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Abstract: Zero-shot learning (ZSL) is implemented by transferring knowledge from seen classes to
unseen classes through embedding space or feature generation. However, the embedding-based
method has a hubness problem, and the generation-based method may contain considerable bias.
To solve these problems, a joint model with multiple generative adversarial networks (JG-ZSL) is
proposed in this paper. Firstly, we combined the generation-based model and the embedding-based
model to build a hybrid ZSL framework by mapping the real samples and the synthetic samples into
the embedding space for classification, which alleviates the problem of data imbalance effectively.
Secondly, based on the original generation-method model, a coupled GAN is introduced to generate
semantic embeddings, which can generate semantic vectors for unseen classes in embedded space
to alleviate the bias of mapping results. Finally, semantic-relevant self-adaptive margin center loss
was used, which can explicitly encourage intra-class compactness and inter-class separability, and it
can also guide coupled GAN to generate discriminative and representative semantic features. All
the experiments on the four standard datasets (CUB, AWA1, AWA2, SUN) show that the proposed
method is effective.

Keywords: zero-shot learning; generalized zero-shot learning; GANs; feature generation methods

1. Introduction

Supervised classification has achieved great success in the research, but in this kind of
classification, each class needs enough labeling training, and the learned classifier cannot
deal with unseen classes [1]. To solve the above problems, the methods of few/one-
shot learning [2–4], open set recogniton [5], cumulative learning [6], class-incremental [7]
and open world [8] have been put forward. However, in the above methods, if unseen
classes with no available tag instance appear in the test stage, the classifier still cannot
determine their class tag. Therefore, zero-shot learning (ZSL) is proposed [9]. With the
help of auxiliary information that contains descriptions of seen and unseen classes and
the knowledge learned from training sets that belong to seen classes, sufficient labeled
instances are provided [10]. ZSL methods can generate predictions for instances that belong
to unseen classes despite that the seen and unseen classes are disjointed [11]; that is, given
labeled training instances belonging to the seen classes, zero-shot learning aims to learn a
classifier which can classify testing instances belonging to the unseen classes. From this
definition, we can see that the general idea of zero-shot learning is to transfer the knowledge
contained in the training instances to the task of testing instance classification. The label
spaces covered by the training and the testing instances are disjoint. Thus, zero-shot
learning is a subfield of transfer learning. In transfer learning [12], knowledge contained
in the source domain and source task is transferred to the target domain for learning the
model in the target task [13].

Since its birth, ZSL has become a fast-developing field in machine learning and has a
wide range of applications in computer vision, natural language processing, and ubiquitous
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computing [13]. Previous works for ZSL learn a space embedding function to implement
the classification. According to the choice of embedding space, embedding-based methods
can be divided into three categories: semantic space embedding methods, visual space
embedding methods, and common space embedding methods [14]. They directly estimate
the conditional distribution or mapping between visual features and their corresponding at-
tributes. Semantic space embedding methods map visual features to semantic space directly.
DeViSE [15] is one of the most representative models; it learns a linear mapping between
image and semantic space using an efficient ranking loss formulation, and it is evaluated
on the large-scale ImageNet dataset. However, using the semantic space as the embedding
space means that the visual feature vectors need to be projected into the semantic space,
which will shrink the variance of the projected data points and thus aggravate the hubness
problem [16,17]. To alleviate the hubness problem, Li et al. [18] proposed a novel deep
neural network-based embedding model (DEM). Although DEM uses the output visual
feature space of a CNN subnet as the embedding space, which can alleviate the hubness
problem to a certain extent, the inconsistency between the manifold of visual features and
semantic features leads to the semantic gap. To solve the above-mentioned problem, Min et
al. proposed a domain-specific embedding network (DSEN) [19] model, which considers
the problem of semantic consistency and prevents the semantic relationship from being
destroyed in the embedded space. Although the embedding-based method has been used
and developed for a long time and is a very competitive zero-shot image classification
method, due to the extreme imbalance in the number of training samples between seen
and unseen classes, most of the existing methods still have great limitations.

Recent works mainly focus on synthesizing image features with a generative model,
and generation-based methods have become a hot research topic [20,21]. These methods
fall into the data augmentation-based category. The basic assumption of approaches in this
category is that the intra-class cross-sample relationship learned from seen classes can be
applied to unseen classes. Once the cross-sample relationship is modeled and learned from
seen classes, it can be applied on the unlabeled samples of unseen class to hallucinated
new samples, and unsupervised learning is transformed into supervised learning using
synthesized new samples [22].

Depending on the different generation models, the existing generation-based methods
mainly include GAN-based methods, VAE-based methods, and normalizing flow-based
methods [23–25]. The normalizing flow-based methods build complex distributions by
mapping a simple distribution through invertible functions, and they allow exact likelihood
calculation while being efficiently parallelizable, but they have not been widely studied
due to the particularity of the architecture [25]. Most of the VAE-based methods are
unidirectional alignment. This method captures the low-dimensional potential features of
visual features and then realizes unidirectional alignment between the generated pseudo-
visual features and semantic attributes through decoding and reconstruction of the formula.
SE-GZSL [26] adopts the VAE-based structure, and the generation model is composed of
the probabilistic encoder and conditional decoder. At the same time, the feedback drive
mechanism is introduced, which can improve the reliability of the generator. Although
VAE is capable of generating pseudo-visual features stably to effectively avoid pattern
collapse, the semantic information contained in the generated pseudo-visual features is
very limited. In order to overcome the above problems, the GAN-based methods are
proposed; this method can generate high-quality pseudo-visual features after the model
is trained. VERMA et al. [27] proposed a meta-learning model ZSML based on the
class attribute condition setting. The generator module and discriminator module with a
classifier were associated with the meta-learning agent, respectively, and the model could
be trained only by inputting a few visible class samples. Xian et al. [28] use the generative
adversarial network to make the classification based on semantic features and Gaussian
noise to generate unseen visual features, transforming the zero-shot learning problem into
a supervised classification problem. The result of generation-based methods is better than
embedding-based methods, and it is also the mainstream method at present.
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In the latest work in 2022, both embedding-based and generation-based methods have
been further explored and updated. Xu et al. [29] propose a Visually Grounded Semantic
Embeddings model (VGSE), which learns visual clusters from seen classes and automat-
ically predicts the semantic embeddings for each category by building the relationship
between seen and unseen classes given unsupervised external knowledge sources. In
terms of generation-based methods, to generate high-quality and diverse image features,
Yu et al. [12] proposes a new generative model that adds a semantic constraint module
and introduces a Euclidean distance loss for constraining feature generation. Although
the above methods can solve the problem of the existence of zero-shot learning, it also
introduces a new problem: previous work on the generation-based methods only used
one generative adversarial network to simulate the visual features of unseen classes and
ignored the distribution of these generative features in the mapping space. This may make
the semantic mapping point of the generated feature closer to the semantic prototype of
the seen class in the semantic space, resulting in the final classification result still having a
bias toward the seen class.

To obtain the best of both worlds and solve the new problem mentioned above, we first
propose a hybrid model, which can implement both the space embedding-based method
and the generation-based method. Second, we introduce a generation adversarial network
to simulate the mapping point of unseen class features in the embedding space. Although
the model with multiple GAN cascaded has been fully proven and used in supervised
learning, it has not been applied to zero-shot learning. In this paper, a multilevel GAN
stack structure is introduced for the first time in zero-shot learning to optimize the problem
of data imbalance. Third, we propose a semantic-relevant self-adaptive margin center
loss for the coupled GAN. This loss can encourage intra-class compactness and inter-class
separability and realizes that the coupled GAN can better generate representative and
differentiated semantic features. We evaluate our method on four benchmark datasets, and
the experimental results show that our approach is competitive with other methods.

The contributions of this paper are summarized as follows:

• A hybrid model with joint generative adversarial networks (JG-ZSL) combining the
embedding-based method and the generation-based method is proposed to improve
model sensitivity and specificity.

• A GAN for generating semantic features is introduced to generate mapping points in
embedding space, which can generate semantic vectors for unseen classes in semantic
space to alleviate the bias of mapping results.

• Semantic-relevant self-adaptive margin center loss (SEMC-loss) is designed for the
semantic generated GAN to ensure the generated mapping points in semantic embed-
ding space are not biased to other categories and realize that the whole model can
better distinguish between different classes.

• We evaluate our model on four benchmarks, and the experimental results show that
our proposed method can achieve high accuracy.

2. Materials and Methods
2.1. Problem Definition

We have two disjoint sets of classes in both ZSL and GZSL: the seen class set S =
{cs

i |i = 1, . . . , Ns}, where cs
i is a seen class which provides labeled instances for training,

and unseen class set U = {cu
i |i = 1, . . . , Nu} contains unlabeled instances for testing. Note

that S ∩U = ∅. These instances have different visual features, but for instances from the
same class, their labels and semantic descriptions are the same. Denote the visual feature as
x, class label as y, and semantic description, which is the attribute in this article as a. Then,
each class can be represented as a set Ci = {(xj

i , yj
i , ai)|i = 1, . . . , NS + Nu; j = 1, . . . , n}, n

is the number of instances the class contains; we can infer the semantic descriptor a for an
instance x from its class label y.

ZSL aims to learn a classifier that can categorize the testing instances xu belonging
to the unseen classes U, fzsl : xu → U. Under the more challenging generalized zero-shot
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learning (GZSL) setting, the testing instances x come from both seen class S and unseen
classes U because people are also concerned with the ability to classify instances on seen
and unseen classes. GZSL aims to learns a classifier fgzsl : x → S ∩U.

Zero-shot learning is divided into three learning settings by Wang [13] et al. accord-
ing to whether unlabeled testing instances and the class description information of the
unseen class are used in model learning, as shown in Table 1. In this paper, unlabeled
testing instances are not used when training the generators, but the classifier is trained
using average visual features of unlabeled testing instances and synthetic features that the
generator generates based on the attribute descriptions of the unseen classes. According to
Wang’s definition, our method belongs to the Class-Transductive Instance-Transductive
(CTIT) Setting.

Table 1. Zero-Shot learning setting.

whether unlabeled testing instances are used
yes Instance-Transductive

no Instance-Inductive

whether description information of unseen class are used
yes Class-Transductive

no Class-Inductive

2.2. Hybrid Framework Introduction

The proposed joint GAN cascaded for ZSL (JG-ZSL) is illustrated in Figure 1. Specifi-
cally, the network consists of an embedded network that maps visual features to semantic
space, a GAN that generates visual features based on attributes, and a GAN network that
generates semantic space mapping points based on visual features.

Figure 1. Scheme of the proposed joint GANs (JG-ZSL) network.

2.2.1. Mapping Net

Human beings can summarize the attributes of the observed objects according to the
visual features seen by the naked eye and deduce the categories of the observed objects
according to the attributes. For example, if a child learns from watching a horse, a panda,
and a tiger that they are “horse-like”, “black-white”, and “striped”, he or she can easily
distinguish a zebra from a variety of animals after being told that a zebra is a horse with
black and white stripes [30]. This ability to recognize objects without any visual samples,
only prior knowledge, is zero-shot learning. It is very necessary to ensure machines have
the zero-shot learning ability: first, in real life, the object categories to be recognized usually
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follow the long-tail distribution, some of which have rich training samples, while others
have few or no available training samples. Zero-shot learning can not only get rid of the
dependence on a large number of manual labeling samples but also have high commercial
value in some applications lacking labeling samples. Hence, in order to enable machines
to have this capability, ref. [9] introduced a manually defined attribute layer for the first
time. Through this attribute layer, the classifier based on low-dimensional image features
is transformed into a classifier based on high-dimensional semantic features (attribute
layer) so that the trained classifier has broader classification ability and the ability to break
through category boundaries. For example, in an animal identification problem in an image,
attributes can be a body color (for example, “gray”, “brown”, and “yellow”) or habitat
(for example, “coastal”, “desert”, and “forest”). These attributes are then used to construct
semantic spaces.

Semantic embedding (SE) in conventional ZSL aims to learn an embedding function
E that maps a visual feature x into the semantic embedding space denoted as h = E(x).
The embedding function E is usually a linear transformation consisting of two liner layers,
whose input dimension is set to the dimension of the visual feature and output dimension
is set to the dimension of the semantic feature. At the same time, h = E(x) is also called
linear semantic space because it is composed of fully connected layers. These commonly
used semantic embedding methods rely on a structured loss function proposed in [15].
According to the dot product similarity in the embedding space, the structured loss requires
that the embedding of x is closer to the semantic embedding a of its ground-truth class
than the other class embeddings. Specifically, the structured loss formula is as follows:

LSE(E) = Ep(x,a)[max(0, ∆− aTE(x) + (a′)TE(x))] (1)

where p(x, a) is the empirical distribution of the training samples of seen classes, a′ is a
random selection semantic descriptor of the other categories except a, and ∆ > 0 and is a
margin parameter to make E more robust.

On the basis of the traditional embedding function, Chen et al. [31] found that adding
a non-linear projection head H in embedding space as z = H(h) can better constrain the
original linear embedding space h = E(x), because they showed experimentally that more
information can be formed and maintained in h through this non-linear projection. In the
same way that h = E(x) is called linear space because E is composed of fully connected
layers, we called z = H(h) a non-linear space because the projection H actually is a ReLU
non-linearity. We follow Chen’s strategy in our model; the difference is, Chen set H and E
with the same output dimensionality (e.g., 2048-d), while we change the output dimension
of E to the dimension of the semantic descriptor of the dataset (e.g., for dataset CUB, 312-d);
then, the linear space can be limited to the semantic embedding space.

For the non-linear space z = H(h), we follow the strategy in [32] to perform the
(K + 1)-way classification on zi to learn the embedding hi, where K is the number of
negative examples hi

−, which refers to the samples whose class label is different from the
class label of hi, while the only one positive example is hi

+. Concretely, the cross-entropy
loss of this (K + 1)-way classification problem is calculated as follows:

LSE(H) = − log
exp(zT

i z+/τe)

exp(zT
i z+/τe) + ∑K

k=1 exp(zT
i z−k /τe)

(2)

where τe is a constant called the temperature parameter, which is manually set to adjust the
degree of attention paid to negative samples. The smaller the temperature parameter is, the
more attention is paid to separating this sample from other samples that are most similar.

2.2.2. Feature Generation Nets

The main disadvantage of embedding-based methods is that they suffer from the
bias problem. This means that since the projection function is learned using only seen
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classes during training, it will be biased to predict with seen class labels as output; this bias
problem is caused by a serious data imbalance between seen and unseen class data.

In supervised learning, the problem of data imbalance refers to the huge difference
in the number of samples in each category of the dataset. Take the binary classification
problem as an example: assuming that the number of samples of the positive class is much
larger than that of negative class, in this case, the data are called unbalanced data. In
zero-shot learning, this problem is even more extreme; that is, part of the class samples as
unseen classes are completely missing and cannot participate in the model training process.
Therefore, in supervised learning, the method of repeatedly sampling categories with fewer
samples (over-sampling) or reducing sampling for categories with more samples (under-
sampling) to achieve data balance is not applicable to zero-shot learning. After all, no
samples can be collected from unseen classes. Therefore, unseen class data generation has
become a hot research topic, which can generate pseudo-samples for unseen classes, so that
both seen and unseen classes have training samples and transform unsupervised learning
into supervised learning. Generative Adversarial Networks [23] are particularly appealing
as they allow generating realistic and sharp images conditioned, for instance, on object
categories. Previous work on generation-based methods learn a generation network to
produce the unseen sample. However, in previous work on generation-based methods, the
synthesized instances are usually assumed to follow some distributions (usually Gaussian
distribution) [13], which also leads to a large deviation between the generated sample and
the real sample, and it cannot truly represent the real data situation of the unseen class.
The idea of stacking multilevel generation networks has been proven to be effective in
improving the quality of generation quality, but it has not been used in the ZSL field. In
this paper, two conditional GANs (G f and Ga) are stacked to solve the problem of data
imbalance from different aspects.

G f , the GAN for generating visual feature : The network based on traditional GAN takes
random noise as the prior information input, and the inherent randomness of the deep
neural network makes the quality of the image generated by it unstable. To solve this
problem, conditional GAN is proposed. By adding conditional information to the network
model, it guides the network model to generate pseudo-samples matching the conditions.
We extend the GAN to a conditional GAN by integrating the class embedding to both the
generator G1 and the discriminator D1. Given the training data of seen classes, G1 takes
random Gaussian noise ε and semantic embedding ay as its inputs and outputs a CNN
image feature x̃ of class y. Once the generator G1 learns to generate CNN features of seen
class images, i.e., x, conditioned on the seen class embedding as, it can also generate x̃ of
any unseen class via its class embedding au. The objective function can be expressed as:

min
G1

max
D1

V(D1, G1) = E[log D1(x, ay)] + E[(1− log D1(x̃, ay))] (3)

However, the adversarial nature of GANs makes them notoriously difficult to train,
and the Jenson–Shannon divergence optimized by the original GAN leads to instability
issues. To cure the unstable training issues of GANs, Wasserstein-GAN (WGAN) [33] is
proposed, which optimizes an efficient approximation of the Wasserstein distance [25].
While WGAN attains better theoretical properties than the original GAN, it still suffers
from vanishing and exploding gradient problems due to weight clipping to enforce the
1-Lipschitz constraint on the discriminator. So, we use the improved variant of WGAN, that
is, WGAN-GP [34], which can enforce the Lipschitz constraint through gradient penalty.
We extend the original WGAN-GP to a conditional WGAN-GP by integrating the class
embedding ay to both the generator and the discriminator.

The loss is,

LWGAN f eature = E[D1(x, ay)]− E[D1(x̃, ay)]− λE[(||∇x̂D1(x̃, ay)||2 − 1)2] (4)



Electronics 2023, 12, 2308 7 of 18

where x̃ = G1(ay, ε), x̂ = αx + (1− α)x̃ with α ∈ U(0, 1), and λ is the penalty coefficient.
In contrast to the traditional GAN, the discriminative network here eliminates the sigmoid
layer and outputs a real value. Instead of optimizing the log-likelihood in Equation (3), the
first two terms in Equation (4) approximate the Wasserstein distance, and the third term
is the gradient penalty which enforces the gradient of D1 to have a unit norm along the
straight line between pairs of real and generated points.

Ga, the GAN for generating semantic embedding: The embedding-based method obtains
labeled instances of unseen classes by mapping instances in feature space and attribute
prototypes in semantic space into the same space. Feature space contains labeled training
instances of seen classes, and semantic space contains attribute prototypes of seen and un-
seen classes. Both spaces are real number spaces in which instance and attribute prototypes
are vectors, respectively. By projecting the instance vectors from these two spaces into a
common space, we can obtain labeled instances of unseen classes and classify them in the
mapping space. However, in the embedding-based method, for every unseen class cu, it
has no labeled instance in the feature space; thus, its attribute prototype au in semantic
space is the only labeled instance belonging to the unseen class. That is, only one labeled
instance is available for each unseen class. Therefore, since there are few label instances
of unseen classes, the feature generation methods are proposed to solve the problem of
data imbalance by generating visual features for unseen classes in feature space. However,
in semantic space, labeled instances of the unseen class are still scarce. Especially in the
GZSL setting, the mapping results are still biased toward the seen class. Therefore, appro-
priately adding semantic vectors of unseen classes in semantic space can alleviate the bias
of mapping results.

Active learning is similar to zero-shot learning to some extent. Both of them are
designed to reduce the dependence on large-scale labeling data and are targeted at scenarios
where labeled data are rare or the “cost” of labeling is high. The difference is that zero-shot
learning aims to realize knowledge transfer in the absence of labeled samples, while active
learning aims to maximize model performance by actively selecting the most valuable
samples for labeling. Therefore, some techniques in active learning can enlighten us. In
active learning, Parvaneh et al. proposed the feature mixing method: compute the average
visual representation x̄ of the labeled samples per class and call it an anchor. The anchors
for all classes form the anchor set x̄ and serve as representatives of the labeled instances [17].
Inspired by their method, we take the average visual feature as a representation of one
class and generate the semantic embedding ẽ of how this class might be mapped, as
shown in Figure 2. The generated semantic embedding ẽ should have the following two
characteristics. First, by generating the different semantic embeddings that may be mapped
from the same class, we extend the original unique semantic discriptor of each category in
the semantic space into a semantic discriptor a set Si = {ai, ẽ1, . . . , ẽn}, whereai is the real
semantic discritptor of category i provided by the dataset, while ẽ1 to ẽn are the synthetic
pseudo-semantic-discriptors just like extending the unique evaluation criteria to establish
a qualifying interval. Second, generated semantic embeddings should be representative
and authentic, which are similar to the semantic embeddings of the real existence mapped
by the visual feature, and they can truly simulate the possible mapping situation without
deviating from reality. We formulate our assumption for the pseudo-semantic embedding
generation method as follows:

ẽi = G2(ε, x̄i) (5)

x̄i =
1
n ∑n

j=1 xj
i (6)

where n is the number of visual features instances the class i contains, and xi is the set of
visual features contained in class i.
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Figure 2. Scheme of pseudo-semantic embedding.

We still select the condition WGAN by integrating the visual feature average x̄ to both
the generator and the discriminator. The loss is,

LWGANatt = E[D2(ei, x̄i)]− E[D2(ẽi, x̄i)]− λE[(||∇êi D2(ẽi, x̄i)||2 − 1)2] (7)

where ei is, corresponding to the synthetic semantic embedding ẽi, the real semantic
embedding obtained by inputting the average visual features xi of category i into the
mapping net.

2.3. Loss Design
2.3.1. Semantic-Relevant Self-Adaptive Margin Center Loss

To encourage Gatt to generate more representative semantic embedding for an unseen
class, we used the idea of building a distance metric in metric learning. Metric learning
aims to learn such a distance metric for a type of input data that conforms to semantic
distance measures between the data instances [35]; this point has been explored and
applied in both few-shot learning [35] and zero-shot learning [36,37]. Inspired by previous
work,we propose the semantic-relevant self-adaptive margin center loss (SEMC − loss,
LSEMC) to constraint Gatt. By narrowing the distance between the generated semantic
vector and the real semantic vector in the semantic space, intra-class compactness and
inter-class separability are encouraged. It has the advantages of the center loss [38] and
triplet loss [39] as well as learning intra-class compactness and inter-class separability.
LSEMC is formulated as:

LSEMC = max(0, ∆ + γ||ẽi − ai||22 − (1− γ)||ẽi − ai′ ||22) (8)

where ai is the i th (the label of seen visual feature x) class center of semantic embedding, ai′

is the i′th (a randomly selected class label other than i) class center, ∆ represents the margin
that i controls the distance between intra- and inter-class pairs, ẽi is the synthesized semantic
embedding of the ith class generated by Gatt and γ ∈ [0, 1] is used for balancing the inter-
class separability and intra-class compactness, which are adaptable to various datasets.
The sensitivity of intra-class compactness and inter-class separability to different datasets
(coarse-grained datasets and fine-grained datasets) can be satisfied by using balance factors
to balance intra-class separability and intra-class compactibility adaptively. We use a large γ
for fine-grained datasets (e.g., CUB [40], SUN [41]) and a small γ for coarse-grained datasets
(e.g., AWA1 [9], AWA2 [42]). For fine-grained datasets, we can more easily distinguish
them by encouraging intra-class compactness, and for the coarse-grained datasets, we can
effectively separate them by enlarging the inter-class separability.
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2.3.2. Total Loss

In our hybrid framework, we map both the real features and the synthetic features
into the semantic embedding space, where we perform the final GZSL classification. No-
tably, we formulate LSE(E) only using the semantic descriptors of seen classes. Therefore,
Equation (1) should be extended to:

LSE(E) = Ep(x,a)[max(0, ∆− aTE(x) + (a′)TE(x))]

+EpG f
(x̃,a)[max(0, ∆− aTE(G f (a, ε)) + (a′)TE(G f (a, ε)))]

(9)

where p(x, a) is the empirical distribution of the real training samples of seen classes, and
pG f (x̃, a) = pG f (x̃|a)p(a) is the joint distribution of a synthetic feature and its correspond-
ing semantic descriptor.

The total loss of mapping net takes the form of:

L(G1, E, H) = LSE(E) + LSE(H) (10)

Thus, the total loss of our final hybrid framework is formulated as:

Ltotal = L(G1, E, H) + LWGAN f eature + LWGANatt + LSEMC (11)

2.4. Classification

First, given the average visual representation x̄ of the unlabeled samples per unseen
class, we generate semantic features for each unseen class cu by the feature generator
network G2, which uses the average visual representation x̄ and Gaussian noise as input
and output synthetic features: ẽu = G2(x̄, ε). Second, to keep the inputs of the classifer in the
same model, we use the G1 to generate visual features for each pseudo-semantic embedding,
that is, G1 uses real semantic features and generated semantic features, respectively, to
synthesize visual features, which are denoted as x̃ = G1(au, ε) and x̃′ = G1(ẽu, ε). Then, we
can obtain a synthetic training feature set Utr = {x̃ ∪ x̃′}.

In the end, we map the synthetic training feature set Utr and the given training features
of seen classes in Str into the same embedding space hi = E(xi) and utilize the real seen
samples and the synthetic unseen samples in the embedding space to train a softmax model
as the final classifier. The whole process is shown in Figure 3.

Figure 3. Scheme of classification.
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3. Experimental Results
3.1. Datasets

We evaluate our method on four benchmark datasets for ZSL: Animals with Attributes
1 and 2 (AWA1 [9] and AWA2 [42]), Caltech-UCSD Birds-200-2011 (CUB) [40], and SUN
Attribute (SUN) [41]. An example of the contents of each dataset is shown in Figure 4, all
datasets and their statistics are summarized in Table 2 .

AwA1 is a coarse-grained image dataset, containing 30,475 animal pictures in 50 categories,
40 of which are the seen class and 10 of which are the unseen class, and 85-dimensional class
level attribute vectors are used. AWA2 is a fixed version of AWA1; they have the same category,
category division way, and class-level attribute dimension, except that 37,322 coarse-grained
animal pictures are used, and they do not overlap with AwA1 image instances.

Figure 4. Scheme of classification.

CUB is a fine-grained image dataset, including 11,788 bird pictures in 200 classes,
of which 150 classes are in the seen class and 50 classes are in the unseen class. CUB
also provides an instance-level attribute vector; however, only 312-dimensional class-level
attribute vectors are used in this work. The class-level attribute descriptor space is shown
in Figure 5.

Figure 5. Example of attribute space for the CUB dataset.

Table 2. Statistics of the four benchmark datasets used in our experiments.

Dataset Seen/Unseen
Class Attribute Train Seen Test Seen Test Unseen Total Instance

AWA1 40, 10 85 19,823 4958 5685 30,475
AWA2 40, 10 85 23,527 5882 7913 37,322
CUB 150, 50 312 7057 1764 2967 11,788
SUN 645, 72 102 10,320 2580 1440 14,340
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SUN is a scene dataset; this dataset is also a fine-grained one, which contains 14,340
pieces of 717 scenes. Here, 645 classes are used for training, and 72 classes are used for
testing. Each class is annotated with a 102-dimensional attribute vector.

3.2. Implementation Details

We evaluated our method under the new split setting provided by [42], and more
details on the settings can be found in [42]. We use strictly the 2048-dimensional feature
of each image extracted from the pre-trained ResNet-101 provided by [42] similar to the
others, and only the attribute vectors provided by each dataset are used.

We implement our method with PyTorch. We set the dimension of embedding h to
the class-level attribute vector, 85 for AWA1 & AWA2, 312 for CUB, and 102 for SUN. The
dimension of the non-linear projection’s output z is set to 512. We set a random mini-batch
size of 4096 for AWA1 and AWA2, 2048 for CUB, and 1024 for SUN. Our generator and
discriminator both contain a 4096-unit hidden layer with LeakyReLU activation. The
classification part contains one fully connected layer, which will be utilized in making
predictions. The numbers of input and output units follow the dimension of attribute
vectors and the number of classes provided by each dataset.

For the hyperparameter, we set the temperature parameter τe in Equation (3) according
to [26]: τe = 0.1 for AWA1, CUB and SUN, and τe = 10.0 for AWA2. For the parameter in
Equation (8), we use a large γ = 0.8 for fine-grained datasets (CUB and SUN) and a small
γ = 0.1 for coarse-grained datasets (AWA1 and AWA2), referring to [43].

3.3. Experiments on Different Datasets
3.3.1. Performance of Different Methods under Comparison

Under the conventional ZSL scenario, we only evaluate the per-class Top-1 accuracy
on unseen classes. The average per-class T1 accuracy is measured as follows, where y
represents the number of unseen classes and c represents the serial number of each class:

accy =
1
||y||∑

||y||
c=1

correct predictions in c
samples in c

(12)

To show the effectiveness of the proposed method, we compared the simulated results
with six other algorithms, and all the results are cited directly from their published papers.
To provide a fair comparison, we adopt the experiment settings provided by [42], i.e., the
datasets and their splits, and all the algorithms we compared adopt the same experiment
settings. Table 3 shows that our method achieved a high value for CUB and the second-best
position for AWA1. On the AWA1 dataset, the MG-ZSL yields a Top-2 accuracy of 70.6%,
while the best Top-1 accuracy is 73.5% (yielded by ZMSL). It is worth noting that the
MG-ZSL yields Top-1 accuracy higher than 70% on the CUB datasets, which is 0.7% higher
than the second-banked algorithms. These results show that the method presented in this
paper has achieved remarkable results.

In general, the experimental results of this paper have considerable performance with
the current best case and are significantly better than previous mapping-based methods,
such as DeViSE and DEM. Moreover, it also surpasses SE-GZSL, which is one of the state-
of-the-art generation-based methods for all datasets and is comparable to the ZSML. Thus,
the MG-ZSL model is very competitive.

The conventional ZSL scenario has been criticized as a restrictive setup because it
is based on a strong assumption that the instances used in the test stage only come from
unseen classes, which is less realistic. Therefore, GZSL was proposed, which is more
realistic in practice. In the GZSL setting, the instances for evaluation may come from seen
and unseen classes, so we choose the harmonic mean as our main evaluation indicator
instead of the arithmetic mean, because considerably high-class accuracy will significantly
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affect the overall results with the latter. The harmonic mean can be computed by the
following function:

H =
2× accu × accs

accu + accs
(13)

where accs is the average per-class top-1 (T1) accuracy of the test images from the seen
classes and accu is average per-class top-1 (T1) accuracy of the unseen classes. Both of
them are computed by Equation (12). For the GZSL setting, we add more recent models for
comparison, and the results are presented in Table 4.

Table 3. Results of conventional ZSL. The results are reported in %.

Method AWA1 AWA2 CUB SUN

Embedding-based

DeViSE [15] 54.2 59.7 52.0 56.5

DEM [18] 68.4 67.1 51.7 61.9

DSEN [19] — 72.3 71.8 62.2

Generation-based

SE-GZSL [26] 69.5 69.5 59.6 63.4

ZSM L [27] 73.5 76.1 69.6 60.2

f-CLSWGAN [28] 68.2 — 57.3 60.8

Our JG-ZSL 70.6 69.4 72.5 60.3

We compute the harmonic accuracy H, corresponding train accuracy accs, and test
accuracy accu of our algorithm on all four of the above-mentioned datasets. The results are
recorded in Table 4, and all results are cited directly from their published papers.

Table 4 shows that our method achieved high value in both H −mean and accu for
CUB. Our method shows a significant improvement of 2.9% compared to the second one,
and for accu, we lead the second place by 8.1%. We also achieve the best position for AWA2
on accu, which leads the second place by 2.5%, and we achieve the second-best position
for AWA2 on H − mean, while the best Top-1 H − mean is yielded by IZF. For SUN, we
achieve the second-best position on accu and H −mean and were significantly ahead of the
third-best result. These results show that the method presented in this paper has achieved
remarkable results.

In addition, it is worth noting that although compared with IZF, the current best SoTA
model, our results cannot exceed it in all indicators, the IZF model, as acknowledged by its
authors, is based on generative flows and has extremely high complexity, requiring a large
number of computational resources and complex computational processes, and it takes
human experience and trial and error to obtain the optimal combination of parameters. In
contrast, our proposed model is lightweight, simple and easy to train. Similar results can
be achieved while consuming far less computing resources than IZF.

3.3.2. Ablation Studies

In this paper, we employ a hybrid model combining the generation-based method
and embedding-based method and two independent generative networks to synthesize
the visual features for each unseen class. While testing, the two generative networks
alleviate the problem of data imbalance by synthesizing visual features and semantic
embedding, respectively.

In order to illustrate the effects of the multiple generative adversarial networks, we
conduct the following experiments on ZSL and GZSL tasks: (1) experiments with only
semantic embedding net (SE); (2) experiments with semantic embedding net and visual
feature generation net (G f ); (3) experiments with semantic embedding net, visual feature
generation net and semantic embedding generation net (Ga); (4) experiments with the
whole JG-ZSL. The results are presented in Tables 5 and 6, respectively.
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Table 4. Results of GZSL on five standard datasets, U: T1 per-class accuracy accu on unseen class set
U, and S: T1 per-class accuracy accs on seen class set S, H = harmonic mean. The results report Top-1
accuracy in %, and the best results are marked in bold.

Method
AWA1 AWA2 CUB SUN

U S H U S H U S H U S H

BZSL [44] 19.9 23.9 21.7 - - - 18.9 25.1 20.9 17.3 17.6 17.4
ZSKL[45] 18.3 79.3 29.8 18.9 82.7 30.8 24.2 63.9 35.1 21 31 25.1
DEM [18] 32.8 84.7 47.3 30.5 86.4 45.1 19.6 54 13.4 20.5 34.3 25.6
CSSD [46] 34.7 87.1 49.6 - - - 19.1 62.7 29.3 - - -

SPF-GZSL [47] 48.5 59.8 53.6 52.4 60.9 56.3 30.2 63.4 40.9 32.2 59.0 41.6
TCN [48] 49.4 76.5 60.0 61.2 65.8 63.4 52.6 52.0 52.3 31.2 37.3 34.0

SE-GZSL [26] 56.3 67.8 61.5 58.3 68.1 62.8 41.5 53.3 46.7 40.9 30.5 34.9
RFF-GZSL [49] 59.8 75.1 66.5 - - - 52.6 56.6 54.6 45.7 38.6 41.9

IZF [43] 61.3 80.5 69.6 60.6 77.5 68.0 52.7 68.0 59.4 52.7 57.0 54.8
NereNet [50] 56.2 70.1 62.4 - - - 51.0 56.5 53.6 45.7 38.1 41.6

UFG [51] 59.3 66.0 62.5 - - - 45.2 56.8 50.4 35.8 46.0 40.2
DPR [52] 54.7 81.9 65.6 - - - 48.9 66.6 56.4 8.1 35.5 40.7

Our JG-ZSL 57.9 63.4 60.5 63.1 68.3 65.6 60.8 63.9 62.3 50.2 37.9 43.2

Table 5. Comparison results with different network options during the testing phase in ZSL. The
results are reported in %.

Method AWA1 AWA2 CUB SUN

SE−Only 54.3 58.5 58.4 50.1
SE+G f 65.9 68.1 67.6 53.7

SE+G f +Ga 68.3 71.2 70.9 56.3
SE+G f +Ga+LSMAC 70.6 69.4 72.5 60.3

From Table 5, it can be seen that the networks have different effects on the datasets,
and the JG-ZSL yields the best results on most datasets. For the AWA2 dataset, the accuracy
of T1 per class on SE + G f + Ga is higher than the whole JG-ZSL, while the performance is
different on the other dataset. Furthermore, from Figure 6, it can be seen that compared
with SE−Only and the visual feature generate-only, the JG-ZSL also outperforms all the
networks and settings on all the datasets.

Figure 6. Comparison results with different network options on four benchmark datasets in ZSL.

From Table 6, the JG-ZSL yields the best results of harmonic mean on all the datasets.
However, because the unseen accuracy U is seriously below the seen accuracies S, the
accuracy of harmonic mean H is mostly up to unseen accuracy U. Therefore, the key to
improving the harmonic mean H is to improve the unseen accuracy.
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Furthermore, from Figure 7, it can be seen that compared with SE+G f and SE+G f +Ga,
the generated network does not improve the accuracy of the seen class as much as the
unseen class, but the JG-ZSL still outperforms all the networks and settings on all the
datasets because of the great enhancement to the unseen class.

Table 6. Comparison results with different network options during the testing phase in GZSL. The
results are reported in %.

Method
AWA1 AWA2 CUB SUN

U S H U S H U S H U S H

SE-Only 21.6 55.7 31.1 21.0 59.7 31.1 36.3 44.2 39.9 19.0 27.1 22.3
SE+G f 50.3 60.5 54.9 50.6 62.3 55.9 52.2 59.3 55.5 35.1 23.7 28.3

SE+G f +Ga 54.7 61.3 57.3 54.4 69.3 61.0 57.7 63.3 60.7 51.3 36.1 42.3
SE+G f +Ga+LSMAC 57.9 63.4 60.5 63.1 68.3 65.6 60.8 63.9 62.3 50.2 37.9 43.2

Figure 7. Comparison results with different network options on four benchmark datasets in GZSL.

3.3.3. Hyperparameter Analysis

We study the balance factor γ in Equation (8) to determine its influence on the module, γ
was set as 0.1, 0.5 and 0.8 in turn, and the ablation results of CUB and AWA2 were shown in
Table 7.

Table 7. The effectiveness of the balance factor γ. The results are reported in %.

γ
CUB AWA2

U S H U S H

0.1 53.4 57.2 54.7 63.1 68.3 65.6
0.5 57.9 60.1 60.0 60.8 67.7 64.1
0.8 60.8 63.9 62.3 60.1 66.5 63.1

As shown in Figure 8, as γ grows, S, U and H gain consistent improvement on the fine-
grained datasets (e.g., CUB), while coarse-grained datasets (e.g., AWA2) do the opposite.
This result may reflect that the increase of intra-class compactness can improve the precision
of fine-grained datasets, while for coarse-grained datasets, it is necessary to increase the
inter-class separability for ambiguous classes.

We then uniformly set the number of generated semantic features to 2 and use gener-
ated semantic features and real semantic features to synthesize visual features. Assuming
that the total number of synthesized visual features is N, the two generated semantic fea-
tures and real semantic features generate 1/3*N synthesized visual features, respectively,
and they contrast the effects by varying the number of visual features generated. The
ablation results of CUB and AWA2 were as follows:
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The number of generated samples is an important part for generative methods, so we
also implement detailed experiments in this area. Our method achieves the best results on
AWA1, AWA2, CUB, and SUN when we synthesize 1800, 2400, 600 and 90 examples per
unseen classes, respectively. Figure 9 shows part of the experimental results, and there is
an obvious phenomenon here that the number of generated samples for unseen classes
is positively correlated with the values of U and H, which shows that the data-imbalance
problem has been relieved by the generation model in our framework. However, with the
large increase of unseen generated samples, the classification accuracy of seen classes also
decreased significantly, which is one of the future directions to explore.

Figure 8. The effectiveness of the balance factor γ.

Figure 9. The influence of different numbers of the synthesized samples for each unseen class.

In this paper, the generalization of the G f and the specificity of the Ga are com-
bined not only to improve ZSL performance but also to alleviate the data imbalance
problem and reduce the gap between seen accuracy S and unseen accuracy U and improve
GZSL performance.

4. Conclusions

In this paper, we propose a joint model with multiple generative adversarial networks
combining the embedding-based method and the generation-based method to synthesize
the visual features and the semantic embedding points which realized the data enhance-
ment of zero-shot learning in two ways, and it is also verified in the more challenging
generalized zero-order learning setting. Inspired by the ideas of active learning and gen-
erative adversarial networks, the coupled generative networks work cooperatively to
synthesize visual features of unseen classes under the constraint of semantic-relevant self-
adaptive margin center loss. In addition, we compare the model with the current advanced
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methods, and the experimental results outperform the state-of-the-art embedding-based
method and are competitive with the current generation-based method.

However, there are still some limitations in this paper. For example, all categories use
the same way to generate semantic features which are not targeted enough, and there is
no attempt to use VAE and other models to generate semantic features for comparison.
Making full use of the pseudo-semantic features generated by images and comparing
them with more generation models is the direction of future exploration. In addition
to the above problem, exploring the more appropriate number of generated semantic
features and different proportions of generated samples synthesized by generated semantic
features and real semantic features are also problems that can be explored. In future work,
we will further explore more efficient pseudo-semantic features generation methods and
explore more obvious ways to improve the effect for unseen class classification and conduct
experiments on larger datasets to improve the generalization abilities.
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