3 ≤ W1 ≤ 4) bit positions are randomly chosen from the 1st part, and W2= 4−W1

bit positions are fixedly chosen from the 2nd part, which generates X2 =

(
5

W1

)
cases.

2© In Figure 2b, X2 cases are also generated by randomly choosing W1 bit positions
from the 2nd part and fixedly choosing W2 bit positions from the 1st part.

(b) By considering all 2X2 cases, we obtain Q = 24 < 70 selection patterns p(1), p(2), · · · , p(24).

Step 3: Determine the set I = {1, 2, · · · , Q = 24} and the set ϕ =
{

p(1), p(2), · · · , p(24)
}

,
where ϕ is denoted as:

ϕ =
{

p(1), p(2), · · · , p(24)
}

= {[1, 2, 3, 4], [1, 2, 3, 5], [1, 2, 3, 8], [1, 2, 4, 5], [1, 2, 4, 8], [1, 2, 5, 8], [1, 3, 4, 5],
[1, 3, 4, 8], [1, 3, 5, 8], [1, 4, 5, 6], [1, 4, 5, 7], [1, 4, 5, 8], [1, 4, 6, 7], [1, 4, 6, 8], [1, 4, 7, 8],
[1, 5, 6, 7], [1, 5, 6, 8], [1, 5, 7, 8], [1, 6, 7, 8], [2, 3, 4, 5], [2, 3, 4, 8], [2, 3, 5, 8], [2, 4, 5, 8], [3, 4, 5, 8]}

(32)

Step 4: For each i ∈ I and p(i) ∈ ϕ, we obtain all codeword sets yielded by 189 source
message sequences and determine w(max)

min = 6.

Step 5: Obtain I0 = {10} and ϕ0 =
{

p(10)
}
= {[1, 4, 5, 6]}.

Step 6: Because of
∣∣ϕ0
∣∣ = 1, we end the algorithm, and the locally optimized pattern is

ploc = p(10) = [1, 4, 5, 6].

4.3.2. Computation of Complexity

We can compute the complexities of the proposed algorithms using Equations (27) and
(30). In Example 3, the complexity of the optimal algorithm is mathematically computed as:

Jopt = n12k1(2k1 − 1) + n2 2k1(2k2 − 1)L = 2, 068, 480 (33)

In Example 4, the complexity of the locally optimized algorithm is computed as:

Jloc = n1K(2k1 − 1) + n2K(2k2 − 1)Q = 553, 392 (34)

It can be found that the calculation operations of the locally optimized algorithm have
a 73% complexity reduction compared with the optimal algorithm. Thus, this phenomenon
reveals the low-complexity characteristic of the proposed locally optimized algorithm.

5. Joint Decoding in the Destination

In our proposed DGC-GSM system, the effective joint decoding helps to obtain the
correct source information bits. Since the Goppa code in the R has a larger minimum
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distance than that in the S (i.e., d2 > d1) as mentioned in Section 4, it is beneficial to enhance
the entire performance of the cooperative system by using the reliable relay information
bits to replace the selected source information bits. Algorithm 3 illustrates the detailed
decoding process of the joint decoding algorithm.

Algorithm 3: Joint Decoding Algorithm

Input: The signal vectors zS-D(τ1) and z(i)R-D(τ2)
Output: The estimated source information sequence m

Step 1: The D uses the GSM demapper using MLD to separately demodulate the signal vectors zS-D(τ1)

and z(i)R-D(τ2), and obtains the estimated codeword bit sequences c̃ and c̃(i) of c and c(i), respectively.
Step 2: By using the Euclidean decoding algorithm, the Goppa decoder decodes c̃(i) to obtain the

estimate m̃(i) of relay information sequence m(i) with length k2.
Step 3: We utilize the estimated sequence m̃(i) to replace those selected k2 bits in the demodulated

codeword sequence c̃, and the update c of c̃ is yielded.
Step 4: Finally, we adopt the Goppa decoder to perform decoding for c to generate the estimated source

information m.

6. Performance Analysis

This section analyzes the theoretical performance of the proposed DGC-GSM system.
In the source-to-destination (S-D) and relay-to-destination (R-D) links, the bit error rate
(BER) performances are separately represented as:

P(S-D)
b ≈ n1

n1 + n2

n1+n2

∑
j=t+1

j
(

n1 + n2
j

)(
p(S-D)

)j
(1− p(S-D))

n1+n2−j
(35)

P(R-D)
b ≈ n2

n1 + n2

n1+n2

∑
j=t+1

j
(

n1 + n2
j

)(
p(R-D)

)j
(1− p(R-D))

n1+n2−j
(36)

where t = b(dmin − 1)/2c is the error correction capability of the code C(i)
D (n1 + n2, k1)

generated in the D with dmin being the minimum distance. Additionally, p(S-D) and p(R-D)

are the BER performances of GSM and are expressed as:

p(S-D) ≈
sM

∑
s=s1

ϕ
2l1

∑
`=ϕ1

sM

∑
s̃=s1

ϕ
2l1

∑˜̀=ϕ1

N(x(S-D)
s,` , x(S-D)

s̃,̃`
)I
(1/100.1χS-D )/(1/100.1χS-D+σ

(S-D)

s̃,̃`
)
(NR, NR)

M2
blog2 (

NT
Nu

)c
(37)

p(R-D) ≈
sM

∑
s=s1

ϕ
2l1

∑
`=ϕ1

sM

∑
s̃=s1

ϕ
2l1

∑˜̀=ϕ1

N(x(R-D)
s,` , x(R-D)

s̃,̃`
)I
(1/100.1χR-D )/(1/100.1χR-D+σ

(R-D)

s̃,̃`
)
(NR, NR)

M2
blog2 (

NT
Nu

)c
(38)

In Equation (37), N
(

x(S−D)
s,` , x(S−D)

s̃,̃`

)
is the number of error bits between the GSM

transmission vectors x(S-D)
s,` and x(S-D)

s̃,̃`
with s, s̃ ∈ φ = {s1, s2, · · · , sM} and `, ˜̀ ∈ ϕ ={

ϕ1, ϕ2, · · · , ϕ2l1

}
separately being the modulated symbol set and active TAC set, where

l1 =

⌊
log2

(
NT
Nu

)⌋
. Ix(a, b) is the regularised incomplete beta function [25]. χS-D (dB) is the

signal-to-noise ratio (SNR) of the S-D link and σ
(S-D)

s̃,̃`
= 1/100.1χS-D + 2<

{
s(s̃)∗

}
d
(
`, ˜̀)+

|s− s̃|2Nu, where d
(
`, ˜̀) is the number of different bits between ` and ˜̀ . In Equation (38),

N
(

x(R−D)
s,` , x(R−D)

s̃,̃`

)
, χR-D, and σ

(R−D)

s̃,̃`
are defined as N

(
x(S−D)

s,` , x(S−D)

s̃,̃`

)
, χS-D, and σ

(S-D)

s̃,̃`
,
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respectively. Under the case of the noiseless S-R link, the average BER of the cooperative
system is denoted as:

Pb ≈ P(S-D)
b + P(R−D)

b

≈ n1
n1+n2

n1+n2
∑

j=t+1
j
(

n1 + n2
j

) sM
∑

s=s1

ϕ
2l1
∑

`=ϕ1

sM
∑

s̃=s1

ϕ
2l1
∑˜̀=ϕ1

N(x(S-D)
s,` ,x(S-D)

s̃,̃`
)I
(1/100.1χS-D )/(1/100.1χS-D +σ

(S-D)

s̃,̃`
)
(NR ,NR)

M2

blog2 (
NT
Nu

)c


j

×

1−
sM
∑

s=s1

ϕ
2l1
∑

`=ϕ1

sM
∑

s̃=s1

ϕ
2l1
∑˜̀=ϕ1

N(x(S-D)
s,` ,x(S-D)

s̃,̃`
)I
(1/100.1χS-D )/(1/100.1χS-D +σ

(S-D)

s̃,̃`
)
(NR ,NR)

M2

blog2 (
NT
Nu

)c


n1+n2−j

+ n2
n1+n2

n1+n2
∑

j=t+1
j
(

n1 + n2
j

)
×

 sM
∑

s=s1

ϕ
2l1
∑

`=ϕ1

sM
∑

s̃=s1

ϕ
2l1
∑˜̀=ϕ1

N(x(R-D)
s,` ,x(R-D)

s̃,̃`
)I
(1/100.1χR-D )/(1/100.1χR-D +σ

(R-D)

s̃,̃`
)
(NR ,NR)

M2

blog2 (
NT
Nu

)c


j

×

1−
sM
∑

s=s1

ϕ
2l1
∑

`=ϕ1

sM
∑

s̃=s1

ϕ
2l1
∑˜̀=ϕ1

N(x(R-D)
s,` ,x(R-D)

s̃,̃`
)I
(1/100.1χR-D )/(1/100.1χR-D +σ

(R-D)

s̃,̃`
)
(NR ,NR)

M2

blog2 (
NT
Nu

)c


n1+n2−j

(39)

In the case of the noisy S-R link, the theoretical BER can also be calculated according
to Equation (39). In this case, χS-D is viewed as the equivalent SNR based on the quality of
the S-R link, where the improvement and deterioration of the S-R link correspond to the
increase and decrease in the equivalent SNR.

7. Simulations and Discussions

In this section, we discuss the BER performance of the proposed DGC-GSM scheme
under various simulation conditions such as different information bit selection algorithms
and different transmit and receive antenna numbers. The proposed coded cooperative
scheme is also compared with the non-cooperative system, the current strategies, and the
distributed Goppa-coded SM (DGC-SM) scheme to exhibit its advantages. We use two
different distributed Goppa codes as illustrated in Table 3, where the set Λ and the Goppa
polynomial G(z) are used to construct the Goppa codes. In Λ and G(z), the parameters
β and γ are the roots of polynomials x4 + x + 1 and x5 + x2 + 1 over GF(2), respectively.
Moreover, Table 3 lists the optimal selection pattern popt and the locally optimized selection
pattern ploc.

Table 3. Parameters and selection patterns corresponding to different distributed Goppa codes.

No. Distributed
Goppa Codes Λ G(z) popt ploc

1
CS(16, 8, 5)

{
1, β2, β3, β4, β5, β6,
β7, β8, β9, β10, β11,
β12, β13, β, β14, 0

} z2 + z + β6

[1, 3, 5, 6] [1, 4, 5, 6]
CR(16, 4, 7) z3 + z + 1

2
CS(32, 17, 7) {

0, 1, γ, γ2, · · · , γ30} z3 + γz + 1
— [1, 4, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15]CR(32, 12, 9) z4 + γz + γ

The SNRs of the S-D, S-R and R-D links are denoted as χS-D, χS-R, and χR-D, respec-
tively. When χS-R = ∞, the S-R link is considered to be ideal. Otherwise, the S-R link
is non-ideal (i.e., practical). Additionally, the simulation condition χR-D = χS-D + 2 is
assumed in the cooperative scenarios. The basic parameters used in the simulations are
shown in Table 4, where the MLD approach is used by the GSM demapper to demodu-
late the received signals, and the Euclidean decoding algorithm is utilized by the Goppa
decoder to decode the codeword.
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Table 4. Simulation parameters.

Parameters Specification

Source codes CS(16, 8, 5), CS(32, 17, 7)

Relay codes CR(16, 4, 7), CR(32, 12, 9)

Equivalent code rate in the D 1/4, 17/64

MIMO configuration GSM: NT = 5, 7, Nu = 2, NR = 3, 4, 5, 6, 8
SM: NT = 8, NR = 4, 6, 8

Modulation order 4-QAM

Channel model Slow Rayleigh fading Channel

Detection approach MLD

Decoding algorithm Euclidean decoding algorithm

7.1. Performance of the Proposed Scheme under Various Selection Algorithms

First, we compare the performance of the proposed system (χS-R = ∞) under different
information bit selection algorithms to illustrate the effectiveness of the proposed optimized
algorithms. The simulation results in Figure 3 show the advantages of the proposed
optimized algorithms over the random selection method. For example, at BER≈ 3.6× 10−5,
the optimal algorithm and the locally optimized algorithm are separately 2 dB and 1.8 dB
better than the random method because the two optimized algorithms can construct a code
with a larger minimum distance at the destination.
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From the simulation results in Figure 3, it can also be observed that the locally opti-
mized algorithm can achieve almost equal performance with the optimal algorithm in the
whole SNR. Furthermore, the locally optimized algorithm has a 73% complexity reduction
over the optimal algorithm (as shown in Section 4.3), which reveals the effectiveness of
the locally optimized algorithm. Based on this, for the Goppa codes with the large block
length, we only consider the system performance (χS-R = ∞) under the locally optimized
algorithm, as illustrated in Figure 4. From the results, superior performance of our pro-
posed optimized algorithm compared to the random selection method is found again.
Furthermore, Figure 3 shows the theoretical performance curves under the optimal selec-
tion algorithm. It is observed that the theoretical performance is very close to the simulation
results at high SNR, which demonstrates the rationality of the theoretical analysis method.
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Figure 4 compares the theoretical and simulation performances under the locally optimized
selection algorithm, and the close match at high SNR again demonstrates the effectiveness
of the theoretical analysis approach.
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7.2. Performance of the Proposed Scheme with Different Transmit and Receive Antenna Numbers

To illustrate the effect of the transmit antenna number NT and receive antenna number
NR on the system performance, we depict the system performance under different antenna
numbers as depicted in Figures 5–8. During simulations, the ideal S-R link (χS-R = ∞)
is assumed.
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Figure 5. Performance of our proposed system utilizing CS(16, 8, 5) and CR(16, 4, 7) with the
optimal algorithm in the case of different NT and NR.

The simulation curves in Figures 5 and 6 show the system performance in the case of
different transmit antenna numbers NT. We note that reducing NT will help to enhance the
overall system performance. For example, at SNR = 10 dB in Figure 5, the performance
of 4× 10−5 achieved under NT = 5 is better than the performance of 1.6× 10−4 achieved
under NT = 7 for the case of NR = 6. This is because when the modulation order is the
same, the system performance is dominated by the transmit antenna number NT, and
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the error probability is reduced as NT decreases. Furthermore, Figure 5 shows the high
match between the theoretical and simulated results at high SNR. Moreover, the theoretical
performance is enhanced with the decrease in NT.
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optimal algorithm in the case of different NR.

From the simulation curves in Figures 7 and 8, it can be clearly observed that increasing
NR will greatly improve the system performance. For example, at BER = 1.5× 10−3 in
Figure 7, the system under NR = 6 has approximately 6 dB, 3 dB, and 1.1 dB SNR gains
compared to the system under NR = 3, 4, and 5, respectively. At BER = 1.5 × 10−3 in
Figure 8, the system under NR = 6 obtains approximately 6 dB, 3.2 dB, and 1 dB SNR gains
compared to the system under NR = 3, 4, and 5, respectively. This is primarily because the
increase in the receive antenna improves the spatial diversity to ensure the performance of
the entire system is enhanced.
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locally optimized algorithm in the case of different NR.

7.3. Performance of the Proposed Scheme under Different S-R Links and Non-Cooperative Counterpart

Because the practical cooperative communication transmission requires the non-ideal
S-R channel, the performance analysis under the non-ideal link is carried out, as shown
in Figure 9. We find that the system performance enhances as the S-R link ameliorates.
As exhibited in the simulated results, the system performance is poor under the case of
the bad S-R link (i.e., χS-R = 8 dB, 10 dB, and 11 dB). However, the performance under
the better S-R link (i.e., χS-R = 12 dB and 13 dB) is very close to that under the ideal link
(χS-R = ∞). Thus, it indicates that the system is relatively sensitive to the noise when
χS-R ≤ 11 dB. However, when χS-R ≥ 12 dB, the system is robust. By adopting the cyclic
redundancy check (CRC) technology [26], the sensitivity of the system can be further
reduced. Additionally, it should be noted that the system performance degradation is
primarily due to the fact that wrong decoding at the R leads to error diffusion of the entire
cooperative system.
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Figure 10 shows the performance comparison between the proposed DGC-GSM
scheme (χS-R = ∞) and the non-cooperative counterpart under different receiving an-
tenna numbers NR. The non-cooperative scheme denotes the DGC-GSM (χS-R = ∞) with
χR-D = χS-D. From Figure 10, it is noted that the proposed coded cooperative scheme
exhibits better performance compared to its counterpart under the same NR, which is
because the R-D link in the cooperative scenarios has a larger SNR gain than the S-D
link. For example, for the case of NR = 6, the coded cooperative system outperforms the
non-cooperative system by approximately 0.8 dB at BER = 10−4.
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7.4. Performance Comparison between the Proposed Scheme and Existing Strategies

Figure 11 shows the performance comparison between the proposed system (em-
ploying CS(32, 17, 7) and CR(32, 12, 9)) and the current system called nested polar-coded
cooperative SM (NPCC-SM) [5] under χS-R = ∞ for identical conditions such as an identi-
cal equivalent code rate 17/64 (in the D) and the same spectral efficiency of 5 bits/s/Hz.
To achieve 5 bits/s/Hz spectral efficiency, the DGC-GSM and NPCC-SM schemes adopt
the configurations (NT = 8 and 4-QAM) and (NT = 5, Nu = 2 and 4-QAM), respectively.
In [5], the NPCC-SM system does not adopt an optimized encoding method in the relay. In
contrast to the literature [5], the proposed system utilizes the locally optimized algorithm
to perform effective message selection in the relay to ensure the destination receive the
code with a larger minimum distance. Thus, the proposed system is significantly superior
to the current system.

Furthermore, Figure 12 shows the performance of the DGC-GSM using Algorithm
3 and the existing naive decoding strategy [24], where CS(32, 17, 7), CR(32, 12, 9), and
the locally optimized selection algorithm are used. In [24], the existing joint decoding
algorithm first decodes the codewords from the S-D and R-D links, and then replaces the
partial decoded information of the S-D link by using the whole decoded information of
the R-D link. In Algorithm 3, we first decode the codeword from the R-D link to obtain the
estimated relay information that is used to replace the partial message of the demodulated
codeword from the S-D link, and then utilize the Goppa decoder to perform the decoding
for the updated codeword of the S-D link. From the BER curves, it is seen that Algorithm 3
achieves additional performance gains over the existing strategy. This is because Algorithm
3 uses more reliable message from the R-D link as the input of the Goppa decoder that
generates the estimated source message.
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7.5. Performance Comparison between the DGC-GSM and DGC-SM Schemes

Moreover, Figures 13 and 14 compare the performance of the DGC-GSM and its
benchmark (i.e., DGC-SM) under χS-R = ∞ in the case of the same spectral efficiency of
5 bits/s/Hz. From the simulation curves, we see the performance of the DGC-GSM and
its benchmark is very approximate in the case of an identical NR. However, compared
to the transmit antenna number (i.e., NT = 8) of the benchmark, the transmit antenna
number (i.e., NT = 5) of the DGC-GSM scheme is significantly reduced. This indicates that
in comparison with its counterpart, the proposed DGC-GSM system can achieve a good
compromise between the error performance and the complexity of the MIMO configuration.
Therefore, the proposed scheme has practical application advantages.
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CR(32, 12, 9) with the locally optimized algorithm.

8. Conclusions

In this paper, the DGC-GSM scheme with the information selection is proposed. With
the use of two optimized information selection algorithms, an optimized code is constructed
in the destination. To achieve efficient decoding in the destination, the joint decoding
algorithm is employed. We investigate the system performance under the proposed two
optimized algorithms and the random selection method. Because the code with small
number of low-weight codewords is generated in the destination, the optimized algorithms
exhibit performance advantages over the random approach. The simulated results also
demonstrate that the low-complexity algorithm can achieve near optimal performance. By
comparing the simulated results with the theoretical values, the rationality of the theoretical
analysis method is confirmed. Furthermore, the proposed DGC-GSM scheme offers better
performance gains than the non-cooperative scheme under the identical conditions. The
results also reveal the advantages of the proposed strategies over the existing strategies.
Moreover, compared to the DGC-SM scheme, the DGC-GSM scheme can achieve nearly the
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same performance but the transmit antenna number is significantly reduced. Furthermore,
the performance of the DGC-GSM scheme will be enhanced with the decrease in the
transmit antenna number. Thus, it is good for the reduced transmit antenna number in the
proposed system.
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