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Abstract: Deepfakes are becoming increasingly ubiquitous, particularly in facial manipulation.
Numerous researchers and companies have released multiple datasets of face deepfakes labeled to
indicate different methods of forgery. However, naming these labels is often arbitrary and inconsistent,
leading to the fact that most researchers now choose to use only one of the datasets for research
work. However, researchers must use these datasets in practical applications and conduct traceability
research. In this study, we employ some models to extract forgery features from various deepfake
datasets and utilize the K-means clustering method to identify datasets with similar feature values.
We analyze the feature values using the Calinski Harabasz Index method. Our findings reveal that
datasets with the same or similar labels in different deepfake datasets exhibit different forgery features.
We proposed the KCE system to solve this problem, which combines multiple deepfake datasets
according to feature similarity. We analyzed four groups of test datasets and found that the model
trained based on KCE combined data faced unknown data types, and Calinski Harabasz scored 42.3%
higher than combined by forged names. Furthermore, it is 2.5% higher than the model using all data,
although the latter has more training data. It shows that this method improves the generalization
ability of the model. This paper introduces a fresh perspective for effectively evaluating and utilizing
diverse deepfake datasets and conducting deepfake traceability research.

Keywords: deepfake; datasets; correlation; traceability; clustering; Calinski Harabasz

1. Introduction

Facial recognition has become increasingly prevalent in recent years, with many
applications utilizing it as the primary method for identity recognition. However, with the
rapid development of deep learning-driven facial forgery technologies in recent years, such
as deepfakes [1], there has been a rise in fraudulent practices within media and financial
fields, which has sparked widespread social concern [2—4]. Consequently, there is a crucial
need for the traceability of forged data.

Deepfake tracking methods can be broadly classified into traditional [5-7] and deep
learning-based methods [8,9]. Traditional methods rely on techniques, such as image
forensics and metadata analysis to detect signs of manipulation in a deepfake. These
methods are based on analyzing the visual properties of an image or video, and they can
include analyzing the distribution of colors, identifying inconsistencies in lighting and
shadows, or detecting distortions in the image caused by manipulation. These traditional
methods require extensive domain knowledge and specialized software to execute. On the
other hand, deep learning-based methods rely on machine learning algorithms” power to
detect deepfakes. These methods train deep neural networks on large datasets of real and
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fake images or videos, and they can detect deepfakes by analyzing the patterns in the data.
Deep learning-based methods are highly effective at detecting deepfakes, but they require
large amounts of training data and computing resources to execute. This paper mainly
conducts related research based on the latter method.

Tracing the source of deep forgery relies on identifying the forgery algorithms used.
However, the category labels in deepfake datasets fundamentally differ from those in the
general computer vision field. In typical computer vision datasets, such as the CIFAR [10],
ImageNet [11], and MNIST [12], the category labels are objective and have real-world
meaning. For instance, the labels for salamander and setosa are assigned by biologists
based on the biological characteristics of these species, or humans can accurately recognize
facial expressions such as anger or happiness, as shown in Figure 1. These labels remain un-
changed despite variations in camera equipment, lighting conditions, and post-processing
of images. However, humans cannot classify deepfake pictures visually, and the images
can only be named based on their forgery method. The names given to the forgery methods
by different producers are highly subjective and arbitrary, as shown in Table 1. Many
“wild datasets” do not provide forgery method labels. Furthermore, subsequent operations
such as image compression and format conversion [13] may significantly alter the forgery
characteristics of the images.

-
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» expression expression expression expression expression
angry disgusted happy laughing surprised
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DeepFakeMnist+ DeepfakeTIMIT Faceforensics++ FakeAVCeIebA ForgeryNet
FOMM FaceSwap-GAN Face2Face wav2lip DiscoFaceGAN

Figure 1. The first row shows the common CV dataset, the second row shows the human facial
expression dataset, and the third row shows the deepfake dataset.

Improving facial forgery recognition and tracking technology relies on collecting and
utilizing as many facial forgery datasets as possible. These datasets include ForgeryNet [14],
DeepfakeTIMIT [15], FakeAVCeleb [16], DeeperForensics-1.0 [17], and others. Additionally,
numerous “wild datasets” are gathered from the Internet. However, these datasets are
published by different institutions, use varying forgery methods, and have different naming
conventions. In some cases, the exact generation algorithm is not provided. This situation
leads some researchers to use only one dataset in their experiments. Dealing with those
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with similar or identical names can create challenges for users when multiple datasets
are employed.

Measuring the relevance of each deepfake dataset is crucial. To address this problem,
we use the Xception model [18] as a forgery feature extractor, which is commonly used in
the deepfake recognition field. We train both multi-classification and binary classification
models that map various deepfake images into the feature space illustrated in Figure 2.
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FaceShifter
FaceSwap
FaceSwapPRO
MMReplacement
MaskGAN
NeuralTextures
. PROGAN
SC-FEGAN
StarGAN
StyleGAN
Talking Head Video
wav2lip

50

25

-80 -60 -40 -20 0 20 40 60 80

Figure 2. The circle’s center represents the center position of this category of the dataset, and the area
of the circle represents the rank of the Covariance Matrix of these datasets. Distances between the
fake datasets represent the similarity of these fake features.

After mapping the deepfake datasets to feature space, we use PCA for dimensionality
reduction and the K-means method for clustering. We use these cluster datasets to retrain
the Xception model. We also combine these deepfake datasets based on forgery method
labels and use them to train another Xception model as a control group. We perform a
series of experiments on the test data using these models and use the Calinski Harabasz
Index [19] as a measure to judge the performance of the models. To improve the credibility
of the experimental results, we also repeat some experiments on The Frequency in Face
Forgery Network (F3-Net) [9] and Residual Neural network (ResNet) [20].

Our main contributions are summarized as follows:

*  We point out that the forgery category labels in the deepfake dataset lack objectivity.
Our experiments prove that some forgery category labels of the same name differ
significantly across different datasets.

¢ We establish the KCE-System. It is a deepfake dataset similarity evaluation index
system that provides a measure of the similarity between different datasets and lays
the foundation for subsequent researchers to use these datasets comprehensively.

*  Our experiments confirm that when the forgery method of the deepfake dataset is
unknown, the model can achieve better generalization performance by training on
datasets that are merged based on closer feature distances.

2. Related Works
2.1. Deepfake Datasets

Numerous deepfake datasets have been created by researchers and institutions, in-
cluding FaceForensics++ [21], Celeb-DF [22], DeepFakeMnist+ [15], DeepfakeTIMIT [1],
FakeAVCeleb [16], DeeperForensics-1.0 [17], ForgeryNet [14], and Patch-wise Face Image
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Forensics [23]. These datasets cover various forgery methods, have significant data scales,
and are widely used. Please refer to Table 1 for more details.

Table 1. Common deepfake datasets, the symbol * represents the number of pictures.

Dataset Real Fake Forgery Method
CelebDFv1 [22] 409 795 FaceswapPro
CelebDFv2 [22] 590 5639 FaceswapPro
DeeperForensics1.0 [17] 50,000 10,000 DeepFake Variational Auto-Encoder (DF-VAE) [24]
FakeAVCeleb [16] 178 11,833 Faceswap [25], Faceswap GAN (FSGAN) [26], Wav2Lip [27]
DeepFakeMnist+ [15] 10,000 10,000 First Order Motion Model for Image Animation (FOMM) [28]
DeepfakeTIMIT [1] 320 640 faceswap-GAN [29]
FaceForensics++ [21] 1000 5000 i{a:jf;\{?g)x,[i(lsl?gzlpfakes [31], Face2Face [32], FaceShifter [33],
DeepFakeDetection [35] 363 3068 Faceswap
ATVG-Net [36], BlendFace, DeepFakes, DeepFakes-StarGAN-Stack,
DiscoFaceGAN [37], FaceShifter [33], FOMM [28], FS-GAN [26],
ForgeryNet [14] 99,630 121,617 MaskGAN [38], MMReplacement, SC-FEGAN [39],

StarGAN-BlendFace-Stack, StarGAN?2 [40], StyleGAN2 [41],
Talking Head Video [42]

Patch-wise Face Image
Forensics [23]

* 25,000 * 25,000 PROGAN [43], StyleGAN2 [41]

2.2. Deepfake Identification and Traceability
2.2.1. Methods Based on Spectral Features

Many scholars consider upsampling to be a necessary step in generating most face
forgeries. Cumulative upsampling can cause apparent changes in the frequency domain,
and minor forgery defects and compression errors can be well described in this domain.
Using this information can identify fake videos. Spectrum-based methods have certain
advantages in generalization because they provide another perspective. Most existing
image and video compression methods are also related to the frequency domain, making
the method based on this domain particularly robust.

Chen et al. [44] proposed a forgery detection algorithm that combines spatial and
frequency domain features using an attention mechanism. The method uses a convolutional
neural network and an attention mechanism to extract spatial domain features. After the
Fourier transform, the frequency domain features are extracted, and, finally, these features
are fused for classification. Qian et al. [9] proposed a network structure called F3-Net
(Frequency in Face Forgery Network) and designed a two-stream collaborative learning
framework to learn the frequency domain adaptive image decomposition branch and
image detail frequency statistics branch. The method has a significant lead over other
methods on low-quality video. Liu et al. [45] proposed a method based on Spatial Phase
Shallow Learning (SPSL). The method combines spatial images and phase spectra to
capture upsampled features of facial forgery. For forgery detection tasks, local texture
information is more critical than high-level semantic information. By making the network
shallower, the network is more focused on local regions. Li et al. [46] proposed a learning
framework based on frequency-aware discriminative features and designed a single-center
loss function (SCL), which only compresses the intra-class variation of real faces while
enhancing the inter-class variation in the embedding space. In this way, the network can
learn more discriminative features with less optimization difficulty.
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2.2.2. Methods Based on Generative Adversarial Network Inherent Traces

Scholars suggest that fake faces generated by generative adversarial networks have
distinct traces and texture information compared to real-world photographs.

Guarnera et al. [47] proposed a detection method based on forgery traces, which uses
an Expectation Maximization algorithm to extract local features that model the convolu-
tional generation process. Liu et al. [48] developed GramNet, an architecture that uses
global image texture representation for robust forgery detection, particularly against image
disturbances such as downsampling, JPEG compression, blur, and noise. Yang et al. [49]
argue that existing GAN-based forgery detection methods are limited in their ability to
generalize to new training models with different random seeds, datasets, and loss functions.
They propose DNA-Det, which observes that GAN architecture leaves globally consistent
fingerprints, and model weights leave varying traces in different regions.

2.3. Troubles with Current Deepfake Traceability

Methods based on frequency domain and model fingerprints provide traceability for
different forgery methods. Although researchers claim high accuracy rates in identifying
and tracing related forgery methods, they typically only use a specific dataset for research.
This approach reduces the comprehensiveness of traceability and the model’s generalization
ability. Therefore, researchers need to consider the similarity and correlation between
samples in each dataset to make full use of these datasets.

However, this presents a significant challenge. Unlike typical computer vision datasets,
deepfake datasets’ labels are based on technical methods and forgery patterns rather than
human concepts, making it impossible for humans to identify and evaluate them. The more
severe problem is that the labels of forgery methods used in various deepfake datasets
are entirely arbitrary. Some labels are based on implementation technology, while others
are based on forgery modes. For example, many datasets have the label “DeepFakes”.
The irregularity and ambiguity of these labeling methods make it difficult to utilize the
forged data of various deepfake datasets fully. Additionally, some deepfake datasets do
not indicate specific forgery methods, such as “wild datasets”.

3. Research Methods
3.1. K-Means and Calinski Harabasz Evaluation System

We trained an Xception model as a feature extractor using various deepfake datasets
and real datasets as training sets. When examining different deepfake datasets in feature
space, we observe that specific forgery methods are clustered together. In contrast, some
forgery methods with similar names are separated, as shown in Figure 2. For example,
one of the FOMM forgery methods is very close to the FaceSwap method but far from the
other FOMM forgery methods. It shows that the forgery methods with the same name
have a significant feature gap in different datasets, and different forgery methods will have
relatively similar features. The same trend can be seen in the Cosine Similarity results
in Figure 3. In order to evaluate the similarity between different forgery methods across
various datasets. We assume that incorporating datasets that use the same forgery methods
will beneficially enhance the model’s performance. Conversely, merging different datasets
or dividing the similar dataset into separate subsets may adversely affect the model’s
performance. We developed the K-means and Calinski Harabasz Evaluation System based
on the above assumptions. For the sake of simplicity, we refer to it as the KCE-System
for short.

The KCE-System incorporates unsupervised learning. The system divided the deep-
fake datasets into training sets and evaluation sets. Then it trains a deepfake recognition
model using training sets, and extracting high-dimensional vectors from the middle layer
of the model. After dimensionality reduction, the system used the K-means clustering
method to merge various deepfake datasets. The system then trains the new Xception,
F3-net, and ResNet models using these datasets. The trained models are then used to
extract 2048-dimensional or 512-dimensional values from the evaluation set as feature
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values. Finally, the system uses the Calinski Harabasz Index method on the feature values
after dimensionality reduction to evaluate The model’s performance, as shown in Figure 4.
Next, we will introduce several main parts of the system in detail.
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Figure 3. Similarity matrices for different forgery methods in each deepfake dataset.
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3.2. Feature Extractor

Theoretically, when a model reaches a high classification accuracy for various cate-
gories of deep fake data, the model can extract the corresponding deepfake feature. We use
the trained deepfake recognition model as a feature extractor, as the accuracy of these mod-
els in deepfake multi-classification tasks can reach more than 90%. For a comprehensive
evaluation, we provide several representative models with different sizes.

The Xception [18] is a traditional CNN model based on separable convolutions with
residual connections. The model has shown high accuracy when detecting deepfake videos.
In terms of the training process of the feature extractor, the forgery method indicated in each
dataset is used as a pseudo-labelling for multi-class training on the Xception. The training
accuracy rate reaches 94%, and the model converges after three rounds of training. We
use the trained model extract feature on the data of 27 categories of deepfake datasets. We
take out its 2048-dimensional data as the sample’s feature from the global pooling layer of
Xception. Considering the trade-off between performance and efficiency, we select Xception
as the baseline model.

The ResNet [20] is an improvement over the traditional deep neural network archi-
tecture that solves the problem of vanishing gradients and allows the training of much
deeper networks. One of the main advantages of ResNet is its ability to handle deeper
architectures, which leads to better accuracy in image classification tasks. Another notable
model in facial forgery detection is the F3-Net, as proposed in [9]. This model leverages
frequency domain analysis and comprises two branches, one focused on learning subtle
forgery patterns via Frequency-aware Image Decomposition (FAD) and the other aimed
at extracting high-level semantics from Local Frequency Statistics (LFS). Extensive experi-
ments have demonstrated the effectiveness of the F3-Net in identifying low-quality forgery
videos. Given the widespread applicability of the ResNet model in various computer
vision fields and the unique position of the F3-Net in the domain of deepfake detection,
we also select these two models as evaluation models and test them on half of the test
group. To avoid the interference of the model itself on the experimental results to the
greatest extent.

3.3. Dimensionality Reduction and Clustering

In this field, clustering algorithms, such as K-means [50], Gaussian Mixture, and DB-
SCAN [51] are commonly used. However, the DBSCAN algorithm is ineffective in con-
trolling the number of clusters formed. In our system, we need to control the number
of clusters formed for easy comparison with the data merged by name. The Gaussian
Mixture algorithm is mainly designed for non-spherical clusters, while we focus more on
the distance between categories in feature space, which emphasizes spherical clustering.
Therefore, we chose to use the K-means clustering algorithm in our system.

The K-means algorithm uses Euclidean distance for clustering, but it can fail in high
dimensions, so a dimension reduction method must be used. Two methods we utilized
for comparison are PCA [52] and t-SNE [53]. PCA is stable but retains less information
when reduced to two or three dimensions. When reducing dimensions to 64 using PCA,
the interpretable variance contribution rate can be preserved at 95.2%. From Figure 5, we
can see that it effectively preserves most of the information needed for clustering. The
t-SNE supports low-dimensional reduction for visual analysis, but it has poor stability.

We utilize five different dimensionality reduction parameters to determine the most
appropriate clustering dimension. We apply the t-SNE algorithm to reduce the high-
dimensional feature data to 2 dimensions and use the PCA algorithm to reduce the dimen-
sionality to 32, 64, and 128 dimensions. We also keep the 2048 dimensional original features
without applying any dimensionality reduction algorithm. We then performed K-means
clustering on each of these dimensions individually.
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Figure 5. Illustration of dimensionality reduction using PCA. After using PCA to reduce the dimen-
sion, use the t-SNE method to reduce the dimension to two dimensions for display (Different colors
indicate different forgery methods).

3.4. Selection of Evaluation Algorithms

We select four categories of deepfake datasets not involved in the training and clus-
tering process as evaluation sets. We extract Xception, ResNet, and F3-net models’ global
pooling layer output and use the PCA algorithm reduces the data to 128 dimensions.
An example of the results in Figure 6, demonstrating a clear distinction between the four
unknown deepfake categories. This figure indicates that our model has indeed learned the
relevant characteristics for identifying deepfakes.

Evaluating the performance of models trained with unreliably labeled or unlabeled
data is difficult. We can not use precision and recall because we do not have a way to
figure out whether each sample is classified correctly. To address this issue, we utilize the
Calinski Harabasz Index [19], introduced by Calinski and Harabasz in 1974, as an effective
evaluation method. This index is defined in Equation (1) as the ratio of the sum of between-
cluster dispersion and inter-cluster dispersion for all clusters. Therefore, the Calinski
Harabasz Index can be used to evaluate the models, with higher scores indicating that the
model performs better on the test datasets.

For a set of data E of size ng, which has been clustered into k clusters, the Calinski
Harabasz score s is defined as the ratio of the between-cluster dispersion means and the
within-cluster dispersion, as shown in Equation (1).

o tr(Bk) ng —k
ST RWy k-1 @

where tr(By) is trace of the between group dispersion matrix and tr(Wy) is the trace of the
within-cluster dispersion matrix defined by:

k
By =Y ng(cg—cg)(cg—cp)” ()
=1

k
Wi = Z 2 (x —cq)(x— Cq)T 3)

g=1xeCy
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Here, C, represents the set of points in cluster g, ¢; represents the center of cluster g,
cg represents the center of E, and n, represents the number of points in cluster 4.

When using the Calinski Harabasz Index to evaluate clustering quality, it can be
observed that the elbow points of the Calinski Harabasz Index tend to be around 3 or 4 of
cluster number, as depicted in Figure 7. The results obtained from the Calinski Harabasz
Index are consistent with the number of forged method categories in the actual evaluation
set. This suggests that the Calinski Harabasz Index is a valuable method to assess the
model’s ability to identify new categories of deepfakes. When other training parameters
remain the same, if a model’s performance is outstanding, it indicates that the quality of the
training set is excellent, with fewer incorrect labels. In other words, we effectively improve
the reliability of these classification labels in the training set. Therefore, the Calinski
Harabasz Index can effectively evaluate the correlation of these unreliable classification
labels in our system.

g category
20 ‘ ® Faceforensics++_FaceShifter
' 1 . I ® FakeAVCeleb_faceswap
ForgeryNet_ATVG-Net
ForgeryNet_FOMM

Figure 6. The model output of the evaluation sets, that be reduced to three dimensions using the
t-SNE method for display.
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Figure 7. Using Calinski Harabasz Index to evaluate its clustering quality, it can be found that its
elbow point is about 3 to 4.
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4. Experiment

In this section, we first introduce the overall experimental setup. Our equipment
includes four NVIDIA GeForce2080Ti GPUs. We use PyTorch to train and evaluate models,
OpenCV to image data preprocessing, and Scikit-learn algorithm library for data analy-
sis. We extract 620,000 fake face images from 10 deepfake datasets and train 40 models,
including 32 Xception, 4 F3-net, and 4 ResNet models. The entire data preparation and
experimental process spanned approximately 3 months.

4.1. Data Dividing and Preprocessing

We select 31 datasets labeled with forgery method names from CelebDFE, DeeperForensics-
1.0, DeepFakeMnist+, FaceForensics++, ForgeryNet, and FakeAVCeleb, see Table 1 for
details. We use a random method to divide 31 deepfake categories into two sets, where
the training set contains 27 categories, and the evaluation set contains four categories. We
repeat the above division four times to obtain four sets of training sets and evaluation sets.
See Table 2 for details.

Table 2. The table displays four sets of experimental data, each containing four evaluation datasets,
with the remaining 27 datasets designated for training purposes.

Group Evaluation Datasets

Faceforensics++_FaceShifter, FakeAVCeleb_FaceSwap, ForgeryNet_ATVG-Net,

! ForgeryNet_FOMM

2 DeeperForensics_DF-VAE, Faceforensics++_Face2Face, Fake AVCeleb_Wav2Lip,
ForgeryNet_DiscoFaceGAN

3 DeepfakeTIMIT_FaceSwap-GAN, ForgeryNet_BlendFace, ForgeryNet_StarGAN2,
Patch-wise-Face-Image-Forensics _PROGAN

4 CelebDFv2_FaceSwapPRO, Faceforensics++_ NeuralTextures, ForgeryNet_FS-GAN,

ForgeryNet_Talking Head Video

We extract the frame data of each category according to the instructions of the relevant
dataset and use the face detection model Retinaface [54] to intercept the face area. Then,
we increase the side length of the image by a factor of 1.25. Finally, we randomly select
20,000 fake faces of each category and save these images as test data in png. format.

4.2. Merge Training Data Based on the Category Name

In order to verify our conjecture that there is large randomness in the naming of the
forged methods in the deepfake dataset, we specially merged the training set data according
to the principle of the same or close to the forged method names and used them as a control
group. We use the following merging rules.

(@) Merge the FaceSwapPRO category in the CelebDFv1 dataset and the FaceSwapPRO
category in the CelebDFv2 dataset.

(b) Merge the FOMM category in the DeepFakeMnist+ dataset and the FOMM category
in the ForgeryNet dataset.

(c) Merge the FaceSwap-GAN category in the DeepfakeTIMIT dataset, the DeepFakeDe-
tection FaceSwap category and the FaceSwap category in the FaceForensics++ dataset,
and the faceswap category in the FakeAVCeleb dataset.

(d) Merge the DeepFakes category in the Faceforensics++ dataset and the DeepFakes
category in the ForgeryNet dataset.

(e) Merge the FSGAN category in the FakeAVCeleb dataset and the FS-GAN category in
the ForgeryNet dataset.

(f) Merge DeepFakes-StarGAN-Stack category, StarGAN-BlendFace-Stack category and
StarGAN2 category in ForgeryNet dataset.

(g) Merge the StyleGAN2 category in the ForgeryNet dataset and the STYLEGAN?2 cate-
gory in the Patch-wise Face Image Forensics dataset.
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We randomly sample corresponding proportions of data from the merged dataset and
reassemble them into 20,000 images per category. The number of training set categories of
the merged four groups is that Group 1 has a total of 19 categories, Group 2 has a total of
17 categories, Group 3 has a total of 19 categories, and Group 4 has a total of 19 categories.

4.3. Merge Training Data Based on the Results of K-Means Clustering

One of the purposes of our experiment is to determine the appropriate dimensionality
for K-means clustering to address this type of problem. We need to ensure that we do not
lose too many classification features due to excessive dimensionality reduction, nor do we
cause the K-means algorithm to fail due to excessive dimensionality. Since we chose the
Xception model as the baseline, we use the PCA algorithm to reduce the 2048-dimensional
output to 128, 64, and 32 dimensions. We also reduce it to two dimensions using the t-SNE
algorithm. For the F3-net and ResNet models, we only use the PCA algorithm to reduce
the output feature value to 64 dimensions since we only need to verify that our method
applies to these models.

In the previous section, we created training data for the control group based on
name mergers. To facilitate comparison, we ensure that the number of categories of the
experimental data for each group is identical. Therefore, we use the K-means clustering
algorithm to cluster these training sets based on the specified number of clusters. Groups 1,
3, and 4 have 19 clusters, while Group 2 has 17 clusters. Finally, we use the results of the
K-means clustering algorithm to combine the training set.

4.4. Experimental Results

We train Xception, F3-net, and ResNet models using training data merged by K-means
clustering results and category names, respectively. For comparison, we also train the same
models using the original training set without merging.

To obtain feature vectors for the validation set, we used these models as feature
extractors and applied PCA to reduce them to 64 dimensions. We then calculated the
Calinski Harabasz Index. Please refer to Table 3 for the result.

Table 3. The Calinski Harabasz Index results. The bold type indicates the best result for that group of

tests.
Model Train Data Merge by Group 1 CH Group 2 CH Group 3 CH Group 4 CH Avg CH
Xception ~ Without merging 128.02825 117.448499 68.6994684 93.5723306 101.937137
Xception Name 84.0837009 73.8172086 74.579957 61.2651927 73.4365148
Xception ~ K-means on 2048D 124.241305 105.070655 76.2218761 84.212058 97.4364735
Xception ~K-means on t-SNE 2D 103.627829 87.1461055 66.6143003 76.5264273 83.4786656
Xception K-means on PCA 64D 137.241584 101.192327 85.2535376 94.2137508 104.4753
Xception K-means on PCA 128D 101.197038 101.502163 74.8441997 86.6358341 91.0448087
Xception  K-means on PCA 32D 114.247635 89.1934801 62.3932779 75.9596147 85.4485019
F3-net Name 62.6592813 65.6510862 64.1551837
F3-net K-means on PCA 64D 85.361067 72.018708 78.6898875
ResNet Name 42.895651 47.9716533 45.4336522
ResNet K-means on PCA 64D 49.7529116 54.0786263 51.915769

The Calinski Harabasz Index of the model trained on the data merged by K-means is
42.27% higher than that pooled by name. Furthermore, these scores are slightly higher than
those directly using the original training set, even though the original set contains more data.
At the same time, the Calinski Harabasz Index is also higher at 22.66% and 14.27% in F3-net
and ResNet models. These prove an appropriate combination of deepfake datasets with
similar features improves the model’s generalization in the unknown forgery categories.
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The Calinski Harabasz Index of merging by names is lower than by various cluster-
based and original training sets, indicating significant differences in the characteristics of
these same-name forgery methods. Merged by name harms the model.

Compared with the other three groups, the results of Group 2 are different. Further-
more, its Calinski Harabasz Index is lower than the training results on the original data.
Because Group 2 has only 17 categories after the merger, with fewer training samples than
other groups. More information loss can destroy the performance of the model.

5. Conclusions

This article starts with the traceability requirements of the deep forgery method. When
using multiple deepfake datasets, we found many different deepfake datasets using the
same or similar label names. Confusion arises in how to use these datasets comprehensively.

We leverage the Xception model to extract fake features from the deepfake dataset.
Subsequently, PCA and t-SNE methods are employed to reduce dimensionality and perform
K-means clustering. Then, combine the datasets based on the clustering results, and use the
combined data to train Xception, F3-net, and ResNet models, respectively. Finally, we use
these models to extract features from the evaluation set and evaluate the generalization of
these models using the Calinski Harabasz index as an evaluation metric. Our contributions
are mainly three-fold:

*  We prove the labels of various deepfake datasets contain many randomnesses. If re-
searchers use more than two deepfake datasets, combining these datasets only based
on forgery labels will hurt the performance of the model.

*  We propose K-means and Calinski Harabasz evaluation systems to evaluate the
similarity of various deepfake datasets, laying the foundation for future researchers to
use them comprehensively.

*  Weprove that the generalization ability of the deepfake recognition model in the face of
new samples can be improved by merging datasets with high forgery feature similarity.

Our research is only a helpful exploration for entirely using various deep forgery
datasets from the source of deep forgery methods. We mainly revealed the arbitrariness of
label naming in deepfake datasets and the resulting troubles in the traceability of forgery
methods. There is still a long way to go to solve this problem completely. In addition,
different image compression algorithms and image resolutions significantly impact the fake
features of deepfake datasets, which will seriously interfere with the model’s extraction of
fake features from deepfake datasets, and pose a significant challenge to the identifiability
and traceability of deepfake datasets. We are committed to conducting further research to
address these challenges effectively.

To ensure the healthy development of the field, research institutions and universities
should standardize the label nomenclature of deepfake datasets. Additionally, legislation
should require digital watermarking and blockchain technology to trace deepfake content
to its source accurately. Our research is a helpful exploration of the use of various deep
forgery datasets, and we hope it will inspire future work in this field.
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