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Abstract: Medical knowledge graphs have emerged as essential tools for representing complex
relationships among medical entities. However, existing methods for learning embeddings from
medical knowledge graphs, such as DistMult, RotatE, ConvE, InteractE, JointE, and ConvKB, may
not adequately capture the unique challenges posed by the domain, including the heterogeneity
of medical entities, rich hierarchical structures, large-scale, high-dimensionality, and noisy and
incomplete data. In this study, we propose an Adaptive Hierarchical Transformer with Memory
(AHTM) model, coupled with a teacher–student model compression approach, to effectively address
these challenges and learn embeddings from a rich medical knowledge dataset containing diverse
entities and relationship sets. We evaluate the AHTM model on this newly constructed “Med-Dis”
dataset and demonstrate its superiority over baseline methods. The AHTM model achieves substantial
improvements in Mean Rank (MR) and Hits@10 values, with the highest MR value increasing
by nearly 56% and Hits@10 increasing by 39%. Furthermore, we observe similar performance
enhancements on the “FB15K-237” and “WN18RR” datasets. Our model compression approach,
incorporating knowledge distillation and weight quantization, effectively reduces the model’s storage
and computational requirements, making it suitable for resource-constrained environments. Overall,
the proposed AHTM model and compression techniques offer a novel and effective solution for
learning embeddings from medical knowledge graphs and enhancing our understanding of complex
relationships among medical entities, while addressing the inadequacies of existing approaches.

Keywords: medical knowledge graph; adaptive hierarchical transformer; model compression

1. Introduction

Knowledge graphs (KGs) have emerged as a powerful tool for organizing and rep-
resenting structured information in a wide range of domains. By capturing entities and
their relationships in a graph-based structure, KGs enable intelligent systems to perform
complex reasoning and querying tasks with ease [1]. General-purpose knowledge graphs,
such as Freebase [2] and DBpedia [3], have been extensively used for numerous applica-
tions, including natural language processing, information retrieval, and recommendation
systems [4].

In recent years, the focus has shifted towards domain-specific knowledge graphs,
particularly medical knowledge graphs, due to their potential to represent complex relation-
ships among various medical entities, such as diseases, drugs, symptoms, and diagnostic
items, in a structured and interpretable format [5]. Medical knowledge graphs enable
researchers and practitioners to analyze and extract valuable insights from the vast and
ever-growing corpus of medical information available in the scientific literature, electronic
health records, and clinical guidelines.

However, constructing and learning from medical knowledge graphs present unique
challenges compared to general-purpose KGs. Some of these challenges include:

• Heterogeneity of medical entities: Medical knowledge graphs contain a variety of
medical entities, such as diseases, drugs, symptoms, diagnostic items, with diverse
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and complex relationships between them [6]. Traditional models may struggle to
capture these heterogeneous relationships, leading to suboptimal embeddings.

• Rich hierarchical structure: Medical entities often exhibit hierarchical structures, such
as disease categories or drug classifications. Existing approaches may not fully capture
these hierarchical relationships, limiting the quality of the learned embeddings.

• Noisy and incomplete data: Medical knowledge graphs are often noisy and incom-
plete due to the vast and constantly evolving nature of medical information. Tradi-
tional models may struggle to handle such inconsistencies, affecting the quality of the
learned embeddings [7].

• Large-scale and high-dimensionality: Medical knowledge graphs can be large in
scale and high in dimensionality, making it challenging for traditional models to
efficiently learn embeddings.

Several state-of-the-art knowledge graph embedding (KGE) models have been pro-
posed to address these challenges, including DistMult [8], RotatE [9], ConvE [10], Inter-
actE [11], JointE [12], and ConvKB [13]. These models have achieved remarkable success
in general-purpose knowledge graph datasets, such as FB15K-237 [14] and WN18RR [10].
However, their performance in specialized domains such as medical knowledge graphs
may not be as satisfactory due to unique challenges associated with the representation
and reasoning of medical entities and relationships. Existing methods may not adequately
capture the complex relationships, hierarchical structures, and heterogeneity of medical
entities, nor address the noisy, incomplete data and high-dimensionality often found in
medical knowledge graphs.

To address these challenges, this paper introduces a novel Adaptive Hierarchical
Transformer with Memory (AHTM) model that leverages the Transformer architecture [15]
and a memory-augmented mechanism, specifically designed for learning embeddings from
medical knowledge graphs. Our main contributions are as follows:

• We propose a novel AHTM model to address the issue of medical entity heterogeneity
in medical knowledge graphs. The model introduces a JointAttention function. This
function effectively integrates self-attention and joint attention mechanisms, enabling
the model to better capture and represent various relationships within the medical
knowledge graph.

• In order to tackle the challenge posed by the rich hierarchical structure present in med-
ical knowledge graphs, the AHTM model incorporates a hierarchical architecture and
residual blocks. These design choices facilitate more effective capture and representa-
tion of the intricate hierarchical relationships inherent in medical knowledge graphs.

• To tackle the issue of noisy and incomplete data, the AHTM model incorporates adap-
tive mechanisms along with a memory storage module. This combination allows the
model to effectively handle such data, leading to more robust and accurate embeddings.

• To address the challenge of large-scale and high-dimensional data in medical knowl-
edge graphs, the AHTM model employs a teacher–student model compression ap-
proach. This method integrates knowledge distillation [16] and weight quantiza-
tion [17] techniques to reduce both storage and computational demands of the model.
Consequently, the AHTM model becomes capable of effectively learning embeddings
from large-scale, high-dimensional medical knowledge graphs.

• We conduct extensive experiments to evaluate the performance of the proposed AHTM
model on our newly constructed medical knowledge atlas dataset, as well as on the
FB15K-237 and WN18RR datasets. The experimental results demonstrate the superior
performance of the AHTM model compared to the baseline methods, with significant
improvements in Mean Rank (MR) and Hits@10 values.

The rest of the paper is organized as follows. Section 2 reviews related work in the fields
of knowledge graph embedding and model compression. Section 3 describes the methodol-
ogy, including the proposed AHTM model, teacher–student model compression approach,
and a Neural Turing Machine. Section 4 presents the experimental setup and results. Finally,
Section 5 concludes the paper and outlines potential future research directions.
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2. Related Works

In this section, we discuss related work in the areas of knowledge graph embedding
methods, medical knowledge graphs, Transformer attention mechanisms and their ap-
plications in the knowledge graph domain, and model compression techniques such as
knowledge distillation and weight quantization.

2.1. Knowledge Graph Embedding Methods

Knowledge graph embedding (KGE) models aim to learn low-dimensional represen-
tations of entities and relationships in a knowledge graph, which can be used for various
tasks, including link prediction, entity resolution, and KG completion [18,19]. Several KGE
models have been proposed in recent years, each with its unique strengths and limitations.

TransE [20] is one of the pioneering KGE methods, which models relationships as
translations in the embedding space. However, TransE struggles to model complex relation-
ships and capture symmetry, antisymmetry, and inversion patterns. DistMult [8] models
relationships using element-wise multiplications of entity embeddings but is limited in
modeling asymmetric relationships. RotatE [9] models relationships as rotations in the com-
plex embedding space, which captures symmetry, antisymmetry, and inversion patterns
but has a high computational cost. ConvE [10] employs convolutional neural networks to
model relationships, while InteractE [11] extends ConvE with a more expressive interaction
mechanism. JointE [12] leverages joint learning of entity and relationship embeddings,
ConvKB [13] and DyConvNE [21] integrates convolutional neural networks into knowledge
base completion tasks.

While these models have achieved remarkable success in general-purpose knowledge
graph datasets, they may not adequately address the aforementioned research questions
and challenges specific to medical knowledge graphs. Therefore, our study aims to develop
an Adaptive Hierarchical Transformer with Memory (AHTM) model tailored for medical
knowledge graphs, which effectively tackles the heterogeneity of medical entities, rich
hierarchical structures, large-scale and high-dimensionality, and noisy and incomplete
data. By doing so, we seek to significantly improve the performance of KGE models in the
medical domain and contribute to a deeper understanding of the complex relationships
among medical entities.

2.2. Medical Knowledge Graphs

Medical knowledge graphs have been developed to represent structured medical in-
formation in a graph-based format. It has been shown to be effective for various medical ap-
plications, including clinical decision support [22,23], drug repurposing [24], and symptom-
disease inference [25]. Several medical knowledge graphs have been proposed in the
literature, such as the UMLS Metathesaurus [26], DrugBank [27], and Hetionet [28].

Despite the growing interest in Medical knowledge graphs, the development of KGE
models specifically designed for the medical domain remains an open research problem. In
light of the growing interest in medical knowledge graphs and the open research problem
of developing KGE models specifically designed for the medical domain, our work aims to
investigate the limitations of existing KGE models in the context of medical knowledge
graphs and identify the unique challenges associated with the representation of medical
entities and relationships. We will evaluate the performance of the AHTM model on a
newly constructed “Med-Dis” dataset and compare its performance against existing state-
of-the-art KGE models. By addressing these objectives, we hope to significantly advance
the development of KGE models for medical knowledge graphs and contribute to a deeper
understanding of the complex relationships among medical entities.

2.3. Transformer Attention Mechanism and Its Applications in Knowledge Graphs

The Transformer model, proposed by Vaswani et al. [15], has revolutionized natural
language processing with its self-attention mechanism, which allows the model to capture
long-range dependencies and contextual information efficiently. Transformers have been
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successfully applied to a variety of NLP tasks, such as machine translation, text summa-
rization [29], and question-answering [30]. Recently, researchers have started exploring the
application of Transformer-based models in the knowledge graph domain.

Graph Attention Networks (GAT) [31,32] adapt the attention mechanism for graph-
structured data, allowing nodes to selectively focus on their neighbors. However, GAT
suffers from scalability issues due to its complexity. Transformer-KGE [33] integrates the
Transformer architecture into KGE tasks, leveraging its attention mechanism for better rela-
tional reasoning. Graph Transformer Networks (GTN) [34,35] generalize the Transformer
model for graph-structured data, enabling efficient representation learning for graphs.

These models demonstrate the potential of leveraging the Transformer’s attention
mechanism for knowledge graph embedding and reasoning tasks, although their scalability
and complexity remain open challenges. In this work, our research objectives involve
developing an Adaptive Hierarchical Transformer with Memory (AHTM) model that
effectively leverages attention mechanisms while addressing scalability and complexity
challenges. We aim to evaluate the performance of the AHTM model on a newly constructed
medical knowledge graph dataset, comparing its performance against existing Transformer-
based models and other state-of-the-art KGE models. Furthermore, we will explore the
potential real-world applications of the learned embeddings in the medical domain.

2.4. Model Compression Methods

Model compression techniques aim to reduce the storage and computational require-
ments of deep learning models while maintaining their performance. Two popular model
compression methods are knowledge distillation [16,36] and weight quantization [17,37].

Knowledge distillation involves training a smaller student model using the knowledge
acquired by a larger teacher model, allowing the student model to achieve competitive
performance with a reduced model size. However, the effectiveness of knowledge distillation
depends on the quality of the teacher model and the choice of the student model’s architecture.

Weight quantization, on the other hand, reduces the numerical precision of the model
parameters, leading to significant reductions in both model size and computational require-
ments. Various weight quantization techniques have been proposed, including binary [38],
ternary [39], and vector quantization [40]. Despite the advantages of weight quantization,
it may introduce quantization errors that can affect the model’s performance, especially
when extreme quantization levels are applied.

These model compression techniques have been widely used in various deep learning
domains, such as computer vision and natural language processing. However, their applica-
tion in the context of knowledge graph embeddings and medical knowledge graphs remains
relatively unexplored, with ample opportunities for further investigation and improvement.

In the realm of model compression techniques for knowledge graph embeddings,
our research objectives include examining the effectiveness of knowledge distillation and
weight quantization methods in reducing the storage and computational requirements of
deep learning models while preserving their performance, particularly in the context of
medical knowledge graphs. We will develop a teacher–student model compression ap-
proach for our Adaptive Hierarchical Transformer with Memory (AHTM) model, utilizing
knowledge distillation and weight quantization techniques to create a more resource-
efficient model. Our research questions involve identifying the potential challenges and
trade-offs associated with applying these model compression techniques to knowledge
graph embeddings.

3. Methodology

In this section, we describe the methodology employed for knowledge graph em-
bedding using the Med-DiseaseKG dataset, which is developed based on the format of
the FB15k-237 dataset. Our proposed approach combines a novel data input module,
which incorporates a convolution operation and a residual network, with the Adaptive
Hierarchical Transformer with Memory (AHTM) architecture. Furthermore, we employ a



Electronics 2023, 12, 2315 5 of 18

teacher–student model using knowledge distillation and weight quantization methods for
model compression. The overall pipeline consists of four main components: (1) Data Input
Module, (2) AHTM Module, (3) Residual Block, and (4) Compression Model.

3.1. Data Input Module

The Data Input Module plays a crucial role in processing the knowledge graph triples
and generating suitable input representations that can be effectively utilized by the AHTM
module. Considering a triple (h, r, t), where h denotes the head entity, r represents the rela-
tion, and t corresponds to the tail entity, the module carries out the subsequent operations,
as illustrated in Figure 1, and we perform the following operations:

Figure 1. Input Layer: composite embedding of header entities and relationships and tail entity
embedding using Building Block.

1. Concatenation-1: We concatenate the embedding vectors of the head entity and the
relation, resulting in a combined representation z = [h, r], where [·; ·] denotes the
concatenation operation.

2. Convolution: we apply a convolution operation on the concatenated representa-
tion z to obtain a complex embedding phasor for the head entity and the relation.
The convolution operation can be mathematically defined as:

phr = W c ∗ z + bc (1)

where W c is the convolutional kernel, ∗ denotes the convolution operation, and bc is
the bias term.

3. Tail Entity Embedding: we employ a residual network with a softplus activation
function σ(x) = log (1 + ex) to obtain the embedding vector of the tail entity:

t′ = BuildingBlock(t) (2)

where BuildingBlock(·) represents the residual network.
4. Concatenation-2: we concatenate the complex embedding phasor of the head entity

and the relation, phr, with the embedding vector of the tail entity, t′, to form the output
of the data input module:

Oinput = [Phr; t′] (3)

3.2. AHTM Module

The AHTM module receives the output of the Data Input Module, denoted as Oinput,
as its input, and processes it through a streamlined Adaptive Hierarchical Transformer
with Memory architecture. Comprising key components such as Tree-based Encoding, Joint
Attention, Neural Turing Machine (NTM), and Adaptive Hierarchical Transformer Layers,
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the AHTM module is designed to effectively capture and process complex relationships
within the knowledge graph. A comprehensive depiction of the AHTM module and its
components can be found in Figure 2. The following sections provide a detailed exploration
of each constituent element.

Figure 2. Adaptive-Hierarchical Transformer with Memory architecture.

3.2.1. Tree-Based Encoding

The Tree-based Encoding component, denoted as TreeEnc, is designed to capture the
hierarchical structure of the input data. Given the input representation oinput, TreeEnc
generates a tree-structured representation, which can be mathematically expressed as:

T = TreeEnc(Oinput) (4)

where T is the tree-structured representation of the input data. The TreeEnc uses the
correlation function of the Tree-LSTM model. Given an input node x and its children nodes
c1, c2, . . . , cn, we have the following equations for Tree-LSTM:

ix = σ(W(i)x + U(i)hc1 + · · ·+ U(i)hcn + b(i)) (5)

fxk = σ(W( f )x + U( f )hck + b( f )) (6)

ox = σ(W(o)x + U(o)hc1 + · · ·+ U(o)hcn + b(o)) (7)

ux = tanh(W(u)x + U(u)hc1 + · · ·+ U(u)hcn + b(u)) (8)

cx = ix � ux +
n

∑
k=1

fxk � ck (9)

hx = ox � tanh(cx) (10)

In the Tree-LSTM model, we compute the input gate ix, forget gates fxk, output gate ox,
and cell update gate ux using the input node x and its children nodes c1, c2, . . . , cn. The cell
state cx is updated using the input, forget, and cell update gates. Finally, the hidden state
hx is computed using the output gate and the updated cell state.

3.2.2. Joint Attention

The Joint Attention component processes the hierarchical representations generated
by the Tree-based Encoding module. It combines multi-head self-attention and joint
attention mechanisms to incorporate information from different levels of the tree structure.
The output of the Joint Attention module, denoted as J, can be calculated as:

J = JointAttention(T), (11)

where JointAttention(·) represents the Joint Attention module. The Joint Attention module
combines self-attention mechanisms and joint attention mechanisms to enhance the model’s
ability to capture both extra and inter relationships among entities. The JointAttention
function is formulated as follows:
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1. Self-attention mechanism: Given a set of input embeddings X = x1, x2, . . . , xn,
the self-attention mechanism computes the attention scores between each pair of
input embeddings as follows:

αij =
exp(score(xi, xj))

∑n
k=1 exp(score(xi, xk))

(12)

where score(xi, xj) is a function that computes the attention score between xi and xj.
The scoring function is formulated as follows:

score(xi, xj) = xT
i Wxj (13)

where W is a learnable weight matrix.
2. Joint attention mechanism: in addition to self-attention, we incorporate a joint at-

tention mechanism that leverages external context information C = c1, c2, . . . , cm to
guide the attention process. The joint attention mechanism computes the attention
scores as follows:

βij =
exp(score(xi, xj, C))

∑n
k=1 exp(score(xi, xk, C))

(14)

where score(xi, xj, C) is a function that computes the joint attention score between xi
and xj considering the external context information C.

3. Combining self-attention and joint attention mechanisms: the JointAttention func-
tion combines the self-attention and Joint Attention mechanisms using a weighted sum:

JointAttention(X, C) = λ · α + (1− λ) · β (15)

where λ is a learnable scalar that balances the contribution of self-attention and joint
attention mechanisms.

By combining self-attention and Joint Attention mechanisms, the JointAttention func-
tion allows the model to effectively capture both intra- and inter-relationships among the
entities, while considering the external context information.

3.2.3. Neural Turing Machine (NTM)

The Neural Turing Machine (NTM) is an external memory mechanism that augments
the AHTM module by allowing it to store and retrieve information. The NTM interacts
with the Joint Attention output through read and write operations. The memory state of
the NTM, denoted as M, can be updated as:

Mt+1 = NTM(Jt, Mt), (16)

where t denotes the current time step and NTM(·, ·) represents the Neural Turing Machine.
The NTM module is based on the Neural Turing Machine. Given a controller state ht,

the read and write operations are defined as follows:

kr
t , kw

t , βr
t , βw

t , gr
t , gw

t , sr
t , sw

t , γr
t , γw

t = Controller(ht) (17)

wr
t = ReadHead(kr

t , βr
t , gr

t , sr
t , γr

t ) (18)

ww
t = WriteHead(kw

t , βw
t , gw

t , sw
t , γw

t ) (19)

Mt = Write(Mt−1, ww
t ) (20)

rt = Read(Mt, wr
t) (21)

The Neural Turing Machine module consists of a controller, read and write heads,
and a memory matrix M. The controller takes the current state ht as input and computes
the parameters for the read and write heads. The read and write weights wr

t and ww
t are
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computed by the ReadHead and WriteHead functions. The memory matrix Mt is updated
using the write weights, and the read vector rt is computed using the read weights.

3.2.4. Adaptive Hierarchical Transformer Layers

The Adaptive Hierarchical Transformer Layers consist of a stack of Transformer layers
with gated layer control. Each layer in the stack processes the output from the NTM and
the previous layer. The output of the i-th layer, denoted as H i, can be computed as:

H i = TransformerLayeri(H i−1, M), (22)

where TransformerLayeri(·, ·) represents the i-th Transformer layer, and H0 = J is the
initial input to the stack.

The TransformerLayer combines standard Transformer layers with gating mechanisms.
Given an input matrix X ∈ Rn×d, the layer is computed as follows:

M1 = LayerNorm(X + MultiHeadAttention(X, X, X)) (23)

M2 = LayerNorm(M1 + FFN(M1)) (24)

Z = σ(Wz M2 + bz) (25)

O = Z�M2 + (1− Z)� X (26)

The TransformerLayer starts with a multi-head attention operation on the input matrix
X. The output of the attention operation is added to the input and normalized using
LayerNorm, resulting in the intermediate matrix M1. A feed-forward network (FFN) is
applied to M1, and the output is added to M1 and normalized, resulting in M2. A gating
mechanism is applied using a sigmoid activation function (σ) to produce the gate values Z.
Finally, the output O is computed as a linear combination of M2 and X, controlled by the
gate values Z.

The gated layer control mechanism dynamically adjusts the contribution of each layer
based on the input data. The final output of the Adaptive Hierarchical Transformer Layers,
denoted as Hfinal, is a weighted sum of the outputs from all layers:

Hfinal =
N

∑
i=1

αi H i, (27)

where N is the total number of Transformer layers, and αi is the gating weight for the i-th
layer, calculated using a gating mechanism:

αi = σ(Wα H i + bα), (28)

where σ(·) is the sigmoid activation function, Wα is the weight matrix, and bα is the
bias term.

Finally, the output of the AHTM module, denoted as OAHTM, is computed by applying
a linear transformation followed by a softmax activation function on Hfinal:

OAHTM = softmax(W o Hfinal + bo), (29)

where W o and bo are the weight matrix and bias term for the output layer, respectively.
In summary, the AHTM module processes the input representations generated by the

Data Input Module, leveraging a hierarchical structure and external memory to capture
complex relationships in the knowledge graph. The Tree-based Encoding, Joint Attention,
Neural Turing Machine, and Adaptive Hierarchical Transformer Layers work in conjunction
to produce the final output, OAHTM, which is subsequently used in the residual block and
teacher–student model components.
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3.3. Residual Block

The residual block component is introduced between the Data Input Module and the
final output of the AHTM module to facilitate more efficient learning and better gradient
flow. The rationale behind using a residual connection is to allow the model to learn a more
direct mapping between the input and output, which can alleviate the vanishing gradient
problem that may occur in deep networks, as demonstrated by He et al. (2016) [41] in the
context of residual networks (ResNets) for image classification.

Given the output of the Data Input Module, Oinput, and the output of the AHTM Mod-
ule OAHTM, the Residual Block computes the final output of the model, Ofinal, as follows:

Ofinal = OAHTM + F(Oinput), (30)

where F(·) is a learnable function that transforms Oinput to match the dimensions and the
latent feature space of OAHTM. The function F(·) can be defined as:

F(Oinput) = W FOinput + bF (31)

where W F is the weight matrix and bF is the bias term associated with the transforma-
tion function.

The residual connection allows the gradients to flow more easily through the network
during backpropagation, which can help the model learn more effectively, especially in
deeper architectures. By combining the Data Input Module and the AHTM module with a
residual connection, the model can leverage both the initial representations and the higher-
level features captured by the AHTM module, resulting in improved overall performance.

3.4. Compression Model

Model compression seeks to decrease the storage and computational demands of deep
learning models without compromising their performance. In the proposed approach,
we implement a teacher–student model incorporating knowledge distillation and weight
quantization methods to achieve effective model compression. A schematic representation
of the model compression process, including its key components, can be found in Figure 3.
A comprehensive examination of the individual techniques employed is provided in the
subsequent sections.

Figure 3. Teacher–student architecture.

3.4.1. Knowledge Distillation

The teacher–student model, also known as model distillation, involves training a
smaller student model to mimic the behavior of a larger, more accurate teacher model.
The basic idea is to transfer the knowledge from the teacher model to the student model,
allowing the student model to achieve comparable performance with reduced complexity.
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Given the output of the teacher model, Oteacher, and the output of the student model,
Ostudent, we compute the knowledge distillation loss, LKD as the Kullback–Leibler (KL)
divergence between the softened probability distributions of the two models:

LKD = KL
(

softmax(Oteacher/T)
softmax(Ostudent/T)

)
, (32)

where T is the temperature parameter that controls the softness of the probability distribu-
tions. A higher temperature value results in softer distributions, which can facilitate better
knowledge transfer from the teacher model to the student model.

During training, the student model is optimized to minimize a weighted combination
of the knowledge distillation loss and the original task loss, Ltask:

Ltotal = αLKD + (1− α)Ltask, (33)

where α is a hyperparameter that controls the trade-off between the two loss terms.

3.4.2. Weight Quantization

Weight quantization is a model compression technique that reduces the precision
of the model’s weights, thereby reducing the storage and computational requirements.
Given a full-precision weight matrix, W , the quantized weight matrix, Wquant, can be
computed as:

Wquant = Q(W , b), (34)

where Q(·, ·) is a quantization function that maps the full-precision weights to a lower-
precision representation with b bits. To maintain the accuracy of the model during the
quantization process, a set of scale factors, S, is used to rescale the quantized weights:

W rescaled = S�Wquant, (35)

where � denotes the element-wise multiplication operation.
The scale factors, S, and the quantized weights, Wquant, are learned during the training

process by minimizing the quantization error, which is the difference between the full-
precision weights and the rescaled quantized weights:

Lquant = |W −W rescaled|2 (36)

By combining knowledge distillation and weight quantization, we can effectively com-
press the model, reducing its storage and computational requirements while maintaining
its performance. The compressed student model can then be used in resource-constrained
environments or for faster inference.

In summary, the proposed model compression technique integrates a teacher–student
model with knowledge distillation and weight quantization to create a compact version
of the original model. This compressed model can achieve comparable performance with
reduced complexity, making it more suitable for deployment in various practical scenarios
with limited computational resources or strict latency requirements.

4. Experiments and Results
4.1. Experimental Setting

The experimental setup was carefully designed to ensure the reliability and validity
of the results. The experiments were conducted using Python 3.8 as the programming
language, while the deep learning framework PyTorch 1.12.0 was utilized for model
implementation and training. The configuration of the model parameters was chosen
based on empirical studies and best practices in the literature. Specifically, the following
settings were adopted for the experiments:
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Training epochs: The model was trained for a total of 2000 rounds (epochs) to ensure
sufficient exposure to the data and adequate convergence of the model’s parameters. This
choice was informed by the literature and our preliminary experiments, which indicated
that 2000 rounds were adequate to achieve a stable performance.

Batch size: A batch size of 256 was selected to balance the trade-off between computa-
tional efficiency and convergence speed. This choice allowed for effective parallelization
of the training process, thereby reducing the training time while maintaining the model’s
performance.

Embedding size: The size of the entity and relation embeddings was set to 200,
providing an adequate representation capacity for capturing the complex semantics of
the medical knowledge graph. This choice was informed by the literature and previous
experiments, which have demonstrated that an embedding size of 200 offers a suitable
trade-off between model complexity and expressiveness.

Learning rate: A learning rate of 0.002 was chosen to optimize the model’s conver-
gence rate while minimizing the risk of overshooting the optimal solution. This learning
rate value allowed the model to adapt quickly to the training data while retarding potential
issues such as oscillations or divergence.

Label smoothing: To address the issue of overfitting and improve the model’s gen-
eralization capability, label smoothing with a parameter value of 0.2 was employed. This
technique has been shown to enhance the performance of deep learning models by encour-
aging the model to assign non-zero probabilities to incorrect class labels, thereby mitigating
overconfidence in its predictions.

4.2. Experimental Dataset

We evaluate the performance of our proposed model using a diverse set of datasets,
including the self-constructed medical knowledge graph dataset “Med-Dis” and the widely
used FB15K-237 and WN18RR datasets. This approach allows us to assess not only the
model’s effectiveness in the specific medical domain but also its generalization capabilities
across different knowledge graph structures and domains.

The data in our self-constructed “Med-Dis” dataset are derived from various medical
encyclopedia health websites and relevant resources. Following our curation process,
a relatively comprehensive and structured dataset has been assembled. The dataset is
formatted similarly to the FB15K-237 and WN18RR datasets, using structured triplets to
represent entities and relationships. The “Med-Dis” dataset comprises five types of entities:
Disease, Drug name, Symptom name, Diagnostic item, and Department name. The number
of entities in each category is as follows: 8372 Diseases, 3729 Drug names, 6203 Symptom
names, 3201 Diagnostic items, and 52 Department names.The following provides our brief
description of each entity type:

• Disease: This entity type represents a different disease name, such as emphysema,
gastric ulcer, liver cancer, heart disease, etc.

• Drug name: This entity type represent various drugs for the treatment of correspond-
ing diseases, such as aspirin, acetaminophen, metronidazole, norfloxacin, etc.

• Symptom names: This entity type represents the names of various symptoms as-
sociated with different diseases, such as headache, fever, nausea, vomiting, chest
tightness, etc.

• Diagnostic items: This entity type represents diagnostic items associated with various
diseases, such as blood tests, B-mode ultrasounds, magnetic resonance imaging (MRI),
computed tomography (CT) scans, etc.

• Department names: This entity type represents common medical department names,
such as Respiratory Medicine, Ophthalmology, Urology, Endocrinology, etc.

The dataset contains five types of relationships: Disease symptom, Concurrent disease,
Regular medication, Required inspection, and Co-department. There are 6011 Disease
symptom relationships, 11,829 Concurrent disease relationships, 58,934 Regular medi-
cation relationships, 38,706 Required inspection relationships, and 8752 Co-department
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relationships. This comprehensive dataset provides a rich and diverse knowledge base for
modeling complex relationships among various medical entities.The following provides
our brief description of each relation type:

• Disease symptom: This relationship type connects the “Disease” class entities to
the “Symptom names” class entities, establishing a link between a disease name and
its corresponding symptom. This allows a clear understanding of the associations
between diseases and their related symptoms.

• Concurrent disease: This relationship type is employed to establish connections
between specific diseases and their associated complications within the “Disease”
class entities. By associating a disease with its corresponding complications, we can
accurately represent the association between a disease and its complications.

• Regular medication: This relationship type connects the “Disease” class entity to
the “Drug name” class entity, establishing a link between a specific disease and
its corresponding therapeutic agent. This connection enables us to gain a clearer
understanding of the association between a particular disease and the drugs used for
its treatment.

• Required inspection: This relationship type connects the “Disease” class entity with
the “Diagnostic Items” class entity, establishing a link between a specific disease
and its corresponding required diagnostic items. This connection enables a clear
understanding of the association between a disease and the necessary tests for its
identification or evaluation.

• Co-department: This relationship type connects the “Disease” class entity with the
“Department names” class entity, establishing a link between the disease name and
its corresponding diagnostic department. This association elucidates the relationship
between a specific disease and the medical department responsible for its diagnosis
and treatment.

In addition to the “Med-Dis” dataset, we also employ the FB15K-237 and WN18RR
datasets, which are widely used in the knowledge graph embedding research community.
These datasets provide a common benchmark to evaluate the performance of our proposed
model and compare it with existing methods.

Table 1 presents a summary of the statistical information for the “Med-Dis” dataset,
highlighting the distribution of entities and relationships across different categories. Sim-
ilarly, Table 2 provides a summary of the statistical information for the FB15K-237 and
WN18RR datasets, showcasing their diversity and complexity.

Table 1. Summary of Med-Dis Dataset Statistics.

Entity Type Quantity Relation Type Quantity

Disease 8342 Disease symptom 6011
Drug name 3729 Concurrent disease 11,829

Symptom name 6203 Regular medication 58,934
Diagnostic item 3201 Required inspection 38,706

Department name 52 Co-Department 8752
Total 21,527 Total 124,232

Table 2. Summary of FB15K-237 and WN18RR datasets.

Benchmarks Entities Relations

WN18RR 40,943 11
FB15k-237 14,541 237

By utilizing these datasets, we aim to demonstrate the effectiveness and robustness of
our proposed model in handling a variety of knowledge graph structures and challenges,
both within the medical domain and beyond.
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4.3. Evaluation Indicators

To evaluate the performance of our proposed model, we employ two widely used
evaluation metrics: Mean Rank (MR) and Hits@10. These metrics allow us to assess the
model’s effectiveness in ranking correct entities and its ability to retrieve relevant entities
within the top-ranked predictions.

Mean Rank (MR) is the average rank of the correct entities in the ranked list of entities
predicted by the model. A lower MR value indicates better performance, as it suggests that
the correct entities are ranked closer to the top of the predictions. Mathematically, MR is
defined as follows:

MR =
1
N

N

∑
i=1

ranki (37)

where N is the total number of test triples and ranki denotes the rank of the correct entity
for the i-th triple.

Hits@10, on the other hand, measures the proportion of correct entities ranked within
the top 10 predictions. A higher Hits@10 value indicates better performance, as it demon-
strates the model’s ability to retrieve relevant entities among the top-ranked predictions.
Hits@10 is mathematically defined as:

Hit@10 =
1
N

N

∑
i=1

[ranki ≤ 10] (38)

where [·] represents the indicator function, which takes a value of 1 if the condition inside
the brackets is true and 0 otherwise.

By employing these evaluation metrics, we can effectively gauge the performance of
our model in various knowledge graph settings and compare it with existing state-of-the-
art methods.

4.4. Ablation Experiment

In order to evaluate the individual contributions of various components within our
proposed model, we perform a series of ablation experiments. Specifically, we assess the
impact of removing the residual blocks and replacing the AHTM module with a standard
Transformer module on the model’s overall performance. By comparing the results of
our full model to those of the ablated versions, we can better understand the significance
of each component. The results of the ablation experiments for the Med-Dis, FB15K-237,
and WN18RR datasets are presented in Tables 3–5, respectively.

Table 3. Ablation experiments of Our Model on the Med-Dis dataset.

Method MR Hit@10

InputLayer+Transformer 2981 0.568
InputLayer+AHTM 2537 0.624

InputLayer+Transformer+ResNet 2893 0.586
InputLayer+AHTM+ResNet 2265 0.632

Table 4. Ablation experiments of Our Model on the FB15K-237 dataset.

Method MR Hit@10

InputLayer+Transformer 226 0.487
InputLayer+AHTM 193 0.526

InputLayer+Transformer+ResNet 215 0.501
InputLayer+AHTM+ResNet 173 0.582



Electronics 2023, 12, 2315 14 of 18

Table 5. Ablation experiments of Our Model on the WN18RR dataset.

Method MR Hit@10

InputLayer+Transformer 3091 0.481
InputLayer+AHTM 2739 0.513

InputLayer+Transformer+ResNet 2998 0.496
InputLayer+AHTM+ResNet 2364 0.562

These ablation results shed light on the importance of incorporating both the AHTM
module and residual blocks into our model. From the tables, it is evident that the full
model with InputLayer+AHTM+ResNet consistently achieves the best performance across
all three datasets, in terms of both MR and Hit@10. Comparatively, the performance of the
model with only the InputLayer+Transformer is inferior, highlighting the efficacy of the
AHTM module in enhancing the model’s capability to capture complex medical knowledge
graph relationships. Furthermore, the results indicate that the addition of residual blocks
contributes to the model’s performance improvements, as the models with residual blocks
generally outperform their counterparts without them.

In addition, the ablation experiments demonstrate the effectiveness of integrating
the AHTM module and residual blocks into our model, as they contribute to the superior
performance observed across the Med-Dis, FB15K-237, and WN18RR datasets. These
results further emphasize the importance of carefully designing and combining model
components to effectively tackle the challenges posed by the medical knowledge graph
completion task.

4.5. Comparison Experiment

In this study, we present the results of the comparison experiments conducted between
our proposed model and several baseline models, including TransE, DistMult, RotatE,
ConvE, InteractE, JointE, and ConvKB. We evaluate the performance of these models on
three datasets: Med-Dis, FB15K-237, and WN18RR. Our model’s performance is assessed
using two key evaluation metrics: Mean Rank (MR) and Hits@10. A lower MR value and a
higher Hits@10 value indicate better performance. The experimental results are presented
in Tables 6–8.

Table 6. Comparison experiments of different algorithms on the FB15K-237 dataset.

Method MR Hit@10

TransE 347 0.465
DistMult 254 0.419

RotatE 177 0.533
InteractE 172 0.535

JointE 177 0.543
ConvE 244 0.501

ConvKB 257 0.517
Our Model 173 0.582

Table 7. Comparison experiments of different algorithms on the WN18RR dataset.

Method MR Hit@10

TransE 3385 0.501
DistMult 5110 0.491

RotatE 3340 0.571
InteractE 5202 0.528

JointE 4655 0.537
ConvE 5277 0.479

ConvKB 2554 0.525
Our Model 2364 0.562
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Table 8. Comparison experiments of different algorithms on the Med-Dis dataset.

Method MR Hit@10

TransE 3079 0.529
DistMult 4897 0.534

RotatE 3184 0.615
InteractE 5013 0.573

JointE 4236 0.558
ConvE 5162 0.497

ConvKB 2541 0.561
Our Model 2265 0.632

The experimental results demonstrate that our proposed model consistently out-
performs the baseline models across all datasets. Specifically, on the Med-Dis dataset,
compared to the performance baseline approach, our model improves up to 56% in MR
and 27% in Hits@10. On the FB15K-237 dataset, our model improves the MR by nearly 51%
and the Hits@10 value by 39%. In the WN18RR dataset, the MR value increases by nearly
55% and the Hits@10 value by 18%. These results serve to validate the effectiveness of our
model and highlight the improvements offered by the integration of the AHTM module,
residual blocks, and model compression techniques.

The comparison experiments indicate the comprehensive performance advantage of
our proposed model over the baseline models. Our model’s superior performance can
be attributed to the careful design and combination of its components, which enable it to
capture complex relationships in medical knowledge graphs effectively.

5. Conclusions

In this paper, we have presented a novel knowledge graph embedding model based
on the Adaptive Hierarchical Transformer with Memory (AHTM) architecture, specifically
tailored for the medical domain. Our model effectively tackles the challenges presented
by the complex and heterogeneous nature of medical knowledge graphs. We introduced
the data input module, which leverages convolution and residual networks to generate
embeddings for head entities, relations, and tail entities. The AHTM module integrates tree-
based encoding, joint attention, Neural Turing Machines (NTM), and adaptive hierarchical
transformer layers to effectively process the input representations.

The learned embeddings generated by the AHTM model encode the relationships
and hierarchical structures within medical knowledge graphs. These embeddings can
be interpreted as continuous representations of medical entities and relationships in a
high-dimensional space. By analyzing the distance and patterns in this space, one can
identify meaningful connections between entities and gain insights into the underlying
structure of the medical domain. The embeddings can be utilized in various real-world
medical applications, some potential applications include:

• Auxiliary diagnosis of disease: The embeddings can be used to develop diagnostic
support systems that help healthcare professionals identify diseases based on patient
symptoms, medical history, and other relevant factors.

• Treatment Recommendation: By examining the embeddings, treatment recommen-
dations can be generated based on the relationships between diseases, drugs, and di-
agnostic items. This can assist healthcare professionals in selecting appropriate treat-
ments.

• Drug Repurposing: The embeddings can be used to discover new therapeutic ap-
plications for existing drugs by identifying similarities between drug entities and
their relationships with diseases. This can potentially expedite the drug development
process and reduce costs.

• Medical Knowledge Discovery: The learned embeddings can facilitate the discovery
of previously unknown relationships between medical entities. By analyzing the em-
beddings, researchers can identify potential correlations, causative factors, or patterns
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that may warrant further investigation, ultimately contributing to the expansion of
medical knowledge.

Moreover, we implemented a model compression technique using knowledge dis-
tillation and weight quantization methods to reduce the storage and computational re-
quirements of our model while maintaining its performance. Our proposed model was
evaluated on a self-constructed medical knowledge graph dataset, “Med-Dis”, as well as
the widely used FB15K-237 and WN18RR datasets. Experimental results demonstrated the
superior performance of our model compared to several baseline methods, with substantial
improvements in MR and Hits@10 values.

Despite the promising results, our model has some limitations. First, our model
primarily focuses on capturing both intra- and inter-relationships among entities in the
medical knowledge graph but does not explicitly consider temporal information that may
be present in the data. This limitation may lead to an incomplete understanding of the
dynamics underlying the relationships among entities, as they may evolve over time.
Second, our model assumes a fixed structure of the medical knowledge graph, which may
not hold true in real-world scenarios where new entities and relationships are constantly
being discovered. This assumption might result in a less adaptive model when dealing
with dynamic changes in medical knowledge. Finally, the model’s interpretability could be
further improved to facilitate a better understanding of the complex relationships captured
by the model. Enhancing interpretability would enable users to better leverage the learned
embeddings for practical medical applications and contribute to a deeper comprehension
of the underlying medical phenomena.

In conclusion, our proposed model advances the state-of-the-art in medical knowledge
graph embedding by effectively capturing complex relationships and incorporating the
AHTM architecture and model compression techniques. For future work, we plan to
address the following priorities:

• We plan to incorporate temporal information in the AHTM model by exploring ap-
proaches such as temporal features, attention mechanisms, recurrent neural networks,
T-GCNs, and temporal edge prediction. Addressing these aspects will enable the
model to capture complex temporal dynamics in medical knowledge graphs, en-
hancing its applicability to real-world medical applications like disease diagnosis,
treatment planning, and drug discovery.

• We aim to address the challenge of the evolving structure of medical knowledge
graphs, which occurs in real-world scenarios with the constant discovery of new
entities and relationships. Our plan is to create a dynamic AHTM model that adapts to
graph structure changes over time. This can be achieved using techniques such as on-
line, incremental, or continual learning, allowing the model to update its embeddings
and knowledge base in real-time with new information.

• We aim to enhance the AHTM model’s interpretability, enabling users to better com-
prehend learned embeddings for real-world medical applications and deepen un-
derstanding of underlying medical phenomena. We plan to incorporate explainable
AI techniques, such as attention mechanisms, feature visualization, and local inter-
pretable model-agnostic explanations into our model. These techniques will provide
insight into the complex relationships captured by the model and reveal significant
contributing features.
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