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Abstract: Since the number of acquired images and their size have the tendency to increase, their
lossy compression is widely applied for their storage, transfer, and dissemination. Simultaneously
with providing a relatively large compression ratio, lossy compression produces distortions that are
inevitably introduced and have to be controlled. The properties of these distortions depend on several
factors such as image properties, the coder used, and a parameter that controls compression, which is
different for particular coders. Then, one has to set a parameter that controls compression individually
for an image to be compressed to provide image quality appropriate for a given application, and it is
often desirable to do this quickly. Iterative procedures are usually not fast enough, and therefore fast
and accurate procedures for providing a desired quality are needed. In the paper, such a procedure for
two coders based on discrete cosine transform is proposed. This procedure is based on a prediction
of mean square errors for a given quantization step using a simple analysis of image complexity
(local activity in blocks). The statistical and spatial–spectral characteristics of distortions introduced
by DCT-based coders are analyzed, and it is shown that they depend on the quantization step and
local content. Generalizing the data for sets of grayscale test images and quantization step values, it
is shown that the MSE can be easily predicted. These predictions are accurate enough and can be
used to set the quantization step properly, as verified by experiments performed using more than
300 remote sensing and conventional optical images. The proposed approach is applicable to the
lossy compression of grayscale images and the component-wise compression of multichannel data.

Keywords: lossy compression; DCT-based coders; mean square error; statistical and spatial
correlation analysis

1. Introduction

A tremendous number of images of different origins are acquired nowadays. Ordinary
customers acquire a huge number of color photos and upload them to the Internet [1].
Numerous remote sensing (RS) spaceborne and airborne imagers acquire many images
each day [2,3]. Medical diagnostic complexes provide doctors with several types of image
data [4], Internet shops and other services use advertising images [5], and so on.

Images acquired by the aforementioned systems have various properties, but there
are common tendencies for them. Firstly, their number rapidly grows [6,7]. Secondly,
the average size of images increases as well. Color photos become larger due to better digital
cameras; a better spatial resolution as well as the use of multichannel imaging mode lead to
larger-sized remote sensing images; the size of medical images has the tendency to increase,
too. Then, to transfer, store, and disseminate such images, data compression should be used.
Lossless compression techniques are mostly unable to ensure a desired compression ratio
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(CR) [8–10]. Moreover, lossy image compression methods are able to produce considerably
larger CRs that can be varied using a parameter that controls compression (PCC) [11–14].
This can be a quality factor (QF) used in JPEG [11], the bits per pixel (BPP) employed in
JPEG2000, the quantization step (QS) utilized in DCT-based coders [13], Q-parameter in
better portable graphics (BPG) coder [14], etc. A general tendency that is valid for most
images is that a larger CR (associated with a smaller QF or BPP or a larger QS or Q) results
in greater degradation and worse quality according to any metric, whether conventional
or visual [11–14]. Then, it is necessary to find an appropriate compromise between the
introduced distortion (quality of a compressed image) and the CR for a given application
and an image to be compressed [2,3,15].

Depending on the application, this compromise (and imposed restrictions) can be
different. Some examples are the following:

1. Ensure that the CR is as large as possible with the simultaneous provision of acceptable
visual quality; in this sense, two tasks have to be solved:

• To find a coder that provides a larger CR for a given image and a given quality;
• To find such a CR that distortions do not exceed the chosen threshold according

to a considered quality metric.

2. Provide that (diagnostically) valuable information is not lost under the attempt to
increase CR for a chosen coder;

3. Carry out lossy compression with the simultaneous provision of acceptable quality as
quickly as possible or within a certain time interval for a chosen coder and a quality
metric threshold.

To solve the aforementioned tasks of reaching an acceptable compromise, one has to
answer many questions, including the following:

• What quality metric should one use?
• What are the metric values (thresholds) that correspond to the appropriateness of

introduced distortions? With what accuracy should they be provided?
• How should one compare the performance of compression techniques, and what

constitutes a good coder nowadays?
• What are the existing procedures for providing the desired quality, and what are their

advantages and drawbacks?

A metric to be used should satisfy several requirements. In particular, it has to be
adequate for a given application, its properties have to be thoroughly studied, and it
should be calculated quickly enough. The mean square error (MSE) is one such metric. Its
calculation is very fast, and the MSE properties (in particular, with application to lossy
image compression) are well studied. In particular, the Spearman correlation for the MSE
and mean opinion score (MOS) for three subsets of images with distortions dealing with
lossy compression in the database TID2013 [16] is equal to 0.914, and it is better than the
correlation of SSIM [17] and MOS (0.893) but worse than for MOS and some modern visual
quality metrics. Thus, the MSE is quite an adequate metric for compressed images. It is
also known that if distortions are similar to additive white Gaussian noise, then they are
practically invisible for noise variance about 20 and less (for images represented by 8-bit
data), i.e., for a peak signal-to-noise ratio (PSNR) of about 35 dB or more [8]. The MSE
changes (differences) by 10 . . . 20% can be very hardly noticed in compressed images by
visual inspection. Hence, in fact, the first two questions have been answered.

The performance of image compression techniques is usually analyzed by exploiting
rate/distortion curves, i.e., dependencies of a parameter that characterizes image quality
on PCC or CR. To obtain correct conclusions, such an analysis has to be performed for
many images and for a wide range of CR (PCC, image quality). The results of performance
analysis carried out for several compression techniques [8,9,13] show that lossy compression
techniques based on orthogonal transforms including DCT [10,11,14] provide good results.
Some DCT-based coders sufficiently outperform the JPEG and JPEG2000 [12] standards.
Since they are based on DCT, they can be easily incorporated into existing software- and
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hardware-image-processing tools, including on-board systems and devices of remote
sensing image compression [18]. Because of this, the analysis below is concentrated on the
prediction of the MSE for the coders AGU [19] and ADCT (advanced DCT) [20], assuming
that the proposed approach can be useful for other DCT-based compression techniques.

The paper structure is as follows. In Section 2, related work is discussed, whereas
Section 3 briefly describes the considered compression techniques and analyzes the existing
solutions for MSE prediction. Statistical and spatial correlation analysis of distortions
introduced by lossy compression is carried out in Section 4. Dependencies of statistical
characteristics of distortions on image local activity are studied in this Section as well.
A method for MSE prediction and its accuracy analysis are presented in Section 5. Finally,
the conclusions follow in Section 6.

2. Related Work

The problem of providing desired values of the MSE (as well as other metrics) has been
considered earlier in several papers [13,21–26]. The three main approaches are as follows.

Firstly, an iterative procedure presuming multiple image compressions/decompressions
with quality metric (e.g., the MSE) estimation and PCC refining at each iteration can be
used [13]. The advantage of such a procedure is that it is able to ensure high accuracy when
providing a desired value of a considered metric [13], e.g., the PSNR with an accuracy
of less than 0.2 dB (the MSE with a relative error less than 6%). The drawback is that
the number of iterations is unknown in advance and, because of this, the requirements
imposed on the maximal time of compression can be sometimes not satisfied. In addition,
the approach requires more computations than the other two methods, and, thus, it is not
attractive from the viewpoint of green technologies [27].

Secondly, the so-called two-step procedures have been developed recently [23,28].
They are based on obtaining an average rate-distortion curve for a given coder (for example,
the MSE or PSNR on the QS) in advance (off-line). This curve is then used to determine
a starting point (the initial QS) for image compression, decompression, and metric calcu-
lation. Then, using the average curve derivative, the final QS is calculated, and the final
compression is carried out. This approach is, on the average, considerably faster than
iterative. However, its accuracy is worse than the iterative approach and, in some situations
such as quite a large CR, can be inappropriate for practice. Moreover, two compression
steps and one decompression are needed in any case. This can be acceptable if both com-
pression and decompression are fast enough but can make problems if either compression
or decompression are too slow.

Thirdly, several approaches that can be treated as prediction-based have been put
forward [22,24–26,29]. Their main advantage is that they determine the PCC (QS) based on
the prediction of metric value. Due to this, no preliminary compression and decompression
as for the two-step approach are needed. This allows one to determine the PCC quite
quickly. In addition, for the approach [29], the spatial distribution of distortions introduced
by lossy compression can be predicted, which can be useful for achieving several goals
of further image processing. However, its prediction accuracy is usually worse than for
iterative and two-step approaches, and its careful analysis has not been carried out.

Therefore, the goal of this paper is to further advance the approach proposed in our
paper [29]. The novelty of this paper consists in two items. Firstly, the spatial distributions of
introduced distortions are analyzed. Secondly, the statistical analysis of the MSE predictions
for numerous test grayscale images is carried out, including those images not used in
obtaining the prediction curves.

3. Description of the Used Coders, Test Images, and Preliminary Analysis of
Compression Characteristics
3.1. Used Coders and Test Images

The most known and widely used DCT-based coder is JPEG [30]. Its positive and neg-
ative features are well known. In particular, the main drawbacks are the blocking effect and
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the use of fixed size blocks that limit potential of compression. These drawbacks stimulated
studies intent on the fuller exploitation of DCT potential in image and video compression
applications. One of extensions is the AGU coder [19] based on the 2D DCT in 32× 32 pixel
blocks. In addition, AGU employs an efficient bit plain coding of the DCT coefficients after
uniform quantization and decompressed image deblocking. Due to the aforementioned
modifications, the AGU coder outperforms JPEG [30], SPIHT [31], JPEG2000 [12], and many
other compression techniques [13].

Another compression technique considered in our study is the ADCT coder (AD-
CTC) [20]. It attempts to avoid the drawback of using fixed block size (inherent for JPEG
and AGU) by exploiting partition scheme optimization to adapt the block size to image
content. An example is presented in Figure 1, where partition schemes are demonstrated
for two QS values for one of the test images. The blocks have a square or rectangular shape,
where the side sizes are powers of 2, to provide an opportunity to use fast algorithms of
the DCT. The block sizes are larger for more homogeneous regions of images. The partition
scheme is not the same for a given image; it changes, with the QS becoming slightly simpler
if the QS and CR increase.

The ADCTC requires more computations compared to JPEG and AGU, especially at
the compression stage when the partition scheme has to be optimized. Decompression is
faster than compression.

(a) (b)

(c)

Figure 1. Illustration of the partition schemes: (a) test image Fr01, and partition schemes for (b) QS = 5
and (c) QS = 20.
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At the preliminary stage of our studies, in addition to the test image in Figure 1a,
the three other test images given in Figure 2 have also been employed. These are typical
remote sensing images of natural scenes of medium complexity.

(a) (b)

(c)

Figure 2. Testimages used in experiments: Fr02 (a), Fr03 (b), and Fr04 (c).

All of the images are of the size 512 × 512 pixels, allowing for the use of coders’
versions freely available at https://ponomarenko.info/agu.htm (accessed on 28 April
2023) and https://ponomarenko.info/adct.htm (accessed on 28 April 2023). Note that
an interested reader can find some performance comparison results there.

3.2. Preliminary Analysis of Some Rate/Distortion Characteristics

Recall that our analysis is mainly focused on practical situations when compression is
visually lossless or, at least, the introduced distortions are not annoying. This happens if
the PSNR is about 35 dB (let us say, from 30 to 45 dB) [32]. As said above, the PSNR is not
the best metric if the goal is to adequately characterize the visual quality of compressed
images. Hence, the visual quality metric PSNR-HVS-M [33] should be considered as well.
It takes into account two important peculiarities of the human vision system (HVS), and its
properties have been thoroughly studied in [32]. Similarly to the PSNR, the PSNR-HVS-
M is expressed in dB. The properties of the PSNR-HVS-M are important for our further
analysis are as follows. The values of the PSNR-HVS-M are larger than the values of the
corresponding PSNR if the distortions’ properties are similar to the properties of additive

https://ponomarenko.info/agu.htm
https://ponomarenko.info/adct.htm
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white Gaussian noise (AWGN) and a considered image is able to mask noise (distortions),
at least partially (this happens if a distorted image has texture fragments containing many
fine details). One more important property is that distortions are visible if the PSNR-HVS-M
does not exceed 41 dB [32].

Let us start our analysis from the coder AGU and consider the following three values
of the QS equal to 5, 10, and 20. Table 1 contains the following parameters: bpp (bits per
pixel) that can be recalculated from the CR as bpp = 8/CR (for grayscale images represented
as 2D 8-bit data arrays), the PSNR, and the PSNR-HVS-M.

Table 1. Characteristics of test image compression for AGU.

Parameter QS = 5 QS = 10 QS = 20

Image Fr01

bpp 3.24 2.29 1.40
PSNR (dB) 45.06 39.74 34.75

PSNR-HVS-M (dB) 55.20 47.31 39.71

Image Fr02

bpp 3.28 2.34 1.46
PSNR (dB) 45.13 39.77 34.71

PSNR-HVS-M (dB) 54.98 47.46 39.87

Image Fr03

bpp 3.32 2.37 1.46
PSNR (dB) 44.97 39.53 34.45

PSNR-HVS-M (dB) 55.48 47.31 39.55

Image Fr04

bpp 3.09 2.19 1.35
PSNR (dB) 45.21 39.85 34.71

PSNR-HVS-M (dB) 54.28 47.11 39.63

As can be seen, the case of QS = 5 can be associated with near lossy compression
since for all four test images, the bpp values are slightly larger than 3, the PSNR values
are sufficiently larger than 35 dB, and the PSNR-HVS-M values exceed 55 dB. The case of
QS = 20 relates to visible distortions that are not annoying distortions. For QS = 20, bpp
is about 1.4, i.e., the CR exceeds 5. Since the PSNR values are slightly smaller than 35 dB
and the PSNR-HVS-M values are approximately 39.7 dB for all four test images, distortions
can be noticed by visual inspection. The case of QS = 10 can be treated as intermediate:
the CR is approximately 3.5; the PSNR is approximately 39.7 dB; and the PSNR-HVS-M
is approximately 47.3 dB, i.e., distortions are not visible. The presented examples are in
good agreement with the results in our paper [13], where it is shown that, on the average,
QS has to be set equal to 16 to provide the invisibility of introduced distortions for both
considered coders.

From data in Table 1, it might seem that the values of the PSNR, PSNR-HVS-M,
and bpp (CR) for a given QS are almost the same, and it is not a problem to provide a
desired quality.

However, it is not true (the reason of approximate coincidence of performance charac-
teristics for the considered four test images is that their complexity is similar).
In reference [13], it is shown that, e.g., for bpp = 1.6, the PSNR-HVS-M values vary in
the limits from 30 dB to 53 dB. It is also shown in [23] that the PSNR values for the same
QS can differ by up to 10 dB (for a QS of about 20).

Let us now briefly consider preliminary data for ADCTC. They are presented in Table 2,
where the values of the CR/bpp and MSE/PSNR for four test images and three values of
the QS are given. As it may be seen, the main tendencies are the same:
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• The CR increases (the bpp are reduced) if the QS increases;
• The MSE increases (the PSNR is reduced) if the QS becomes larger;
• The MSE increases almost proportionally to the QS2; hence, the obtained value for the

QS = 5 is

MSE ≈ QS2

12
. (1)

Table 2. Characteristics ot test image compression for ADCTC.

Image QS CR bpp MSE PSNR

Fr01 5 2.19 3.01 2.08 44.95
Fr02 5 2.65 3.03 2.03 45.06
Fr03 5 2.53 3.18 2.10 44.91
Fr04 5 2.74 2.93 1.98 45.16
Fr01 10 3.97 2.02 7.34 39.47
Fr02 10 3.87 2.08 7.13 39.60
Fr03 10 3.71 2.17 7.71 39.26
Fr04 10 3.98 2.02 7.03 39.66
Fr01 20 6.78 1.18 23.03 34.51
Fr02 20 6.46 1.24 23.17 34.48
Fr03 20 6.37 1.26 25.38 34.09
Fr04 20 6.73 1.19 23.92 34.34

Meanwhile, for QS = 10, the MSE is about 7.5 and is already noticeably less than
QS2/12 (8.33), and for QS = 20 this difference further increases (as 400/12 ≈ 33.33). More-
over, the true MSE becomes quite different for the considered test images. A quite thorough
analysis of the observed tendencies and the reasons for them has been carried out in [24].
Further, some interesting dependencies from this paper are presented, considering two
noise-free images and one noisy image. The noise-free images are “Frisco” and “Airfield”,
presented in Figure 3a,b, respectively. As one can see, the image “Frisco” contains many
quasi-homogeneous regions, and, thus, it can be treated as simple structure one. More-
over, “Airfield” is approximately of the same complexity as the test images in Figure 2.
The third considered image is the same test image “Frisco_std5” but with the artificially
generated additive white Gaussian noise (AWGN) with zero mean and noise variance
equal to 25. The purpose for considering such an image was to analyze the noise influence
on compression characteristics.

(a) (b)

Figure 3. Noise-free test images “Frisco” (a) and “Airfield” (b).
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The dependencies of the MSE determined between the compressed image and the
corresponding image before compression for the ADCTC are presented in Figure 4. Al-
though for all three test images the MSE increases if the QS becomes larger, there are
sufficient differences. Firstly, the MSE for the noise-free image “Frisco” is always the
smallest and, for the QS starting from 10, it is smaller that for two other test images by
several times. For QS = 20, the MSE for the noise-free test image is smaller than QS2/12
by about 5 times, i.e., by about 7 dB. Secondly, till QS = 17, the curves for the test images
noisy “Frisco_std5” and noise-free “Airfield” practically coincide and the approximate
expression (1) is practically valid. However, for a larger QS, the curves behave in a different
manner. Thirdly, depending on noise variance, the dependencies are considerably different
even for images of the same content (“Frisco” and noisy “Frisco_std5”). This example
shows that noise sufficiently influences coder performance.

Figure 4. Dependencies of MSE on QS for ADCTC determined for three test images.

The latter conclusion is also confirmed by the plots in Figure 5 that show the depen-
dencies of the CR on the QS for ADCTC for the considered three images. The CR for the
simple structure noise-free image “Frisco” is sufficiently larger than for the test image
“Airfield” and noisy image “Frisco_std5”. Only for quite a large QS (i.e., QS = 25) do the CR
values for compressed noise-free and noisy images (“Frisco” and “Frisco_std5”) become
close, and this happens due to a noise-filtering effect observed for the lossy compression of
noisy images.

Figure 5. Dependencies of CR on QS for ADCTC determined for three test images.
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Differences in the dependencies in Figures 4 and 5 are explained in [24] in detail, where
it is shown that the distributions of DCT coefficients differ significantly for the considered
three images and parameters of these distributions (e.g., the percentage of DCT coefficients
that become zero after quantization), which are in a rather strict connection with the MSE
and CR. Meanwhile, the main goal of the analysis above was to demonstrate variability of
the MSE for the same QS and coder depending on the image complexity and the presence
of noise. At the same time, the presented results can be treated as the background of the
idea that the MSE can be predicted for a given QS if an image to be compressed is somehow
quickly analyzed to determine its main properties. Thus, let us briefly recall the existing
approaches and solutions.

The paper [21] was probably the first interesting attempt to predict the MSE and PSNR
for the JPEG coder. The authors have assumed that the distribution of AC DCT coefficients
in 8× 8 pixel blocks is close to Laplacian. Thus, by estimating the distribution scale S
and using the a priori obtained dependence of the MSE on QS/S, it is possible to predict
the MSE. However, there are two drawbacks of this approach. Firstly, the authors of [21]
have proposed to perform scale estimation for AC DCT coefficients calculated in all blocks
of an image planned to be compressed. This means that the first stage (obtaining DCT
coefficients) in 8× 8 pixel blocks takes the same time and the first stage of compression
itself. Thus, prediction is not faster than compression or time expenses are of the same
order. The second drawback is that the distribution of AC DCT coefficients can differ from
Laplacian. This leads to prediction errors that might exceed 1 dB.

If one deals with the AGU and ADCT coders, the prediction should be considerably
faster than the compression. Based on the results in [21], two ways to better predict the
MSE for advanced DCT-based coders [22,24–26] have been put forward. The main ideas
in the papers [25,26] are two-fold. Firstly, it is possible to predict the MSE by processing
original and quantized DCT coefficients in 8× 8 pixel blocks with recalculating (correcting)
the predictions for the AGU and ADCT coders. Secondly, it is not necessary to consider all
of the possible block positions—it is enough to analyze 500–1000 randomly chosen blocks.
The predictions are quite accurate, but the DCT still needs to be carried out for many blocks.

Another approach [22,24] is based on using the following expression:

MSEpred =
QS2

12
· f (X) , (2)

where f (X) is a function of one or several parameters that describe the properties of
an image to be compressed (its complexity or simplicity, the presence and amount of noise,
etc.). In the simplest case, X is the aforementioned percentage of AC DCT coefficients that
become zero after quantization. The drawbacks of this approach are two-fold. Firstly, it is
needed to estimate the statistics of the DCT coefficients, i.e., to apply 2D DCT in blocks and
comparison operations taking more time than just DCT. Secondly, the method’s accuracy is
not high if the percentage exceeds 0.8, i.e., for quite large QS (e.g., QS = 20).

Therefore, it is desirable to develop a technique that provides accurate prediction
without applying DCT (and faster than existing techniques). It is also desired to utilize an
accurate and universal method where universality is considered appropriate for a wide set
of images and QS values.

4. Detailed Analysis of Distortion Properties

The necessity to study the statistical and spatial–spectral properties of distortions
introduced by different coders is significant for several reasons. Firstly, it has been stated
in [34] that the distortions due to lossy compression have to be of limited intensity and
have spatially “uniform” distribution to avoid artifacts (including classification artifacts).
Secondly, the results in [26] have demonstrated that the distortions have a distribution
close to Gaussian for relatively small CR and QS for complex-structure images, whereas
the distribution might be non-Gaussian for simple-structure images. However, the reasons
for this have not been explained. Because of this, it is worth recalling the data recently
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presented in our paper [29], where the visual and quantitative analysis of difference images
has been performed. Note that difference images are quite often used in analysis of image
lossy compression and denoising. Let {Ior(i, j), i = 1, . . . , IIm, j = 1, . . . , JIm} be an original
image having the size of IIm × JIm pixels and {Ic(i, j), i = 1, . . . , IIm, j = 1, . . . , JIm} repre-
sent the corresponding compressed image. In simulations, both images are available, and
the difference image can be calculated as

{∆(i, j) = Ior(i, j)− Ic(i, j), i = 1, . . . , IIm, j = 1, . . . , JIm} . (3)

In most practical situations, ∆(i, j) are integers that can be negative, positive, and
equal to zero.

For visual inspection, there are several ways to present difference images, e.g.,

• As absolute values of differences (including preliminary magnification);
• Using a pedestal, for example, as

{∆p(i, j) = Ior(i, j)− Ic(i, j) + 128, i = 1, . . . , IIm, j = 1, . . . , JIm} .

One example of {∆p(i, j), i = 1, . . . , IIm, j = 1, . . . , JIm} has been determined for the
test image Fr01 compressed by AGU with QS = 20. The fluctuations (distortions) can
be hardly noticed in the compressed image since PSNR is about the distortion visibility
threshold (slightly smaller than 35 dB). Therefore, the 3D plot of the absolute values of
differences is presented in Figure 6 instead of the difference image for better visualization.
The visualized distortions are absolutely not seen for QS = 5 and QS = 10. Because of this,
the difference images are not shown here.

Figure 6. The 3D plot of the absolute values of difference image |∆(i, j)| for the compressed image
Fr01 for QS = 20.

Since it is expected that differences (3) can be a non-stationary 2D process, its spatial
spectral or correlation analysis should be performed with care. One methodology of
such an analysis applicable for signal-dependent or spatially invariant data has been
proposed in [35,36]. One has to determine the mode of local kurtosis estimates obtained
in the DCT domain. If this mode is smaller than 3.75, the noise can be assumed to be
spatially uncorrelated.

The obtained results are presented in Table 3. As one can see, the distortions can be
considered spatially uncorrelated for all four test images and all three QS values. However,
one can observe a tendency for the mode to increase (i.e., to a larger spatial correlation of
distortions) when QS increases.
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Table 3. Mode of local kurtosis estimates.

Image QS = 5 QS = 10 QS = 20

Fr01 2.6974 2.7507 2.8896
Fr02 2.7189 2.7642 2.9065
Fr03 2.7192 2.7446 2.8437
Fr04 2.7573 2.7933 2.8510

A similar analysis has been carried out for the ADCT coder. The results are practically
the same—the distortions can be considered spatially uncorrelated, at least, for QS ≤ 20.

Let us carry out statistical analysis in blocks keeping in mind the possible non-
stationarity of distortions. Let us employ non-overlapping 8× 8 pixel blocks and calculate
in each of them the following two parameters (where each block position is defined by the
left upper corner coordinates n and m:

σ2
dist =

1
64
·

m+7

∑
i=m

n+7

∑
j=j

(
∆p(i, j)− ∆

)2 , (4)

σ2
im =

1
64
·

m+7

∑
i=m

n+7

∑
j=j

(
Ior(i, j)− Ior

)2 , (5)

where ∆ =
1

64
·

m+7

∑
i=m

n+7

∑
j=j

∆p(i, j) and Ior =
1
64
·

m+7

∑
i=m

n+7

∑
j=j

Ior(i, j).

It is possible to present the obtained data as scatter-plots of root mean square error (RMSE)
of distortions σdist vs. RMSE of σim characterizing noise local (content) activity. For the test
image Fr01, the obtained scatter plots are given in Figure 7 for three values of QS. Their analysis
shows the following:

1. One can observe large areas of σim where σdist are, in general, random, but their mean
is practically constant; later, such areas will be called saturation areas;

2. Not surprisingly, in such areas, mean σdist is approximately equal to (QS2/12)0.5—
about 1.4 for QS = 5 (Figure 7a), about 2.7 for QS = 10 (Figure 7b), and about 5 for
QS = 20 (Figure 7c);

3. If σim is quite small, there is a tendency of σdist to decrease (on average), with a reduc-
tion in σim ; this tendency may be observed when σim ≤ QS.

The scatter plots obtained for the other three test images are very similar to those
represented in Figure 7. To illustrate this, the scatter plots for the test image Fr02 are given
in Figure 8. As it may be seen, the conclusions that can be drawn from their analysis are
the same as given above.

Having obtained such scatter plots, it is possible to carry out regression, i.e., to fit the
curves. For this purpose, the following approximation is used:

σ
appr
dist = a · exp(b · σim) + c , (6)

where a, b, and c are the function parameters to be estimated. For curve fitting and the
estimation of its parameters, the MATLAB fminsearch function may be used, which allows
one to find a minimum of unconstrained multi-variable function using the derivative-
free method.

The parameters of the fitted curves are given in Table 4. For the same QS, the parameter
values of the fitted curves for the considered test images are very similar. This especially
relates to the parameter c that describes the “saturation level”.
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(a) (b)

(c)

Figure 7. Scatter plots σdist vs. σim for the test image Fr01 for QS equal to 5 (a), 10 (b), and and 20 (c).

(a) (b)

(c)

Figure 8. Scatter plots σdist vs. σim for the test image Fr02 for QS equal to 5 (a), 10 (b), and and 20 (c).
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Table 4. Parameters of the fitted curves (AGU).

Image QS = 5 QS = 10 QS = 20

Fr01
a = −0.50 a = −1.37 a = −3.41
b = −0.40 b = −0.25 b = −0.13
c = 1.44 c = 2.73 c = 5.21

Fr02
a = −0.91 a = −2.04 a = −4.03
b = −0.57 b = −0.33 b = −0.16
c = 1.44 c = 2.74 c = 5.24

Fr03
a = −0.74 a = −1.28 a = −3.35
b = −0.63 b = −0.25 b = −0.14
c = 1.44 c = 2.77 c = 5.31

Fr04
a = −1.01 a = −2.41 a = −4.97
b = −0.55 b = −0.33 b = −0.17
c = 1.45 c = 2.80 c = 5.46

The presented scatter plots explain why the MSE of distortions introduced by lossy
compression into simple-structure images differs from the MSE of introduced distortions
for complex-structure images. Complex-structure images mostly have blocks where σim
is large enough due to high local activity, and then σ2

dist for such blocks is, on average,
approximately equal to QS2/12. Then, the MSE for the entire image is close to QS2/12 as
well. Meanwhile, when QS increases, there are fewer blocks in the saturation area, and the
MSE for the entire image is smaller than QS2/12.

Let us now present the scatter plots of σdist vs. σim for the ADCT coder. They are given
in Figure 9. It is possible to compare the scatter plots in Figure 9 to the corresponding
scatter plots in Figures 7 and 8.

(a) (b)

(c)

Figure 9. Scatter plots σdist vs. σim for QS equal to 5 (a), 10 (b), and 20 (c) for the test image
Fr01 (ADCTC).
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The comparison shows that the main properties of the scatter-plots are very similar.
Again, there are saturation zones observed for σim > Q where σdist are approximately equal
to (QS2/12)0.5 = QS/3.47. When σim ≤ Q, then σdist decreases, with a reduction in QS.

This reduction can be explained as follows. In quasi-homogeneous image regions
(blocks), there is a large percentage of DCT coefficients that are smaller than the QS
(especially if the QS is large enough). Quantization errors for such DCT coefficients,
on average, have smaller absolute values than the case when most DCT coefficients have
absolute values larger than the QS (see the distributions of quantization errors in [21]). Since
the quantization errors in the DCT domain are smaller, the local MSEs for the corresponding
blocks of compressed images are smaller as well.

The map of σim in blocks (magnified by 5 for better visualization) for the test image
“Frisco” (Figure 3a) is presented in Figure 10a, whereas Figure 10b shows the map of σdist
in blocks (magnified by 28 for better visualization) for the same test image. It is clearly
seen that σdist is smaller (pixels are darker) in homogeneous regions of the image where the
values of σim are smaller (the pixels are darker).

(a) (b)

Figure 10. Maps of σim (a) and σdist (b) in blocks for the test image “Frisco”.

The scatter plots for other test images are very similar. The parameters of the fitted
curves obtained using the approximation (6) are presented in Table 5. In comparison to the
corresponding values in Table 4, they are very similar. The only difference is that the values
of the parameter c for the ADCT coder are slightly larger. However, they are again approxi-
mately equal to QS/3.47 (1.44, 2.88, and 5.76 for QS equal to 5, 10, and 20, respectively).

Table 5. Parameters of the fitted curves (ADCTC).

Image QS = 5 QS = 10 QS = 20

Fr01
a = −2.42 a = −2.95 a = −4.69
b = −1.44 b = −0.52 b = −0.20
c = 1.45 c = 2.77 c = 5.25

Fr02
a = −1.59 a = −2.97 a = −5.17
b = −1.00 b = −0.50 b = −0.21
c = 1.45 c = 2.77 c = 5.33

Fr03
a = −2.86 a = −4.22 a = −4.96
b = −1.44 b = −0.74 b = −0.22
c = 1.45 c = 2.80 c = 5.40

Fr04
a = −1.35 a = −2.86 a = −5.59
b = −0.85 b = −0.43 b = −0.20
c = 1.45 c = 2.84 c = 5.64
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Since a great number of σdist and σim, corresponding to each other, are obtained
for three values of QS, it is possible to obtain aggregate scatter plots for both consid-
ered coders. Furthermore, the scatter plots in a normalized way as the dependence of
120.5 · σdist/QS vs. σim/QS are presented. For the coder AGU, the aggregated scatter plot
is presented in Figure 11. The general properties of this scatter plot are similar to those
presented earlier. There is a monotonously increasing part of the fitted curve observed for
σim/QS < 1 and the “saturation part” where 120.5 · σdist/QS is close to unity that takes the
place for σim/QS ≥ 1. The fitted curve is expressed as

f (σim/QS) = −0.7381 · exp(−2.8526 · σim/QS) + 0.9685 . (7)

Note that the value of the parameter c is not equal to 1, but it is quite close to unity.
Similarly, the aggregated scatter plot has been obtained for the ADCT coder. It is

presented in Figure 12. A comparison of the scatter plots in Figures 11 and 12 shows that
their main properties are quite close. Note that large ratios σim/QS relate to “very active”
local areas (where sharp edges or large contrast small-sized objects are observed) and quite
small QS values.

Figure 11. Aggregated scatter plot for different test images, and QS values for the coder AGU.

Figure 12. Aggregated scatter plot for different test images, and QS values for the ADCT coder.
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The largest variations of 120.5 · σdist/QS with respect to the fitted curves take place for
σim/QS ≈ 1. Such situations are observed for blocks that correspond to low-contrast edges,
details, and textures that are the most typical for natural scene images.

The obtained fitted curve is given as

f (σim/QS) = −0.9498 · exp(−4.0992 · σim/QS) + 0.9762 . (8)

In this case, the value of the parameter c is even closer to unity.

5. MSE Prediction and Its Accuracy

Having obtained the expressions (7) and (8) for the AGU and ADCT coders, respec-
tively, it is possible to predict σdist for each k-th 8× 8 pixels block of a given image using
the corresponding estimate σim obtained for this block.

For a given block and QS, one has

σdist ≈ (QS/120.5) · f (σim/QS). (9)

Assuming the knowledge of the estimates σdist(k), k = 1, . . . , K where K denotes the
total number of blocks (the questions how the blocks can be positioned and what should
be their number will be discussed later), the MSE for entire image can be predicted as

MSE ≈
K

∑
k=1

σ2
dist(k)/K (10)

or

MSE ≈
K

∑
k=1

QS2

12
· f 2(σim(k)/QS)/K , (11)

where σim(k) is the value of RMSE in a k-th block determined by the Formula (5). Note
that it is very easy to calculate all σim(k), k = 1, . . . , K in advance if the block positions are
known in advance as well.

Let us now analyze the accuracy of predicting the MSE for introduced distortions.
Table 6 presents the data for the four test images used in forming the scatter plots for
the AGU coder. As it may be seen, the true values of the MSE are close to the corresponding
predicted ones (MSEpred); the relative difference is considered small in practical applications
as it does not exceed 10%. The data for the ADCT coder for the same four images are
presented in Table 7. Their analysis shows that the true and predicted values are also quite
close. The maximal difference does not exceed 8%, i.e., 0.3 dB with regard to PSNR.

Table 6. Comparison of true and predicted MSE values for the AGU coder.

Image QS MSE MSEpred

Fr01 5 2.03 1.88
Fr02 5 1.99 1.85
Fr03 5 2.07 1.90
Fr04 5 1.96 1.78
Fr01 10 6.91 6.97
Fr02 10 6.85 6.85
Fr03 10 7.24 7.12
Fr04 10 6.74 6.55
Fr01 20 21.84 23.88
Fr02 20 21.95 23.67
Fr03 20 23.30 24.39
Fr04 20 22.02 22.24
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Table 7. Comparison of true and predicted MSE values for the ADCT coder.

Image QS MSE MSEpred

Fr01 5 2.08 1.94
Fr02 5 2.03 1.90
Fr03 5 2.10 1.95
Fr04 5 1.98 1.84
Fr01 10 7.34 7.30
Fr02 10 7.13 7.15
Fr03 10 7.71 7.45
Fr04 10 7.03 6.83
Fr01 20 23.03 25.51
Fr02 20 23.17 25.12
Fr03 20 25.38 26.23
Fr04 20 23.92 23.66

However, the results for images that have not been used in training (obtaining the
fitting curves for the scatter plots) are more interesting. Such verification data have been
obtained for 16 other test images of different origins. There are some traditional images
such as “Lena”, “Baboon”, “Barbara”, “Boat”, “Goldhill”, “Peppers”, and “Man”. There are
also highly textural images as “Grass” and “Bikes” (see small copies in Figure 13). Several
remote sensing images, such as “Frisco”, “Airfield” (both shown in Figure 3), “Lu01”, “San
Diego1”, “a13sm”, “Sent01”, and “Sent02” (see small copies in Figure 13), have also been
used. The goal of using images of different origins is to demonstrate that the proposed
approach to prediction is applicable in different practical situations.

Selected results are presented in Tables 8 and 9, where the most interesting examples
are shown. Alongside with this, statistical results characterizing the accuracy of prediction
are presented below.

Table 8. Comparison of true and predicted MSE values for the AGU coder for sample images used
during the experimental verification.

Image QS MSE MSEpred

A13sm 5 1.74 1.70
A13sm 10 5.53 4.87
A13sm 20 15.02 12.63
Grass 5 2.14 1.95
Grass 10 7.81 8.25
Grass 20 30.92 31.38
Man 5 1.89 1.81
Man 10 5.86 6.44
Man 20 16.54 20.51
Lu01 5 1.55 1.67
Lu01 10 4.20 5.33
Lu01 20 10.21 14.82

Sent01 5 2.04 1.94
Sent01 10 7.04 7.36
Sent01 20 22.57 25.37
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A13sm Aerial Baboon 

   
Barbara Bikes Boat 

   
Goldhill Grass Lena 

   
Lu01 Man Peppers 

   
SanDiego Sent01 Sent02 

Figure 13. Small copies of test images used in experiments.
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Table 9. Comparison of true and predicted MSE values for the ADCT coder for sample images used
during the experimental verification.

Image QS MSE MSEpred

A13sm 5 1.84 1.86
A13sm 10 5.46 6.11
A13sm 20 14.85 16.37
Grass 5 2.14 1.99
Grass 10 8.21 7.94
Grass 20 31.92 31.62
Man 5 2.04 1.89
Man 10 6.33 6.85
Man 20 17.39 22.22
Lu01 5 1.69 1.78
Lu01 10 4.61 5.81
Lu01 20 11.25 15.97

Sent01 5 2.09 1.98
Sent01 10 7.39 7.70
Sent01 20 23.63 27.46

An analysis of data in Table 8 demonstrates the following. Firstly, for QS = 5, the MSE
values do not differ significantly (they vary from 1.55 to 2.14), and they are predicted well.
Secondly, for QS = 10, the difference in the MSE values increases (they vary from 4.2 for
simple-structure image “Lu01” to 7.81 for the complex-structure image “Grass”), but the
prediction is still considered accurate enough. Finally, for QS = 20, the MSE may differ
noticeably depending on the image complexity (from 10.21 for “Lu091” to 30.92 for the test
image “Grass”). However, the predicted values are in good agreement with the true MSE,
and this happens for all of the images used in our analysis.

Bias and variance have been also determined for the true and predicted values for all
twenty images used in analysis. For QS = 5, they are equal to −0.11 and 0.18; for QS = 10,
they are equal to 0.07 and 0.51; and for QS = 20, they are equal to 2.77 and 8.66, respectively.
The bias and RMSE constitute less than 15% of the mean values for each QS, and such a
level of accuracy is acceptable in practice (in fact, the PSNR is predicted with a maximal
error of less than 1.5 dB).

An analysis of data presented in Table 9 shows the following. Firstly, if the QS = 5,
the MSE values vary in rather narrow limits (from 1.69 to 2.14), and they can be pre-
dicted well enough. Secondly, when the QS = 10, the MSE values vary from 4.61 for
the image “Lu01” having simple structure to 8.21 for the image “Grass” with the complex
structure. The prediction accuracy is high for all of the images. Thirdly, when the QS = 20,
the MSE can vary in wide range, e.g., from 11.25 for the image “Lu091” to 31.92 for the
image “Grass”. The predicted values are quite close to the corresponding true ones, and,
in fact, this takes place for all of the images employed in our study.

Concerning bias and variance, they are as follows: for QS = 5, they are equal to −0.15
and 0.019; for QS = 10, they are equal to 0.07 and 0.51; and for QS = 20, they are equal to
to 2.77 and 8.66, respectively. The bias and RMSE constitute less than 16% of the mean
values for each QS, and such a level of accuracy is acceptable in practice (in fact, the PSNR
is predicted with maximal error less than 1.4 dB). A comparison of data in Tables 8 and 9
shows that the values of MSEpred for the ADCT coder are usually slightly larger than for
the coder AGU. This conclusion can also be drawn from a comparison of expressions (7)
and (8), where the value of the parameter c is larger in the latter case.

Furthermore, the prediction accuracy for the method [22] using the ADCT coder
for QS = 20 has also been analyzed. The minimal predicted MSE is observed for the
image “Lu01” (11.63), and the maximal (34.43) id observed for the test image “Grass”.
The statistical analysis shows that the bias between the predicted and true values of the
MSE is equal to−1.44, and the variance equals 7.11. This means that the prediction accuracy
is of the same level as for the method proposed in this paper.
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There are several aspects left for discussion. Firstly, all of the results presented above
have been obtained for non-overlapping blocks fully covering the image area. Thus, for
the 512× 512 pixels images used in our analysis, the calculation of σdist(k), k = 1, . . . , 4096
has been employed. It is possible to expect that the use of overlapping blocks can im-
prove the prediction. Thus, the fully overlapping blocks with their total number equal
to (512− 7)× (512− 7) = 255,025 have been additionally used. However, this has not
led to an improvement of the prediction accuracy. Moreover, the values of MSEpred cor-
responding to each other for the non-overlapping and fully overlapping blocks differ
insignificantly—by less than 0.04%. For example, for the test image “Fr04” and Q = 20
(the AGU coder), the values of MSEpred are equal to 22.240 and 22.264 for non-overlapping
and fully overlapping blocks, respectively. Furthermore, the case in which 1000 blocks have
been placed randomly has been studied. The obtained prediction results practically do
not differ from the corresponding data for non-overlapping blocks. Hence, there are some
interesting options for accelerating the prediction by analyzing a limited number of blocks.

Starting from the developed method for predicting MSE, in practice one needs an al-
gorithm for providing a desired value of MSEdes. Then, several options can be proposed.
For example, in the first step, calculate the correcting factor as

Kcor ≈
K

∑
k=1

f 2(σim(k)/
√

12 ·MSEdes)/K , (12)

and
QS1 =

√
12 ·MSEdes/Kcor , (13)

then determine

MSE1 ≈
K

∑
k=1

QS2
1

12
f 2(σim(k)/QS1)/K . (14)

If MSE1 is quite close to MSEdes (e.g., if they differ by no more than 10%), the value
QS1 =

√
12 ·MSEdes/Kcor may be used for final compression. If this condition is not

satisfied, the final QS may be calculated as

QS f = QS1 ·
√

MSEdes/MSE1 (15)

and applied for compression.
The simplified flowchart of the proposed method is presented in Figure 14.

Comparison of MSE1 to 

MSEdes and correction  

of QS if needed 

Calculation 

of σim(k)  

for blocks 

Calculation  

of Kcor  

formula (12) 

Calculation  

of MSE1 

formula (14) 

Considered  

image 

QSfinal 

Figure 14. Thesimplified flowchart of the proposed method.

This algorithm has been first tested for the coder AGU for MSEdes = 20 for all twenty
images used in previous studies. The provided MSE varies from 11.87 (image “Barbara”)
to 20.59 (image “Grass”), and its bias and variance are equal to 3.22 and 5.79, respectively;
hence, this accuracy can be considered satisfactory. The final QS varies from 16.04 for the
image “Grass” to 24.99 for the image “Frisco”, i.e., as expected, the final QS is the largest
for simple-structure images and the smallest for complex-structure images. As one can
see, the provided MSE is, on average, smaller than desired, and this mainly happens for
simple-structure images. On one hand, this can be useful in practice since one has some
“reserve” in quality just for images for which the distortions are more visible. On the other
hand, it is possible to introduce some additional correction to remove the bias.
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The proposed algorithm has been also tested for the ADCT coder for MSEdes = 20.
The provided MSE varies in its limits from 12.06 for the image “Barbara” to 21.16 for the
image “San Diego”. The bias and variance are equal to 2.86 and 6.46, respectively. So, again
a bias and an RMSE of errors smaller than 15% have been obtained; such accuracy can be
considered satisfactory. The final QS varies in its limits from 16.04 for the image “Grass” to
24.90 for the image “Frisco”.

The additional verification of the proposed algorithm has been made for 300 grayscale
versions of 512× 512 pixels images from the TAMPERE17 noise-free image database [37].
The obtained results for MSEdes = 20 are presented in the form of histograms for AGU
and ADCT coders in Figure 15. In most cases, the provided MSE values are quite close to
MSEdes = 20. Although the provided MSE values are shifted with respect to the desired MSE,
and the variance of the final MSE is quite large, an important advantage is that the provided
MSE values are mostly smaller than the desired MSE. The smallest provided MSE are
observed for images with a simple and specific structure, e.g., those presented in Figure 16.
This phenomenon and its reasons are planned to be investigated in future research.
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Figure 15. Histograms of the provided MSE values obtained for 300 images from TAMPERE17
dataset: (a) using AGU coder, (b) using ADCT coder.

(a) (b)

Figure 16. Two sample grayscale images from TAMPERE17 dataset with the smallest provided MSE
values: (a) image no. 257, (b) image no. 263.

As can be seen, the algorithm of the determination of the final QS is computationally
very simple. It requires the calculation of ∑K

k=1 f 2(σim(k)/QS1)/K twice, where the func-
tions f (•) are quite simple; the calculation of σim, k = 1, . . . , K; and elementary comparison
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and arithmetic operations. Being realized at Intel Core i7 L620 2.00 GHz with 8GB of RAM,
it takes 0.363 ± 0.025 s for non-overlapping blocks for an image of size 512× 512 pixels .
Recall here that compression by AGU takes 1.020 ± 0.040 s (whilst decompression requires
1.735 ± 0.083 s). Thus, prediction is sufficiently faster than compression. Note that, ad-
ditionally, it is possible to use a smaller number of analyzed blocks—if, e.g., 1000 blocks
placed randomly are used instead of 4096 non-overlapping blocks, predicted MSEs differ
by less than 1%; hence, such an approach is appropriate for practice. In this case, prediction
can be realized by one order of magnitude less time than compression. The advantage
of the proposed approach compared to [22] is that it does not use the DCT in blocks and
employs a minimal number of logical operations.

For the ADCT coder, the prediction time for non-overlapping blocks is 0.374 ± 0.065 s,
whilst compression requires 3.080 ± 0.125 s, i.e., the prediction and determination of the fi-
nal QS are considerably faster than the compression (decompression requires 1.998 ± 0.123 s).
Certainly, the prediction can be additionally accelerated compared to the case of non-
overlapping blocks by using a smaller number of blocks.

The obtained results have one more positive outcome. They allow one to propose the
more adequate model (compared to [38]) for simulating distortions due to lossy compres-
sion as spatially uncorrelated (white) Gaussian noise with variance dependent on image
local activity.

6. Conclusions

In this paper, the statistical and spatial spectral analysis of distortions introduced by
two DCT-based coders has been carried out. The cases of visually lossless compression of
images and hardly noticeable distortions have been studied. It has been demonstrated that
distortions are spatially uncorrelated and that their local variance is dependent on image
local activity where. It is shown that the distortions’ variance is considerably smaller than
QS2/12 in locally passive areas. Meanwhile, the local variance of introduced distortions is
about QS2/12 for locally active areas, for which σim/QS ≥ 1.

It is expected that prediction is possible not only for the MSE but also for visual quality
metrics, both full-reference [39,40] and no-reference [41–43]. An extension of the proposed
approach for visual quality metrics is one of the directions of further research. Another
possibility is the application of some other coders as well as the extension of the proposed
approach for video sequences. Additionally, a simple neural network may be implemented
that uses the QS and a few parameters characterizing image complexity, such as entropy,
variance, and edge ratio.

The analysis performed has allowed one to propose a methodology for predicting the
MSE that has been intensively tested for images of different origins. It is demonstrated
that the high accuracy of prediction is provided for two DCT-based coders. The additional
advantage of this prediction is its high processing speed. It allows one to not only predict
the MSE but also calculate the QS to be set for a given image to provide a desired MSE.
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Abbreviations
The following abbreviations are used in this manuscript:

ADCT Advanced discrete cosine transform
AWGN Additive white Gaussian noise
BPP Bits per pixel
CR Compression ratio
DCT Discrete cosine transform
JPEG Joint photographic experts group
MOS Mean opinion score
MSE Mean square error
PCC Parameter that controls compression
PSNR Peak signal-to-noise ratio
QF Quality factor
QS Quantization step
RMSE Root mean square error
RS Remote sensing
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