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Abstract: This paper presents a novel mixed source localization algorithm based on high-order cu-
mulant (HOC) and oblique projection techniques. To address the issue of lower accuracy in near-field
source (NFS) localization compared to the far-field source (FFS) localization, the presented algorithm
further enhances the accuracy of NFS localization. First, the FFS’s direction-of-arrival (DOA) estimate
is acquired utilizing a multiple signal classification (MUSIC) spectral peak search. To classify mixed
sources more effectively, we utilize the oblique projection technique, which can successfully prevent
FFS information from influencing the estimation of NFS parameters. A HOC matrix with solely
NFS DOA information is built by choosing array elements in a specific sequence. The estimation of
the NFS DOA is then derived using the estimation of signal parameters via a rotational invariance
technique (ESPRIT)-like algorithm. Finally, the NFS range is acquired by a MUSIC search. The
performance of the presented algorithm is discussed in several aspects. Compared to existing matrix
difference methods, the presented algorithm, which adopts the oblique projection method, achieves
superior results in the separation of mixed sources. Without excessively increasing the computa-
tional complexity, it not only ensures the performance of localization parameter estimation for FFS
but also estimates the NFS with higher precision. The numerical simulations attest to the superior
performance of the presented algorithm.

Keywords: mixed sources localization; symmetric uniform array; oblique projection; high-order
cumulant

1. Introduction

Source localization [1,2], which has garnered significant research attention in the
field of array signal processing, plays a crucial role in various military and civil domains.
These domains include radar, wireless communication, sonar, and seismic exploration,
among many others [3]. Pure FFS algorithms were the primary focus of early source
localization studies. The MUSIC [4] and ESPRIT [5] algorithms are the two most often
used FFS localization methods. As the range between the FFS and the array can be thought
to be limitless, the wavefront of the FFS is considered to be roughly planar. However,
given that the NFS is positioned in the Fresnel area [6], where the incident wavefront
curvature cannot be disregarded, its wavefront is a spherical wavefront. Pure FFS methods
are not applicable to NFS scenarios because the models established by the two types
of sources are different. In addition to the DOA, NFS methods also need to obtain the
range parameter. As a consequence, many academics have conducted extensive studies
on pure NFS algorithms [7,8]. However, sensor arrays can receive more than just a single
type of signal. With the development of practical application scenarios such as radar and
microphones, academics have found that the signals could come from a combination of
FFS and NFS. The NFS localization parameters might not be accurately determined if pure
FFS algorithms are applied to the mixed sources. When a pure NFS algorithm is applied to
mixed sources, it will produce issues including excessive algorithm computation and the
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inability to separate the mixed sources. Therefore, there is a need to research an algorithm
that can accurately estimate the FFS DOA, NFS DOA, and NFS range simultaneously. It is
of important practical significance to develop mixed NFS and FFS localization algorithms.

In order to tackle the localization problem for mixed sources, numerous methods have
been presented. Based on the HOC technique, a two-stage MUSIC (TSMUSIC) algorithm
was presented in [9]. In this algorithm, two special HOC matrices are constructed, and it
performs MUSIC spectral peak searches twice. Consequently, there is a heavy burden in
terms of computation. A MUSIC-based one-dimensional search (MBODS) method based
on the oblique projection technique was proposed in [10]. It uses only second-order statis-
tical properties to obtain an estimate of FFS DOA using the MUSIC spectral peak search.
Consequently, it suppresses the FFS component by oblique projection. The algorithm has
less computational complexity but only utilizes the inverse diagonal information of the
covariance matrix, and there is an array aperture loss. A subspace difference-based local-
ization algorithm was presented in [11]. By conducting covariance matrix reconstruction
after separating the NFS component from the signal subspace on the basis of obtaining the
FFS localization parameter, the algorithm is more effective in classifying mixed sources. A
mixed source localization method based on HOC was proposed in [12]. It divides the sym-
metric uniform linear array into two subarrays and obtains the mixed source localization
parameters by the HOC technique and polynomial decomposition method without spectral
peak searching. A mixed-order statistics-based (MOS) localization algorithm was proposed
by Zheng et al. in [13]. After acquiring the DOA of the FFS through MUSIC spectral peak
search, it utilizes the matrix difference approach to obtain the NFS component of the HOC
matrix. Finally, the DOA of NFS is acquired through high-order MUSIC spectral peak
searches. Due to its use of HOC matrices and several MUSIC spectral peak searches, it has
excessively high computational complexity.

A localization method based on cumulant matrix reconstruction (CMR) was proposed
in [14]. Based on the HOC kurtosis of the FFS, the algorithm applies the difference method
to gain the NFS components. The DOA of the NFS is obtained utilizing the ESPRIT-like
algorithm [15], which reduces the spectral peak search compared to the MOS algorithm.
The high-order difference localization algorithm (HODA) [16] was presented by Molaei.
The electrical angles of the NFS are calculated by the difference method with several HOC
matrices and compared to the initial DOA set obtained by the ESPRIT-like algorithm. Next,
a kurtosis test is used to obtain the FFS DOA, and it can correctly distinguish the mixed
sources with the same DOA. A cross-array-based mixed source localization algorithm [17]
extends the one-dimension DOA estimation to two dimensions. The Vandermonde de-
composition is implemented to estimate the DOA, and range information is gained by the
l1-norm minimization problem. This method can effectively avoid array aperture loss. Yin
proposed a mixed sources localization method based on a concentric orthogonal loop and
dipole array [18]. A noise-free covariance matrix is constructed. Additionally, a rough esti-
mation of the localization parameters is obtained using the subarray partitioning method
in the spatially accurate model. Then, MUSIC spectral peak search is performed near the
rough values of the parameter estimates to obtain the exact values.

To estimate the mixed source localization parameters, most of the aforementioned
algorithms use the properties of the eigen subspace with a uniform linear array model.
Wang et al. first applied sparse theory to the mixed source localization algorithm [19]
in order to increase the estimation accuracy. The DOA is estimated using the weighted
l1-norm method by building a HOC matrix just about the angular factor. Next, sparse
reconstruction is applied to acquire the range information of the NFS. Based on the nested
array and compressive sensing methods, Tian proposed a mixed sources parameter esti-
mation method [20]. It showed some improvement in estimation accuracy, but the use of
HOC leads to the higher computational complexity of the algorithm. Zheng presented a
mixed source localization method using a symmetric nested array as the foundation [21].
In the algorithm, the NFS components are separated by the oblique projection method,
and the DOA estimation of the NFS is acquired by the spatial smoothing MUSIC method.
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Although the estimation performance of the sparse reconstruction class of algorithms is
superior, there is the inevitable problem of large computational complexity.

The majority of these methods also perform well in terms of estimating FFS DOA,
but the precision of NFS localization parameters is slightly poorer in comparison. Thus,
a mixed source localization method is provided in this paper that combines the oblique
projection technique and HOC theory. This method improves the performance of NFS
estimation while essentially maintaining the performance of FFS localization. The main
contributions of this paper are as follows:

(1) We combine oblique projection, HOC, and ESPRIT-like methods to effectively
separate mixed sources. This also leads to improved accuracy of the NFS localization
parameters. (2) We perform a detailed analysis of the proposed algorithm’s maximum
estimated number of sources, estimation accuracy, and computational complexity. The
structure of the paper is as follows: The mixed-source reception model is described in
Section 2. Section 3 gives a detailed explanation of the derivation and procedures of the
presented algorithm and a discussion of its performance. Simulations are described in
Section 4. The conclusion is put forward in Section 5.

Notation: Vectors are denoted by bold lowercase letters, while bold capital letters
are used to indicate matrices. The matrix’s complex conjugate, transposition, conjugate
transpose, inverse, and pseudo-inverse are indicated by superscript *, T, H, −1, and †,
respectively. The expectation operation is denoted by E{·}. The m× n-dimensional complex
matrix space is represented by Cm×n. Im denotes the m × m-dimensional identity matrix.
The operation diag{·} represents the diagonal matrix.

2. Mathematical Data Model

It is assumed that there are L = 2M + 1 omnidirectional array elements to form a
uniform linear array. The central array element is selected as the phase reference point.
And the uniform linear array is incident by K mixed NFSs and FFSs, of which the first
K1 signals are the FFSs and (K − K1) signals are the NFSs. The array element spacing is
indicated by d, and the spacing satisfies d = λ/4, where λ represents the signal wavelength.
The angle of the kth incident source is denoted by θk and satisfies −90◦ ≤ θk ≤ 90◦. Then,
the expression of the source data received from the mth array element is:

xm(t) =
K

∑
k=1

sk(t)ejτmk + nm(t) (1)

where −M ≤ m ≤ M, and sk denotes the complex envelope of the mixed source;
τmk denotes the propagation delay between the kth signal incident and the reference array
and mth array elements; and nm(t) represents the additive Gaussian white noise of the mth
array element. The propagation delay of NFS can be approximated by Fresnel as:

τmk ≈ mγk + m2φk (2)

where

γk = −2π
d
λ

sin θk (3)

φk = π
d2

λrk
cos2 θk (4)

where rk is the range between the kth signal and the central array element. rk must satisfy
the condition 0.62(D3/λ)

1/2 ≤ rk ≤ 2D2/λ, where D indicates the array aperture, and the
array aperture of the signal reception model in this paper is D = 2Md.

In addition, when the incident signal is FFS, which means that the signal position is
outside the Fresnel region, its range can be considered infinite at this time. According to
Equation (4), we can obviously obtain φk = 0. The expression of FFS propagation delay τmk is:

τmk ≈ mγk (5)



Electronics 2023, 12, 2340 4 of 14

The snapshot data with 2M + 1 array elements is expressed as:

x(t) = As(t) + n(t)
= AFsF(t) + ANsN(t) + n(t)

(6)

where

x(t) = [x−M(t), . . . , x0(t), . . . , xM(t)]T ∈ C(2M+1)×1 (7)

AF =
[
aF(θ1), . . . , aF(θK1)

]
∈ C(2M+1)×K1 (8)

AN =
[
aN(θK1+1, rK1+1), . . . , aN(θK, rK)

]
∈ C(2M+1)×(K−K1) (9)

sF(t) =
[
s1(t), . . . , sK1(t)

]T ∈ CK1×1 (10)

sN(t) =
[
sK1+1(t), . . . , sK(t)

]T ∈ C(K−K1)×1 (11)

n(t) = [n−M(t), . . . , n0(t), . . . , nM(t)]T ∈ C(2M+1)×1 (12)

where AF and AN are the manifold matrices; sF(t) and sN(t) are the signal vectors of the
FFS and NFS, respectively, and n(t) represents the noise vector; and

aF(θk) =
[
ej(−Mγk), ej[(−M+1)γk ], . . . , 1, . . . , ej(Mγk)

]T
, (13)

aN(θk, rk) =
[
ej(−Mγk+M2φk), ej[(−M+1)γk+(−M+1)2φk ], . . . , 1, . . . , ej(Mγk+M2φk)

]T
, (14)

are the (2M + 1) × 1 dimensional steering vectors of the FFS and NFS, respectively.
Additionally, the following assumptions are made about the model in this paper.

(1) The sources are non-Gaussian narrowband stationary processes with non-zero kurtosis
and a zero mean. Each source needs to be independent of the others.

(2) The noise is additive zero-mean Gaussian white noise that is statistically independent
of the source.

(3) The number of incident signals must be smaller than the number of array elements.
Moreover, the number of signals is known and can be determined utilizing the MDL
or AIC criterion, among other techniques.

3. The Proposed Procedure
3.1. DOA Estimation for FFS

The covariance matrix R of the received data from the uniform linear array is eigende-
composed to obtain

R = E
{

x(t)xH(t)
}

= UsΣsUH
s + UnΣnUH

n

(15)

where Σs and Σn represent the diagonal matrices consisting of K large eigenvalues
and 2M + 1 − K small eigenvalues, respectively. Us and Un denote the signal subspace
and noise subspace composed of eigenvectors corresponding to K large eigenvalues and
2M + 1 − K small eigenvalues, respectively.

Considering that the steering vector and noise subspaces are orthogonal, a two-
dimensional MUSIC space spectrum about the DOA and range parameters is constructed

P(θ, r) = [aH(θ, r)UnUH
n a(θ, r)]

−1
(16)

Obviously, when the incident signal is the FFS, range rk can be considered ∞. At this
point, the two-dimensional MUSIC space spectrum can be equated to the one-dimensional
MUSIC space spectrum with respect to the DOA parameters under rk = ∞. This means that
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P(θ) = [aH(θ, ∞)UnUH
n a(θ, ∞)]

−1
(17)

The DOA of the K1 FFSs can be acquired by Equation (17).

3.2. DOA Estimation for NFS

In order to achieve better separation of mixed sources, the oblique projection method
is applied to extract the NFS information. Suppose EAFAN is an oblique projection operator,
whose range space is spanned by AF and null space is spanned by AN [22]. It possesses the
following characteristics [23]:

EAFAN AF = AF (18)

EAFAN AN = 0 (19)

Since the DOA of the FFS has been estimated (see Section 3.1), the manifold matrix
estimation of the FFS can be gained according to Equations (8) and (13). The oblique
projection operator is calculated by [23] as follows:

EAFAN =
^
AF(

^
A

H

F R†
^
AF)

−1
^
A

H

F R† (20)

We define the pseudo-inverse R† of covariance matrix R as:

R† =
K

∑
k=1

σ−1
k ukuH

k = UsΣ−1
s UH

s (21)

where σk indicates the kth large eigenvalue of the covariance matrix R and uk represents
the eigenvector corresponding to the kth large eigenvalue.

Then, the oblique projection operator EAFAN is implemented on the received data, and
we have:

¯
x(t) = (I2M+1 − EAFAN )x(t)
= ANsN(t) + (I2M+1 − EAFAN )n(t)

(22)

It can be observed from Equation (22) that the FFS component is suppressed.
Next, a HOC matrix C1 is constructed from the data with FFS components suppressed.

It contains only the NFS DOA information, and its m + M + 1-row n + M + 1-column
element is defined as:

C1(m + M + 1, n + M + 1) = C’
1(m, n)

= cum{xm(t), x∗−m(t), x∗n(t), x−n(t)}

=
K
∑

k=1
c4,skej(2m−2n)γk

(23)

where −M ≤ m ≤ M, −M ≤ n ≤ M, c4,sk = cum
{

sk(t), s∗k (t), s∗k (t), sk(t)
}

constitute the
kurtosis of sk(t). According to the definition, we can acquire the HOC matrix C1:

C1 =


C’

1(−M,−M) C’
1(−M,−M + 1) · · · C’

1(−M, M)

C’
1(−M + 1,−M) C’

1(−M + 1,−M + 1) · · · C’
1(−M + 1, M)

...
...

. . .
...

C’
1(M,−M) C’

1(M,−M + 1) · · · C’
1(M, M)

 (24)

Equation (24) can be rewritten as

C1 = BC4sBH (25)

where

B =
[
bK1+1, bK1+2, . . . , bK

]
∈ C(2M+1)×(K−K1) (26)
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bk =
[
e−j2Mγk , e−j2(M−1)γk , . . . , ej2Mγk

]T
∈ C(2M+1)×1 (27)

C4s = diag[c4.sK1+1 , c4.sK1+2 , . . . , c4.sK ] ∈ C(K−K1)×(K−K1) (28)

Then we divide B into two subarrays as shown in the following equation

B =

[
B1

last row

]
=

[
first row

B2

]
(29)

where

B1 = [b f r(θK1+1), b f r(θK1+2), . . . , b f r(θK)] ∈ C2M×(K−K1) (30)

B2 = [bbe(θK1+1), bbe(θK1+2), . . . , bbe(θK)] ∈ C2M×(K−K1) (31)

and

b f r(θk) = [e−j2Mγk , . . . , 1, . . . , ej2(M−1)γk ]
T

(32)

bbe(θk) = [e−j2(M−1)γk , . . . , 1, . . . , ej2Mγk ]
T

(33)

Clearly, B1 and B2 satisfy the following relationship

B2 = B1Φ (34)

where Φ = diag[e j2γK1+1 , . . . , ej2γK
]
.

Performing eigenvalue decomposition for C1, we have

C1 = EsΩsEH
s + EnΩnEH

n (35)

where Ωs and Ωn denote the diagonal matrices consisting of (K− K1) large eigenvalues
and (2M + 1− K + K1) small eigenvalues, respectively. Es and En represent the signal
subspace and noise subspace composed of the eigenvectors corresponding to the (K− K1)
large eigenvalues and (2M + 1− K + K1) small eigenvalues, respectively.

Taking into account that the virtual manifold matrix B spans the same signal subspace
as the eigenvector Es corresponding to the large eigenvalues, a non-singular matrix T exists
such that the Equation (36) holds:

Es = BT (36)

Similarly, signal subspace Es can be divided into two subarrays

Es =

[
E1

last row

]
=

[
first row

E2

]
(37)

According to Equations (29), (34), (36) and (37), we have:

E1 = B1T (38)

E2 = B1ΦT (39)

Combining Equations (38) and (39), the relationship between E1 and E2 can be obtained:

E2 = E1T−1ΦT = E1Ψ (40)

Through Equation (40), we have:

Φ = TΨT−1 (41)

Observing Equation (41), we can know that Φ is equal to the diagonal matrix composed
of the eigenvalues of Ψ, and T is the matrix consisting of the eigenvectors corresponding to
the eigenvalues of Ψ. Next, the DOA parameter of NFS can be found by Ψ.



Electronics 2023, 12, 2340 7 of 14

We can solve Equation (41) by using the total least squares method. First, we construct
a matrix as follows:

E12 =
[
E1 E2

]
∈ C2M×2(K−K1) (42)

Then, we perform singular value decomposition of E12. We define V = EH
12E12 as a

matrix consisting of right singular vectors, and then divide V into four (K−K1)× (K−K1)-
dimensional subarrays as follows:

V =

[
V11 V12
V21 V22

]
∈ C2(K−K1)×2(K−K1) (43)

Then,

Ψ = −V12V−1
22 (44)

After that, we perform eigenvalue decomposition of matrix Ψ to obtain the (K− K1)
big eigenvalues, and we can acquire the DOA parameter of the (K− K1) NFSs. The DOA
estimation for the kth NFS is expressed as follows:

θ̂k = sin−1(−arg(ψk)

4πd/λ
) (45)

where ψk denotes the kth large eigenvalue of the rotationally invariant relationship matrix Ψ.

3.3. NFS Range Estimation

Because we acquired the DOA of the NFS (see Section 3.2), the obtained NFS DOA esti-
mation can be substituted into the two-dimensional spatial spectral function (see Section 3.1).
The range estimation of NFS can be obtained using just (K − K1) one-dimensional spec-
tral peak searches. The expression of the kth NFS range parameter estimate is given
as follows:

r̂ = max
r

[aH(θ̂k, r)UnUH
n a(θ̂k, r)]

−1
(46)

Obviously, the DOA and range estimation of NFS have a one-to-one correspondence,
and there is no requirement to use an additional parameter matching method.

For clarity, the steps of the proposed algorithm are summarized as follows:

(1) Calculate the covariance matrix of the received data and implement the eigendecom-
position on it using Equation (15).

(2) Construct the one-dimensional MUSIC function with Equation (17) for a spectral peak
search to obtain an estimation of FFS DOA.

(3) Calculate the oblique projection operator using Equation (20) and apply it to the
received data via Equation (22) to obtain the NFS component.

(4) Construct a HOC matrix containing only the NFS DOA information using Equation (23)
and implement the eigenvalue decomposition on it with Equation (35) to obtain the
signal subspace.

(5) Divide the signal subspace into two overlapping subarrays by Equation (37), and
obtain the estimation of NFS DOA using the total least squares method.

(6) Substitute the obtained DOA of NFS into Equation (16) to obtain the MUSIC function
about range, and perform several one-dimensional spectral peak searches to obtain
the estimation of NFS range.

3.4. Discussion

(1) Maximum number of resolvable mixed sources: From eigenspace theory [5,6], it is well
known that the noise and signal subspaces are orthogonal to each other, which is the
principle of eigenspace-like algorithms. Therefore, the noise subspace must have at least
one eigenvector when eigenvalue decomposition is implemented for the covariance or
HOC matrix. Then, the maximum number of estimated signals cannot be more than the
minimum value between the number of rows and columns in the constructed matrix [9].
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The presented algorithm (as well as TSMUSIC [9], MOS [13], and CMR [14]) builds
the (2M + 1) × (2M + 1)-dimensional HOC matrices, and the maximum number of
estimated signals is 2M. In contrast, MBODS [10] uses the spatial smoothing technique
for matrix reconstruction in estimating the DOA of NFS, and the maximum number of
estimated signals is M. In addition, since both the proposed algorithm and CMR use
the ESPRIT-like method, the NFS component matrix is divided into two subarrays of
2M rows. If the sources incident to the array are pure NFSs, the maximum number of
estimated signals using the presented algorithm, or CMR, is 2M − 1.

(2) Estimated accuracy: For the DOA estimation of FFS, the presented algorithm (as well
as MBODS, MOS, and CMR) uses the one-dimensional MUSIC algorithm directly for
covariance data, and the estimation performance is the same. TSMUSIC adopts the
high-order MUSIC spectrum search, and the estimation performance is inferior to the
other algorithms because the HOC has a larger cumulative error [14]. In addition, if
the FFS DOA is estimated using MUSIC theory under the condition of a low signal-
to-noise ratio (SNR) or low snapshot number, it is likely that a spurious peak of the
NFS will appear. This would undoubtedly affect the estimation performance of the
algorithm. For the DOA estimation of NFS, although both the proposed method and
the CMR method utilize the ESPRIT-like method, different techniques are used to
perform NFS extraction. Both the presented algorithm and the MBODS algorithm use
oblique projection, but the former is based on the HOC technique, and the latter utilizes
just the inverse diagonal information of the covariance matrix. Therefore, the presented
algorithm has superior performance in estimating the DOA of NFS compared to others.
For the range estimation of NFS, the presented algorithms, MBODS, MOS, and CMR, all
use spectral peak searching. With the higher accuracy of DOA estimation for NFS, the
proposed algorithm has superior performance when estimating the range parameter.

(3) Computational complexity: Matrix construction, singular value decomposition, and
spectral peak search are the key elements taken into account when assessing algorithm
complexity. A (2M + 1) × (2M + 1)-dimensional covariance matrix R and a (2M + 1)
× (2M + 1)-dimensional HOC matrix C1 are constructed in the proposed algorithm,
and eigenvalue decomposition is implemented for these two matrices. Additionally,
one angular spectral peak search and (K − K1) times range spectral peak searches
are performed. The complexity of the presented algorithm is O(10(2M + 1)2N +
8(2M + 1)3/3 + 180 (2M + 1)2/∆θ + (K − K1)Fr(2M + 1)2), where N denotes the
snapshot number and Fr =(2D2/λ − 0.62 (D3/λ)1/2)/∆r is the number of search steps
in the Fresnel region. The proposed algorithm has similar computational complexity to
the CMR and MBODS algorithms and outperforms the MOS and TSMUSIC algorithms.

4. Numerical Simulations

To evaluate the estimation performance of the presented algorithm, five sets of exper-
iments were performed, which are described in this section. TSMUIC [9], MBODS [10],
MOS [13], and CMR [14] were taken as the comparison algorithms. In all five sets of
experiments, the number of symmetric uniform array L was fixed at nine, and its array
element spacing satisfied d = λ/4. The incident source was an equal-power statistically
independent source ejδt , where δt is the source phase uniformly distributed between [0, 2π].
The noise is additive zero-mean Gaussian white noise that is statistically independent of the
sources. T = 500 independent experiments were performed for each group of experiments.
The root mean square error (RMSE) was utilized to assess the estimation performance of
each algorithm, and the RMSE of the kth localization parameter is defined as:

RMSE(αk) =

√√√√ 1
T

T

∑
j=1

(α
j
k − αk)

2
(47)

where α
j
k is the estimated value of the localization parameter for the jth independent

experiment and αk is the true value of the localization parameter.
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In the first simulation, the effect of changing the signal-to-noise ratio (SNR) on the
estimation performance of each method in the scenario of mixed sources was assessed. Two
sources were set up, one each for the FFS and the NFS. The incidence angle of the FFS was
50◦. The incidence angle of the NFS was 15◦, and the range was 2 λ. The snapshot number
N was fixed at 400. The SNR varied from 0 to 30 dB, and 500 independent experiments
were conducted at 5 dB intervals. Figures 1 and 2 display the variation of SNR with the
RMSE of estimated performance for the mixed source DOA and NFS ranges, respectively.
As seen in Figure 1, the estimation capability of the proposed algorithm for the DOA of
FFS was equivalent to that of MBODS, CMR, and MOS. The reason is that they all first
use a MUSIC search to estimate the FFS DOA. Their precision is significantly greater than
that of TSMUSIC. Furthermore, the RMSE of the NFS DOA estimation with the presented
algorithm is smaller than other compared algorithms. Although the proposed algorithm
and the CMR method both use the ESPRIT-like algorithm to estimate the DOA of NFS,
they adopt different methods to separate NFS and FFS. According to the experiments,
the proposed algorithm uses oblique projection, which is more effective than the matrix
difference technique in the CMR method. As seen in Figure 2, the presented method also
outperformed the other algorithms in estimating the range of NFS. Although MBODS,
MOS, and CMR all obtain range estimation by spectral peak search, the performance of
the presented method in estimating the DOA of NFS is superior, so the method is more
advantageous for subsequent range estimation.

Figure 1. Comparison of estimation for DOA with varying SNR in first experiment (N = 400,
(50◦, ∞), (15◦, 2 λ)).

Figure 2. Comparison of estimation for range with varying SNR in first experiment (N = 400,
(50◦, ∞), (15◦, 2 λ)).
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In the second simulation, we assessed the effect of the varying snapshot number on
the estimation performance of each method considering the mixed source scenario. The
source configuration was identical to that of the previous experiment. The SNR was fixed
at 15 dB. The snapshot number varied from 200 to 2000, and 500 Monte Carlo simulations
were carried out at intervals of 200 snapshots. Figures 3 and 4 show the variation of RMSE
with snapshot number for the estimation performance of mixed sources in the DOA and
NFS ranges, respectively. As can be seen in Figure 3, the presented algorithm obviously
surpasses the other algorithms in estimating the DOA of NFS. As shown in Figure 4, the
proposed algorithm and MOS have better performance in estimating the NFS range at
low snapshot numbers. With the increasing number of snapshots, the proposed algorithm
outperforms the others and has comparable performance to the CMR algorithm. There is
an order in the RMSE of CMR at 200 to 400 snapshots, which may be due to the small data
sample and a large bias in the estimated performance.

Figure 3. Comparison of estimation for DOA with varying snapshots in second experiment
(SNR = 15, (50◦, ∞), (15◦, 2 λ)).

Figure 4. Comparison of estimation for range with varying snapshots in second experiment
(SNR = 15, (50◦, ∞), and (15◦, 2 λ)).
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In the third experiment, we analyzed the effect of varying SNR on estimating localiza-
tion parameters with each algorithm in the pure NFS scenario. Two NFSs were assumed
to be incidental to the array. The angle of the first NFS was 10◦, and its range was 2λ.
The angle of the second NFS was 45◦, and its range was 3.5 λ. The snapshot number N
was fixed at 400. The SNR was changed from 0 to 30 dB, and 500 independent simula-
tions were conducted at 5 dB intervals. Figures 5 and 6 show the RMSE of estimation
performance with varying SNR for the DOA and the range of pure NFSs, respectively. As
shown in Figure 5, the performance variation curves of the presented algorithm and the
CMR algorithm are equivalent. Because both algorithms use the ESPRIT-like algorithm for
NFS DOA estimation and the received array sources are pure NFSs, the previous steps of
the algorithm process are invalid. In addition, the variation curves of MOS and MBODS
overlap because both use the high-order MUSIC method. From Figure 6, we can see that
both the proposed algorithm and CMR are more advantageous at a high SNR and estimate
the range parameter of the NFS more accurately.

Figure 5. Comparison of estimation for DOA with varying SNR in third experiment (N = 400,
(10◦, 2 λ), (45◦, 3.5 λ)).

Figure 6. Comparison of estimation for range with varying SNR in third experiment (N = 400,
(10◦, 2 λ), (45◦, 3.5 λ)).
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In the fourth experiment, we assessed the effect of changing the snapshot number on
the estimation performance of each method in the pure NFS scenario. The source setting
was identical to that of the third simulation. The SNR was fixed at 15 dB. The snapshot
number was changed from 200 to 2000, and 500 independent experiments were conducted
at intervals of 200 snapshots. Figures 7 and 8 show the estimated performance of the RMSE
with the varying snapshot numbers for the DOA and the range of pure NFSs, respectively.
Figure 7 shows that the presented algorithm and CMR had better performance in NFS
DOA estimation with the 2000 snapshot. According to Figure 8, the proposed algorithm
and CMR have similar performance to MOS and outperform the other algorithms.

Figure 7. Comparison of estimation for DOA with varying snapshots in fourth experiment
(SNR = 15, (10◦, 2 λ), (45◦, 3.5 λ)).

Figure 8. Comparison of estimation for range with varying snapshots in fourth experiment
(SNR = 15, (10◦, 2 λ), (45◦, 3.5 λ)).
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In the fifth simulation, the computational complexity of each method for different
numbers of snapshots was verified. The experimental configuration was the same as in
the second simulation. The angle search interval was 0.01◦, and the range search interval
was 0.01 λ. Figure 9 illustrates the variation in computational complexity of each algorithm
with snapshot numbers. As shown in Figure 9, the presented algorithm and CMR have
comparable computational complexity, which is similar to the MBODS algorithm, and they
outperform MOS and TSMUSIC. The computational complexity of TSMUIC is too high
with a high snapshot number.

Figure 9. Comparison of computational complexity with varying snapshots in the fifth experiment.

5. Conclusions

In this paper, a mixed source localization algorithm based on oblique projection and
HOC techniques is presented. The DOA of FFS is first acquired by the MUSIC method. The
FFS component is suppressed by oblique projection, and the NFS component is extracted
from the received array data. The separation effect is better than that of the CMR algorithm.
The array elements of a particular sequence are chosen to build a HOC matrix without a
range factor, and the DOA of NFS is calculated using the ESPRIT-like method. Finally, the
NFS range is ascertained through a MUSIC search. The proposed algorithm effectively im-
proves the estimation of NFS parameters with the same performance as the high-precision
estimation for the FFS DOA. Experiments were conducted to illustrate the superiority of
the presented algorithm in both pure NFS and mixed source scenarios.
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