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Abstract: No-reference segmentation quality evaluation aims to evaluate the quality of image seg-
mentation without any reference image during the application process. It usually depends on certain
quality criteria to describe a good segmentation with some prior knowledge. Therefore, there is a need
for a precise description of the objects in the segmentation and an integration of the representation
in the evaluation process. In this paper, from the perspective of understanding the semantic rela-
tionship between the original image and the segmentation results, we propose a feature contrastive
learning method. This method can enhance the performance of no-reference segmentation quality
evaluations and be applied in semantic segmentation scenarios. By learning the pixel-level similarity
between the original image and the segmentation result, a contrastive learning step is performed in
the feature space. In addition, a class activation map (CAM) is used to guide the evaluation, making
the score more consistent with the human visual judgement. Experiments were conducted on the
PASCAL VOC2012 dataset, with segmentation results obtained by state-of-the-art (SoA) segmentation
methods. We adopted two meta-measure criteria to validate the efficiency of the proposed method.
Compared with other no-reference evaluation methods, our method achieves a higher accuracy
which is comparable to the supervised evaluation methods and partly even exceeds them.

Keywords: segmentation quality evaluation; contrastive learning; meta-measure

1. Introduction

In recent years, image segmentation has been widely applied in the fields of au-
tonomous driving [1,2], remote sensing image processing [3,4], medical image process-
ing [5,6], etc., which has had a large influence on its excellent performance in visual tasks.
Segmentation quality evaluation refers to a quantitative evaluation of the segmentation
quality, so that the evaluation result can be used to measure the performance of seg-
mentation algorithms and guide the adjustment of algorithm parameters. Furthermore,
evaluation criteria can be used as a standard for designing a good segmentation algorithm.
In short, segmentation quality evaluation is an essential process for image segmentation.
In contrast to quality evaluation [7,8], which evaluates the quality of the image itself (dis-
tortion, blur, etc.), segmentation quality evaluation is more concerned with assessing how
well the segmentation image extracts the object of interest from the original image.

There are full-reference evaluation methods, such as Mean Intersection over Union
(MIoU) [9,10], Mean Pixel Accuracy (MPA) [9,11], F-Measure [12], Probabilistic Rand Index
(PRI) [13], and Dice coefficient (Dice) [14]. These methods produce scores by calculating the
similarities or the differences between the segmentation and the ground truth (reference
image). However, there are several problems with such kinds of methods. Firstly, they
require the ground truth labels as a reference, which requires a lot of manual effort regarding
pixel-level labeling and is unable to capture the various semantic meanings of real-world
objects. Secondly, they only evaluate the spatial relationship between the segmentation and
the ground truth (e.g., the region areas or the boundary locations), which does not utilize
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image cues in the evaluation process, resulting in an inconsistent evaluation with human
visual standards.

No-reference methods can ease the dependence on the reference in the practical
application process, such as ground truth, and therefore have become a promising solution
for online segmentation evaluation tasks. Traditional no-reference methods [15–17] mainly
use low-level image features (e.g., textures and colours) for evaluation; however, they are
inefficient in semantic segmentation scenarios. It has been widely observed that learning the
semantic information of the objects requires a large number of samples from class-specific
objects, which is difficult to obtain in traditional evaluation methods. Intuitively, a good
evaluation method should extract the meaningful semantic information from the image and
distinguish the quality of segmentations based on this. Exploring the relationship between
the original image and the segmentation result and quantifying the distance between
segmentations are two important methods for a reasonable no-reference evaluation.

Meta-measures [18] are designed to measure the appropriateness of evaluation meth-
ods, and contain a series of principles for a general purpose evaluation. They are usually
based on the ability to distinguish between segmentation images, e.g., identifying which
segmentation is produced from a different original image, or on the ability to distinguish
those with a higher quality. This provides a natural way to evaluate the performance of
different segmentation measures and is designed independently from these measures.

In light of the superior performance of deep convolutional neural networks (CNNs) in
feature representation, we propose a feature contrastive learning method for no-reference
segmentation quality evaluations. Contrastive learning is a popular topic in computer
vision research with many applications such as person re-identification [19], image match-
ing [20], and visual tracking [21]. Contrastive learning is a type of self-supervised learn-
ing [22] that learns by comparing the commonalities and differences between pairs, which
can reveal more about the relationships between parts of the data than other learning
methods. More interestingly, the concept of comparing pair candidates coincides with
the principles of meta-measures. Therefore, we integrate contrastive learning into the seg-
mentation evaluation task and propose a CNN framework for no-reference segmentation
evaluations.

The proposed framework does not perform contrastive learning directly because the
amount of data required for direct contrastive learning is too large. Instead, it first learns
the pixel-level similarity between the original image and the segmentation image and
extracts the feature space. Next, a Siamese network is constructed. This network has two
branches that share parameters. Each branch is based on a two-channel network [23] and
loaded with preliminary learning parameters. The segmentation images are grouped into
pairs according to different qualities, and the concatenated original images are input into
the Siamese network for feature extraction. After that, a contrastive learning module is
designed to learn feature similarities by calculating the extent to which this pair is related
to the original image. In the prediction phase, in order to simulate the human perception
process, we add a class activation map (CAM) [24] to the network, making the score more
weighted towards the regions of attention.

To verify the effectiveness of the proposed framework, we produce 17,774 segmen-
tations from the Pascal VOC2012 dataset using four SoA algorithms, which include 8887
well-segmented images and 8887 poorly segmented images. Two meta-measure criteria,
including the Swapped-Image SoA Discrimination (SISD) [18] and the newly proposed Cor-
responding Image SoA Discrimination (CISD), are used to compare our method with both
the no-reference and reference evaluation methods. The comparison results demonstrate
the effectiveness of our method.

The main contributions of this paper are two-fold:
1. We present a new no-reference segmentation evaluation framework. It involves

deep semantic information not covered by previous no-reference methods, demonstrating
the substantial performance benefits of our method. We propose a prediction network by
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using contrastive learning and a CAM module in segmentation quality evaluation from the
perspective of learning.

2. We construct a new segmentation evaluation dataset and design a new meta-
measure: CISD. The CISD together with the SISD criterion is used to test various segmen-
tation evaluation methods on the new dataset, providing a reference for segmentation
validation and analysis. Extensive experiments are performed to validate the efficiency of
our evaluation framework, including preliminary pixel-level learning results, intervals of
score distribution, examples of actual evaluation scores, etc.

The rest of the paper is organized as follows. Section 2 introduces the related work on
segmentation quality evaluations. Section 3 describes the problem and presents the pro-
posed evaluation framework, which consists of three important modules: pixel-level simi-
larity learning, feature contrastive learning, and score adjustment with a CAM. Section 4
demonstrates the experimental settings, the dataset construction, the meta-measure meth-
ods, and the experimental results. Section 5 concludes the paper and discusses the fu-
ture work.

2. Related Work

In this section, we review some recent advancements in four related topics: segmentation
quality evaluation, metric learning, contrastive learning, and class activation maps.

2.1. Segmentation Quality Evaluation

The evaluation methods can be divided into two categories: full-reference and no-
reference methods. Full-reference methods require the segmentation ground truth as a
reference. A no-reference method does not require any additional content in the evaluation
process. It is important to note that the no-reference method is not unsupervised and it
does not matter what work was performed before the method was applied, including
supervised learning.

The commonly used full-reference methods include Mean Pixel Accuracy (MPA),
Precision [25], Recall [25], F-measure, Mean Intersection over Union (MIoU), Probabilistic
Rand Index (PRI), Variation of Information (VI) [26], etc. MPA computes the ratio of correct
classifications at the pixel level. The PRI is evaluated in terms of the Rand index, but has the
same performance as the MPA. Precision computes the correct predictions of foreground
in the prediction results. Recall computes the correct predictions of foreground in the
truth. F is the weighted average of Precision and Recall. MIoU computes the average
of the ratio of intersection and union for all categories. Dice is a set similarity measure
function and is the ratio of the two-fold intersection to the sum of the segmentation image
and the ground truth. VI computes the ratio of non-intersections from the information
difference perspective.

No-reference methods mainly include E [15], Q [16], F [17], F’ [27], Zeb [28], Ecw [29],
etc. The evaluation method E uses region entropy as the measure of intra-region uniformity,
which measures the entropy of pixel intensities within each region. Ecw uses the intra-
region visual error to evaluate the degree of under-segmentation and uses the inter-region
region visual error to evaluate the degree of over-segmentation. Zeb is based on the internal
and external contrasts of the regions measured in the neighborhood of each pixel. F, F’,
and Q are based on the average squared color error of each region. These methods still
use traditional machine learning methods, which are far less accurate and stable than
supervised no-reference methods.

Recently, no-reference evaluation methods based on learning have been proposed.
QualityNet [30] treats the evaluation as a regression problem, learning a regression value
directly based on deep learning. However, its performance does not exceed that of IoU [31]
because it uses IoU as a benchmark to obtain labels, which is a sub-optimal method for
IoU. It can be taken as a simplification of the MIoU using two-class segmentation scenarios.
These traditional no-reference methods and deep-learning-based methods are not designed
to evaluate semantic segmentation scenarios that involve explicit object classes.



Electronics 2023, 12, 2339 4 of 18

2.2. Metric Learning and Contrastive Learning

Metric learning is also known as similarity learning. In order to measure the similarity
between samples, metric learning techniques can extract commonalities or determine differ-
ences between samples [32]. In the fields of face recognition [33,34], object tracking [35,36],
one-shot learning [37], few-shot learning [38,39], and contrastive learning [40,41], many
research works are based on metric learning. Metric learning can also be divided into
traditional metric learning and deep metric learning.

Traditional metric learning is mainly a metric used by traditional machine learning
methods such as K-Nearest Neighbor (KNN), Support Vector Machine (SVM), etc. They
directly use fixed metric functions for metrics, such as the Euclidean distance, the Marxian
distance, etc. The performance of these methods is limited.

Currently, there are various works on deep metric learning, which involve (i) extracting
features using deep learning methods and then using metrics such as the Euclidean distance,
(ii) deep learning methods for extracting features and measuring similarity, and (iii) direct
similarity measures using deep learning, which only use inter-sample similarity features
and do not extract features for a single sample. For example, [36] uses (i) to implement
object tracking with a Siamese network, [39] uses (ii) to implement few-shot learning with
a relation network, and [23] uses (iii) to compute the image similarity with a two-channel
network, which can be applied in areas such as image retrieval [42] and image fusion [43].

Contrastive learning [44] is a kind of self-supervised discriminative method and its
core is metric learning. It aims at grouping similar samples closer together and diverse
samples far from each other. Self-supervised learning is another learning strategy other
than traditional learning methods and has become popular in recent years. It improves the
feature extraction capability by designing proxy tasks for the representational properties
as the supervised information [45]. Self-supervision is reliable because it still uses labels
which come from the properties of the data itself.

Corresponding to the proxy task of self-supervised learning, the key to contrastive
learning is the design of positive and negative sample pairs. In contrastive learning, a
common network is the Siamese network, which is used in current advanced methods such
as SimCLR [40] and MoCov2 [41].

2.3. Class Activation Map (CAM)

A CAM is a heat map generated based on the feature space during network learning
that can reflect the clues of deep features such as targets classes and can also be applied
in weakly supervised localization and segmentation fields. Common methods to obtain
class activation maps include CAM [46], Grad-CAM [47], Grad-CAM++ [48], Smooth Grad-
CAM++ [24], etc. For these networks, the CAM saliency regions are highly correlated with
human attention regions.

The CAM method uses the global average pooling operation to obtain the weight of
each layer’s feature map. Then, the weighted average of the depth direction of the feature
map is taken as the class activation map. Grad-CAM incorporates the ReLU [49] operation
when obtaining the weight, and builds on this to obtain the weights of each feature layer
in the depth direction with backward gradient propagation, assigning different weights to
each feature layer rather than using the global average as the weight. However, this method
is problematic when there are multiple targets of the same class in the sample data. To
optimize this, Grad-CAM++ still uses the ReLU operation when obtaining the weights, but
different weight gradients are assigned to each category of weights. On this basis, Smooth
Grad-CAM++ introduced the smooth grad to make the obtained class activation map clearer.

3. Proposed Framework of Feature Contrastive Learning

The goal of no-reference segmentation quality evaluations is to evaluate the quality of
segmentation results without the ground truth. Most existing no-reference methods suffer
from performance deficiencies, where the evaluation results do not conform to human
vision and are difficult to apply in the field of semantic segmentation.
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To address these issues, we explore the use of a learning-based method to better utilize
the relationship between the original image and the segmentation image. A novel method
is proposed for no-reference segmentation evaluation with contrastive learning.

Contrastive learning complies with the concept of segmentation evaluation meta-
measuring in comparative image pairs. However, contrastive learning has a lower learning
content, it requires a large amount of data, and is difficult to fit. Therefore, our framework
first performs pixel-level similarity learning [50], which allows the network to understand
the pixel-level relationship between the original image and the segmentation image. Then,
contrastive learning is performed in the feature space. By comparing the differences in
segmentation images of different quality, the network learns the global relationship between
the segmentation and original images at the image level.

In next section, we will describe the details of the proposed method, which includes
pixel-level similarity learning and feature contrastive learning processes. Then, the predic-
tion phase is introduced, focusing on how to incorporate a class activation map (CAM) to
generate the final evaluation score.

3.1. Pixel-Level Similarity Learning

With the limitation of the number of data, direct use of contrastive learning easily
encounters problems such as overfitting. Instead of using contrastive learning directly,
pixel-level similarity learning is performed in the preliminary learning with a two-channel
network. In contrast to some methods [51,52], which uses traditional algorithm metric
similarity, such as the euclidean distance, our method directly uses deep learning to
measure the similarity, which only extract inter-sample similarity features and does not
extract features for a single sample.

As shown in Figure 1, firstly, the original image and the segmentation image are
concatenated as a H ×W × (C ∗ 2) matrix for the network input. H and W represent the
height and the width and C is the channel. Then, the similarity features are obtained after
the Resnet50 [53] with an upsample module. They are sent into the pixel-level decision layer
to obtain a H ×W feature map. Following some classical deep learning methods [54,55]
validated with the Pascal Voc2012 dataset, we set H = W = 320 and C = 3.

lossPixel-LevelDecisionResNet50 Upsample
Figure 1. Pixel-level similarity learning. The original image (320× 320× 3) and the segmentation
image (320× 320× 3) to be evaluated are combined as input (320× 320× 6), and a feature space of
size 320× 320× 256 is generated by the function f (the downsampling module of ResNet50 and the
upsampling module). Then, the pixel-level decision function d (a 1× 1 convolution module) is used
to generate pixel-level similarity matching results (320× 320).

Specially, we define a dataset D ={xi, {yi,k}K
k=1, zi}N

i=1, composed of N independent
and identically distributed training samples, where xi ∈ X is the original image with
dimensions of 320 × 320 × 3. {yi,k}K

k=1 ∈ Y refers to the set of segmentation images
corresponding to xi and zi ∈ Z is the ground truth of xi. yi,k and zi have the same
dimensions as xi.

For original image xi and the segmentation image yi,k to be evaluated, label L is
defined as in Equation (1).

li,k ∈ L, li,k = yi,k � zi (1)

where �means the Inclusive-OR operation. li,k is a similarity matching map with dimen-
sions of 320× 320.
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With the determined input set as (X ,Y) and the label set as L, a function pair { f , d}
is used, where f : (X ,Y)→ F is an upsample module to extract features and d : (F )→ P
is a decision function for pixel-level similarity. F represents the feature space with a size of
320× 320× 256 and pi,k ∈ P represents the prediction result with a size of 320× 320. The
number of channels is set empirically as 256.

In the proposed method, a fully convolutional network (FCN) [54] structure, f , is used
as the upsample module to extract features. A simple convolutional module is used as the
decision function, d. Corresponding to pixel-level similarity learning, we use the Mean
Pixel Accuracy (MPA) as a loss function to learn the pixel-level relationship between the
original image and the segmentation image, Equation (2).

LossMPA = 1− ∑ H
h=1 ∑ W

w=1MPAh,w

H ∗W
. (2)

3.2. Feature Contrastive Learning with a Siamese Network

In most of the literature, there is no direct correlation between evaluation scores and
the meta evaluation principle [14]. In this work, we attempt to integrate these two factors
in the evaluation by using a contrastive learning strategy. The basic idea is to construct
a contrastive loss function according to the meta-measure criteria for learning and then
produce the evaluation scores. In particular, we only carry out contrastive learning for the
feature maps extracted in the preliminary learning stage. Unlike other contrastive learning
methods, which are mainly applied to upstream tasks, contrastive learning in this work is
applied to downstream tasks to obtain the evaluation scores.

As shown in Figure 2, the similarity learning network is extended to a two-branch
structure which makes a Siamese network. The original image concatenated with the
positive segmentation is input to the upper branch and concatenated with the negative
segmentation from the lower branch to extract features by f . After that, a contrastive
module is constructed for contrastive learning. It contains a separate convolution operation
g for obtaining the upper and lower branch global features, and these features are averaged
to obtain the scores. A contrastive loss is calculated between the upper and the lower
branch scores. We adopt the contrastive principle: the similarity score of the upper branch
should be higher than that of the lower branch.

SPos  GlobalDecision
SNegAvg

Avg
Weight Sharing loss

  GlobalDecision
Figure 2. Feature contrastive learning with a Siamese network. The original image is combined with
well-segmented results as the upper branch and combined with poorly segmented results as the
lower branch. The functions f are the same as for Figure 1. f contains a ResNet50 and an upsampling
module and is loaded with parameters for pixel-level similarity learning. For the output feature
space (320× 320× 256), the global decision layer g uses a large convolution kernel (320× 320) to
produce a 1× 1× 256 feature vector with its average value as the score. This learning process is
image-level learning, which is different from pixel-level learning. Therefore, g can be regarded as a
global decision function.

Specifically, for the original image xi ∈ X , we select positive segmentation yi,pos ∈
Ypos (pos ∈ [1, K]) and negative segmentation yi,neg ∈ Yneg (neg ∈ [1, K]) from {yi,k}K

k=1.
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The positive sample can be a good segmentation of the state-of-the-art algorithms or the
segmentation ground truth, and the negative sample can be the poor segmentation of the
algorithms or the segmentation from a different image.

The upper branch input pair is {X ,Ypos} and the lower branch input pair is {X ,Yneg}.
A function pair { f , g} replaces { f , d}, where f is the feature-extracting function for pixel-
level similarity and g is the global decision function. It is worth noting that d is a pixel-
level similarity decision function, it only learns pixel-level relationships and the output
dimensions are 320× 320, while g is image-level learning, it is a global similarity decision
function and the output is a vector with dimensions 1× 1× 256. In this phase, the function
f is not used for back-propagation.

For the upper branch input pair {X ,Ypos} and the lower branch input pair {X ,Yneg},
the features Fpos and Fneg are extracted separately using the function f . The function g
is used to obtain an average to obtain the upper and lower scores, Spos and Sneg. The
function g contains a convolution operation. Among them, Spos and Sneg are the evaluation
scores of good and poor segmentation outputs over the network, and they are a pair of
scalar values. Based on the contrastive learning principle, a hyper parameter α is chosen to
expand the interval between the two classes, whereby a contrastive loss function is set, as
in Equation (3).

LossContras =

{
Spos − Sneg + α, Spos − Sneg + α > 0
0, otherwise

(3)

For the hyper-parameter, we pre-set α = 0.01.

3.3. Prediction with Class Activation Map (CAM)

Since the Siamese networks share parameters, one branch can be cropped in the applica-
tion phase. As shown in Figure 3, after cropping the Siamese structure into a single branch
structure, the original and segmentation images are concatenated as the input to the neural
network to obtained the evaluation score. According to a previous study [55], semantic mean-
ingful regions usually play an important role in deciding the segmentation quality. To better
capture these regions and integrate the information into the quality calculation, a CAM is
used to adjust the score. Considering performance, we use the smooth Grad-CAM++ method
to obtain the CAM. On this basis, a FreqCAM [55] module is added.

Weight

ori&seg

S

Pixel-LevelDecision

SavgAvg
*

ori
  GlobalDecision

Figure 3. Prediction with a class activation map (CAM). The CAM is used as a weight to produce a
weighted average, Weight, of the pixel-level matching results Smap. ∗ is the product operation. In this
way, higher weights are assigned to attention regions.

FreqCAM [56] is a simple module for weakly supervised object localization, which
gives higher weights to the attention region while eliminating most of the weight of the
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background regions, especially the noise regions, in line with the intention of using a CAM
in this study. Therefore, we apply FreqCAM to our no-reference segmentation quality
evaluation scenario.

We define the original image as ori, the segmentation image as seg and the CAM as
Cmap. For pairs (ori, seg), the feature F is obtained by feeding it into the function f , the
similarity matching map Smap with 320× 320 dimension is obtained by function d, and the
Savg is obtained by the function g and the averaging operation.

In the CAM, the attention region is assigned a higher weight. Therefore, using Cmap as
the weight vector map and Smap as the base vector map, a weighted average value Weight
is computed to reflect the accuracy of the attention region, which is defined as Equation (4).

Weight =
Smap ∗ Cmap

∑ Cmap
(4)

Using Weight as a coefficient reflecting the accuracy of the attention component, a
threshold penalty method is used for calculating the final score S. That is, a threshold is
set, and when the Weight is higher than the threshold, the score is unchanged, and when
it is lower than the threshold, the score is reduced. The coefficient is used directly as the
disciplinary ratio. In this paper, we set threshold = 0.5. The final score S is calculated by
Equation (5).

LossContras =

{
Savg, Weight > threshold
Weight ∗ Savg, otherwise

(5)

Moreover, we consider adjusting the scores based on a threshold penalty method. This
method keeps the scores with higher weights unchanged and only penalizes scores with
lower weights.

As shown in Figure 4, if the segmentation score is adjusted corresponding to (1),
the score will be too low. It would be more appropriate to only adjust the score for
scenarios such as (2), keeping (1) unchanged. After comprehensive consideration, we set
threshold = 0.5.

0.9 1 00 0 0 00 0.9 0.9 0 00000 0 0 0 00 0 0 0 01 10 11 1 111
1 1 1 1 1111 1 1 1 111

11
(1) 

0 1 00 0 0 00 0 0 0 00000 0 0 1 10 0 0 1 1 0.9 1 00 0 0 00 0.9 0.9 0 00000 0 0 0 00 0 0 0 0(2)Matching map Matching mapCAM CAM
Figure 4. Scenarios of unsuitable and suitable adjustment scores. The matching map refers to the
matching result of the original image and the segmentation image output in the pixel-level similarity
learning stage. A CAM is generated to reflect the attention region. Scene (1) is not suitable for
adjustment, because the matching map reflects the segmentation image and the original image has a
high match, and adjusting it will result in too low a score. Scene (2) is suitable for tweaking.

4. Experiments
4.1. Experimental Configuration

Our method was trained and validated on an NVIDIA GeForce 2080Ti GPU with 11 GB
memory, python3.7, and pytorch1.1. We use FCN with ResNet-50 as the backbone network.
ResNet-50 was loaded as the pre-trained network parameter in the ImageNet dataset; the
parameters of the first layer were not loaded because our structure changed from three
channels to six channels. We set the Stochastic Gradient Descent (SGD) optimizer with a
4× 10−4 learning rate, 0.9 momentum, and 0.001 weight decay. The similarity learning and
contrastive learning batch size was set to 16. The number of similarity learning epochs was
120 and for contrastive learning it was 5.
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4.2. Dataset

In this paper, the original images and ground truth segmentation labels were selected
from the Pascal Voc2012 dataset, where 20 foreground classes and 1 background class
are included. Four SOA methods were chosen to produce the segmentation image sets,
including FCN [25], U-Net [57], Mask-RCNN [58], and DeepLabV3 [59]. The segmentation
results with 15 and 25 epochs for each method are selected, for a total of eight segmentations.
Then, one each of good segmentation and poor segmentation samples were selected from
the eight segmentation samples to make two segmentation image sets. Finally, a total of
8887 samples were used, using 7937 samples for training and 950 samples for validation,
each sample containing four kinds of data: the original image set, the good segmentation
image set, the poor segmentation image set, and the ground truth image set. All images
were unified into dimensions (H, W, C) of (320, 320, 3).

4.3. Experimental Criteria

We verify multiple evaluation methods for both SISD and CISD meta-measures. SISD
measures two segmentation datasets separately, a good segmentation and a poor segmenta-
tion dataset output by state-of-the-art (SoA) methods. The poor segmentation has some
regions that are over-segmented, under-segmented, or misclassified, but still has a strong
correlation with the original image and should be better than the segmentations generated
by a different original image. CISD compares good segmentations and poor segmentations
for the same original image.

4.3.1. Meta-Measure for SISD

As shown in the left of Figure 5, SISD (Swapped-Image SoA Discrimination) compares
the results created by a SoA segmentation method with the results created by the SoA
segmentation method on other original images. For each SoA segmentation technique, SISD
computes the number of images in the dataset in which an evaluation measure correctly
judges that the corresponding SoA image result is better than the different image result. The
definition of meta-measure SISD (Swapped-Image SoA Discrimination) is the percentage
of results in the database that are correctly discriminated [18].<score score

SOA   segmentation
>score score

SOA   segmentation
SISD CISD

Figure 5. Illustration of SISD and CISD meta-measures. SISD compares the results created by SoA
methods with the results created by the same SoA method but on other original images. CISD
compares the good results and the bad results created by SoA methods for the same original image.

Specifically, SISD is defined in Equation (6), where xi refers to the ith original image,
yi refers to the segmentation image for xi, and function S () outputs the matching score
between the original image and the segmentation image. ci is a judgement, and it is
considered true when S(xi, yi) > S(xi, yj). S(xi, yj) is the matching score for xi and other
segmentation images.

SISD =
∑n

i=0 ci

n
,

{
ci = 1, S(xi, yi) > S(xi, yj), i 6= j
ci = 0, otherwise

(6)
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4.3.2. Meta-Measure for CISD

SISD meta-measure was performed only for the differentiation of swapped images;
however, this is not enough. Most of the segmentation methods are validated on the same
image; thus, a new meta-evaluation method is proposed in this paper, which is named
CISD (Corresponding Image SoA Discrimination), and is the percentage of correctly
judged images from the good segmentation result of SoA that are more correlated with
the corresponding images than the bad results (corresponding image refers to the original
image corresponding to the good and poor segmentation image, that is, the segmentation
image pair to be compared.). CISD is shown in the right of Figure 5.

Specifically, CISD is defined in Equation (7), where xi refers to the ith original image and
yi,pos, yi,neg refers to the segmentation image for xi, where yi,pos has a higher quality than yi,neg.
Function S () outputs the matching score between the original image and the segmentation
image. ci is a judgement, and it is considered true when S(xi, yi,pos) > S(xi, yi,neg).

SISD =
∑n

i=0 ci

n
,

{
ci = 1, S(xi, yi,pos) > S(xi, yi,neg)

ci = 0, otherwise
(7)

4.4. Comparison of Meta-Measure Results of Our Method and Other Methods

As shown in Table 1, SISD (good) represents the SISD measure in good segmentation
sets and SISD (bad) represents the SISD measure in poor segmentation sets. The global
accuracy is defined as the average of the above three evaluation methods, and the global
accuracy of our method exceeds that of the no-reference method. In CISD, the traditional
no-reference methods are somewhat effective, but less so than our method. In SISD, our
method demonstrates absolute superiority, even over full-reference methods. Traditional
no-reference methods are not very effective.

Table 1. Meta-measure results of different methods. SISD (good) refers to a comparison of the
good segmentation results from SoA, and SISD (bad) is the comparison of poor results. CISD is the
comparison of good and bad results in the same original image. Global is their average.

Methods/Accuracy (%) Global CISD SISD (Good) SISD (Bad)

Reference Methods

MPA [9] 90.05 78.26 97.29 95.81

PRI [13] 90.05 78.26 97.29 95.81

Precision [25] 93.45 81.62 99.65 99.22

Recall [25] 86.09 63.55 97.82 96.91

F-measure [12] 91.21 74.89 99.52 99.21

MIoU [10] 91.00 74.58 99.43 99.00

Dice [14] 90.78 74.00 99.40 98.94

VI [26] 91.02 74.63 99.43 99.00

No-reference Methods

F [17] 57.69 68.90 53.89 50.27

F′ [27] 58.50 71.32 53.89 50.29

Q [16] 53.02 71.32 46.37 41.37

E [15] 38.07 38.74 49.75 25.71

Ecw [29] 45.42 44.53 47.96 43.78

Zeb [28] 49.18 71.87 8.18 67.49

Our 92.04 77.02 99.84 99.27



Electronics 2023, 12, 2339 11 of 18

4.5. Comparison of the Evaluation Score of Our Method and Other Methods

To further verify the validity of our method, in addition to the meta-measures, we
also show all the evaluation scores in the validation set for the reference methods and our
method. Other no-reference methods are not shown because of their slow computation
efficiency and irregular values.

In particular, as shown in Figure 6, for each original image displayed on the vertical
axis, yellow and green are the mean of the evaluation scores of the segmentation images
generated by all the other original images. It can be seen that our no-reference method
is comparable with reference methods. MPA and Recall have high scores in other image
segmentation results. Precision, F-measure, MIoU, Dice, and VI have evaluation scores that
are completely separate from other image segmentation results, but too many low scores
give the original image own segmentation results.

(a) MPA (b) Precision (c) Recall (d) F-measure

(e) MIoU (f) Dice (g) VI (h) Our

Figure 6. Comparison of the evaluation scores of reference methods and our method. The horizontal
axis represents the sequence of images and the vertical axis represents the score. A blue point
represents good segmentation evaluation scores of the original image itself generated by SoA methods,
and a red point is a bad score. A yellow point represents the average value for the good segmentation
evaluation score generated by all other original images, and a green point is a bad score.

4.6. Ablation Study

In this section, we analyze the effectiveness of our proposed method, performing
ablation studies on each proposed component of the network architecture and empirically
analyzing the corresponding reason. Ablation studies contain both the meta-measure
accuracy and the details of different learning epochs. SL represents using only pixel-
level similarity learning. CL represents contrastive learning, SCAM represents Smooth
Grad-CAM++, FCAM represents FreqCAM, and 0.5, 0.75, and 1 represent the penalty
thresholds.

4.6.1. Compare Accuracy with the Addition of Different Module

As shown in Table 2, when using only similarity learning, the result is a pixel-level
accuracy map. Instead of setting a threshold to predict the correctness or the incorrectness,
a soft average [60] is used directly as the evaluation score. This method gives poor results
as it only evaluates the pixel-level relationships. When feature contrastive learning is
added, there is a large improvement in the accuracy, by 2.04 percentage points. Thus,
feature contrastive learning is effective in this scenario. With the adoption of a CAM with
different penalty thresholds, in meta-measures, the performance of our method was further
improved. The best performance is achieved using FCAM accompanied by a threshold
of 0.5. When the threshold is set to 1, it means that instead of using the threshold penalty
method, the evaluation results of all segmentation images are adjusted by weight. In this
case, it achieves a lower accuracy, which validates our assumption in Section 3.3.



Electronics 2023, 12, 2339 12 of 18

Table 2. Ablation study for our method based on meta-measures. Contrastive learning leads to a big
boost compared to just pixel-level similarity learning, and the addition of a CAM also results in a
slight boost.

Methods/Accuracy (%) Global CISD SISD (Good) SISD (Bad)

OurSL 89.71 71.16 99.37 98.60

OurSL+CL 91.97 76.84 99.79 99.28

OurSL+CL+SCAM1 91.70 76.11 99.78 99.22

OurSL+CL+FCAM1 91.34 75.05 99.83 99.14

OurSL+CL+SCAM0.75 91.88 76.53 99.82 99.28

OurSL+CL+FCAM0.75 91.81 76.42 99.81 99.19

OurSL+CL+SCAM0.50 92.02 76.95 99.81 99.30

OurSL+CL+FCAM0.50 92.04 77.02 99.84 99.27

4.6.2. Details of Meta-Measure Results in Different Epochs

We show the training process and results in more detail in Figure 7, which contains
the accuracy of the meta-measures over 120 epochs of pixel-level similarity learning and
5 epochs of contrastive learning. In order to show the differences between epochs more
clearly, the y-axis is not consistent.

Figure 7. The SISD and CISD of different epochs. The upper part only uses the training process and
results of pixel-level similarity learning, with 120 iterations in total. The lower part adds contrastive
learning with five iterations.

4.7. Evaluation Examples from Different Methods

Figure 8 and Tables 3–5 show examples of different ways to evaluate scores. Figure 8
is the sample image selected. We have a selection of typical three full-reference methods
and three no-reference methods for comparison. For each original image, we choose six
segmentation images for evaluation, indicating good and poor segmentations as good
and poor; good and bad segmentation images from different original images with close
categories as other-good (1) and other-bad (1); and the good and poor segmentations from
different original images that are close to the target location but in different categories as
other-good (2) and other-bad (2).
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original well bad other‑good(1) other‑good(2)other‑bad(1) other‑bad(2)(1)
(2)
(3)

(1)

Figure 8. Example images selected for evaluation. We chose three original images as the base, and
in part (1), part (2), and part (3), six segmentation images were selected for each original image to
show the evaluation results. The six segmentation images include the good and bad segmentations
generated by the original images, which are are denoted as good and bad. The good and poor
segmentations generated from other original images include similar categories are denoted as other-
good (1) and other-bad (1). The good and poor segmentations from different original images that are
close to the target location but in different categories are denoted as other-good (2) and other-bad (2).
Different colors represent different categories, such as pink is the people, green is the bicycle, and
blue is the ship.

Table 3. Evaluation results of the examples in part (1) of Figure 8.

Methods/Score (%) Good Bad Other-Good (1) Other-Bad (1) Other-Good (2) Other-Bad (2)

MIoU [10] 0.76 0.43 0.44 0.40 0.18 0.18

Precision [25] 0.78 0.55 0.53 0.50 0.33 0.34

F-measure [12] 0.87 0.66 0.65 0.63 0.14 0.42

F [17] 0.17 0.30 0.09 0.19 0.18 0.29

E [15] 2.69 1.39 1.65 1.36 1.96 1.73

Ecw [29] 0.50 0.20 0.31 0.27 0.32 0.28

Ours 0.98 0.67 0.27 0.26 0.10 0.12

Table 4. Evaluation results of the examples in part (2) of Figure 8.

Methods/Score (%) Good Bad Other-Good (1) Other-Bad (1) Other-Good (2) Other-Bad (2)

MIoU [10] 0.21 0.22 0.19 0.15 0.12 0.11

Precision [25] 0.51 0.47 0.35 0.35 0.21 0.22

F-measure [12] 0.42 0.42 0.10 0.26 0.35 0.23

F [17] 0.28 1.54 0.66 1.83 0.26 0.44

E [15] 3.04 2.90 2.11 1.99 2.45 2.28

Ecw [29] 0.50 0.29 0.31 0.27 0.40 0.36

Ours 0.98 0.67 0.12 0.12 0.09 0.09
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Table 5. Evaluation results of the examples in part (3) of Figure 8.

Methods/Score (%) Good Bad Other-Good (1) Other-Bad (1) Other-Good (2) Other-Bad (2)

MIoU [10] 0.78 0.48 0.38 0.38 0.13 0.20

Precision [25] 0.92 0.93 0.39 0.47 0.26 0.42

F-measure [12] 0.86 0.70 0.44 0.48 0.29 0.37

F [17] 0.05 0.74 0.38 0.85 0.61 0.29

E [15] 0.24 1.24 1.53 1.66 3.23 1.20

Ecw [29] 0.01 0.18 0.22 0.25 0.49 0.17

Ours 0.97 0.40 0.24 0.20 0.21 0.37

In Tables 3–5, it is important to note that the values for no-reference methods F, E, and
Ecw represent errors, with higher scores indicating a poorer quality. For F, we multiplied
the value by 103, e.g., when the displayed value is 0.17, the actual evaluation value is
0.17× 10−3.

Table 3 shows the corresponding evaluation results of part (1). In part (1), the evalua-
tion scores of the full-reference methods on the other-good (1) and other-bad (1) are too
high, as they are evaluated based on the segmentation space only. Our method scores are
more reasonable compared to other methods.

Table 4 shows the corresponding evaluation results of part (2). In part (2), the full-
reference method has a good performance in other image segmentation results, but pro-
duces too low evaluation scores in the corresponding good and bad segmentations. The
evaluation score of our method is more reasonable.

Table 5 shows the corresponding evaluation results of part (3). In part (3), due to
the small foreground target, the full-reference method Precision and F-measure produced
excessive scores in poor segmentation; our method overcomes this problem.

In summary, it can be seen that no-reference methods have difficulty comparing
segmentation from the corresponding image with segmentation from other images, and the
scores are also very unreasonable. In our method, three structures are included to evaluate
the score, one using only pixel-level similarity learning, then adding contrastive learning,
and finally adding a CAM. For the poor segmentations, i.e., good/bad segmentations from
other images, our method does not produce reasonable scores in the first two methods, and
along with the CAM, this score is more compatible with human vision than other methods.

5. Discussion

In this section, we discuss why the CAM does not exhibit a large accuracy improve-
ment but is still adopted in this study. The reason for adding a CAM is that it makes
the evaluation scores more close to human perception. We calculated the scores for all
segmentation images for validation, as shown in Figure 9. A blue point represents a good
segmentation image score for the corresponding original image, and a red point represents
a bad one. A yellow point represents the evaluation of a good segmentation from a different
original image, and a green point represents a bad one. By default, the CAM penalty thresh-
old is set to 0.5. Obviously, if a CAM is not used, the segmentations generated by different
original images are over-scored. In conjunction with a CAM, the scores of segmentations
generated by different original images are suppressed and the scores are more reasonable.
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(a) OurSL (b) OurSL+CL (c) OurSL+CL+SCAM (d) OurSL+CL+FCAM

Figure 9. Evaluation scores for the validation dataset with different modules. SL represents pixel-level
similarity learning, CL represents contrastive learning, SCAM represents Smooth Grad-CAM++, and
FCAM represents FreqCAM. The horizontal axis represents the sequence of images and the vertical
axis represents the score. A blue point represents a good segmentation evaluation score of an original
image itself generated by SoA methods, and a red point is a bad one. A yellow point represents the
average value of the good segmentation evaluation scores generated by all other original images, and
a green point is the bad one.

6. Conclusions

This work aims to improve the performance of no-reference segmentation evaluation
methods. Among the currently existing no-reference methods, the performance of tradi-
tional methods is inadequate and few methods are based on deep learning. Moreover, the
methods cannot be applied to semantic segmentation scenarios. We attempt to evaluate
segmentation images using a learning method from the perspective of understanding the
relationship between the original image and the segmentation image, and thus propose
a feature contrastive learning method for no-reference segmentation quality evaluations.
This method can be applied to semantic segmentation scenarios and is not worse than
full-reference methods. In the experimental phase, we proposed the CISD meta-measure
for validating the evaluation accuracy of different methods for segmentation of the corre-
sponding image, and our method outperforms other no-reference methods. In the popular
meta-measure SISD, our method outperforms the full-reference methods, which indicates
its superiority in practical applications.
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CISD Corresponding Image SoA Discrimination
CNN Convolutional Neural Networks
KNN K-Nearest Neighbor
SVM Support Vector Machine
CL Contrastive Learning
SL Pixel-level Similarity Learning
SCAM Smooth Grad-CAM++
FCAM FreqCAM
FCN Fully Convolutional Networks
SGD Stochastic Gradient Descent
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